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Abstract: In this paper, we proposed a framework for evaluating the performance of ecosystem strategies prepared for enhancing vul-
nerability reduction in the face of hazards due to climate change. The framework highlights the positive effects of human activities in the 
coupled human and natural system (CHANS) by introducing adaptive capacity as an evaluation criterion. A built-in regional vulnerabil-
ity to a certain hazard was generated based upon interaction of three dimensions of vulnerability: exposure, sensitivity and adaptive ca-
pacity. We illustrated the application of this framework in the temperate farming-grazing transitional zone in the middle Inner Mongolia 
of the northern China, where drought hazard is the key threat to the CHANS. Specific indices were produced to translate such climate 
variance and social-economic differences into specific indicators. The results showed that the most exposed regions are the inner land 
areas, while counties located in the eastern part are potentially the most adaptive ones. Ordos City and Bayannur City are most fre-
quently influenced by multiple climate variances, showing highest sensitivity. Analysis also indicated that differences in the ability to 
adapt to changes are the main causes of spatial differences. After depiction of the spatial differentiations and analysis of the reasons, 
climate zones were divided to depict the differences in facing to the drought threats. The climate zones were shown to be similar to vul-
nerability zones based on the quantitative structure of indexes drafted by a triangular map. Further analysis of the composition of the 
vulnerability index showed that the evaluation criteria were effective in validating the spatial differentiation but potentially ineffective 
because of their limited time scope. This research will be a demonstration of how to combine the three dimensions by quantitative 
methods and will thus provide a guide for government to vulnerability reduction management. 
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1  Introduction 

Vulnerability refers to the frangible nature of a system 
faced with various types of potential disasters. As an 
effective description of the extent to which a system is 
susceptible to damages from climate changes, vulner-
ability assessment is indispensable in sustainability de-
velopment (Kelly and Adger, 2000; IPCC, 2000). Vul-
nerability assessment is used not only in the develop-

ment of climate change criteria but also in the charac-
terization and identification of the response mechanisms 
of a coupled human and natural system (CHANS) in 
which there are highly organized interactions between 
the natural components and human activities (Turner et 
al., 2003a; Liu et al., 2007a).  

The concept of vulnerability has largely distinct his-
tories in the social and biophysical sciences. The most 
notable feature of a vulnerable system is the instability 
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and sensitivity to outside threats, which are manifested 
in a developing direction against the interests of human-
ity and stability (Olga and Donald, 2002; Adger, 2006). 
Now, vulnerability has functioned as a health-related 
and social-economical measurement index (Yohe and 
Tol, 2002; Luers, 2003; Turner et al., 2003b; Eakin and 
Luers, 2006; Chang and Chao, 2011), and it also turns 
out to be the first step in the sustainable development 
encompassed in the analysis and identification of com-
plexity (Smit and Wandel, 2006; Liu et al., 2007b). 
Human activity is an indispensable factor in this coupled 
system, not only because it is the main reason for eco-
system degradation but also because humans can play a 
positive role by adopting proper environmental man-
agement strategies to enhance the adaptive capacity of 
ecosystems. Many scholars have proposed additional 
concept of this positive ability in environmental man-
agement to the framework of vulnerability research. 
However, there has not yet been progress in achieving a 
standardized quantitative method to integrate it (O'Brien 
et al., 2004a; 2004b; Adger, 2006;). 

Several scientists have proposed a theoretical frame-
work that includes social-economic indicators (O'Brien 
et al., 2004b; Polsky et al., 2007), but there has been 
little advance in the quantifying method. Most studies 
on vulnerability have focused on the extent of exposure 
to a certain hazard, with little done to examine the com-
prehensive interactions or the adaptive capacity from a 
social-economic perspective (Adger, 2006; Hinkel, 
2011). In addition, there have been limitations in the 
examined spatial scale. Former vulnerability assess-
ments have mainly been focused on the macro-scale 
such as worldwide or multi-country (Birkmann, 2007), 
but variability among locations calls for a more practical 
approach, especially to adaptive capacity management.  

Environmental problems in China are the most severe 
one of every major country, and the environment is 
fragile for different reasons in different regions (Liu and 
Diamond, 2005). In northwestern China, variable rain-
fall, wind and drought exposure in its high-altitude grass-
lands are the main causes of vulnerability (Leng, 1994; 
Li et al., 2003; Liu and Diamond, 2005). In the present 
study, we took the middle Inner Monglia, the temperate 
farming-grazing transitional zone in the northern China 
as an example. This region is threatened by serious drou-
ght and is very sensitive to climate change. This study 
focused on vulnerability under adaptive management to 
mitigate the effects of drought. The objective was to 

evaluate the various vulnerabilities and the spatial dif-
ferences in counties in the middle Inner Mongolia (MIM) 
of China and to investigate the relationships between the 
determinants by reanalyzing the index structure and by a 
zonation method.  

2  Methodology 

2.1  Study area 
As shown in Fig. 1, the middle Inner Mongolia (MIM) 
Autonomous Region (38°–49°N, 107°–119°E) is located 
in the north of China, including 74 counties located in 
Hulunbuir City, Hinggan League, Tongliao City, Chi-
feng City, Xilin Gol League, Ulanqab City, Baotou City, 
Hohhot City, Bayannur City, Wuhai City and Ordos City 
(Fig. 1). The region has a long history of land use and 
hazard modeling. One of the main focuses currently 
discussed is the efficiency of environmental manage-
ment for balancing the local ecological fragility with 
land use requirements for socioeconomic development. 
The government has embarked on several environmental 
programs for nearly 20 years, such as grassland restora-
tion, prohibition of grazing in degraded areas and im-
plementation of ecosystem services conservation to im-
prove land productivity (Leng, 1994; Song and Zhang, 
2007).  

Middle Inner Mongolia encompasses most of the 
farming-grazing transitional zone in China and is very 
sensitive to climate fluctuation and anthropogenic im-
pact. The grassland forms a continuum through the 
southern Da Hinggan Mountains and across the Inner 
Mongolia Plateau to the south of the Ordos Plateau and 
the Loess Plateau. Cultivation of grains is markedly re-
stricted to a few locations suitable for agriculture, which 
further exacerbates hydrologic scarcity in the semi-arid 
ecosystem by consuming much of the underground wa-
ter. The population is over 1.63 × 107 across the total 
area of 698 537 km2. The population density is about 24 
persons/km2, very small compared to other parts of 
China (Inner Mongolia Autonomous Region Bureau of 
Statistics, 2007). The main landscape is high plains, 
most of which are located on the Mongolia Plateau with 
an average altitude of 1000 m. Annual solar radiation 
increases from northeast to southwest, and precipitation 
decreases from northeast to southwest. Mean annual 
precipitation ranges from less than 50 mm to more than 
450 mm, showing a strong northeast-southwest gradient. 
Desertification of the land, as one of the biggest chal-  
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Fig. 1  Location of study area in China 

 

lenges for sustainable development, is mostly caused by 
meteorological drought (Li et al., 2003; Song and Zhang, 
2007). 

2.2  Data and processing 
The basic analysis unit of this study is at county (banner) 
level, and multiple social and environmental variables 
were compiled as the attributes of the 74 counties (Table 
1). To render them suitable for spatial analysis, we cre-
ated indicators from the original variables using county 
as the unit of analysis. Both Geographical Information 
System (GIS) analysis and geographical mathematical 

methods were used in the development of the database. 

2.3  Vulnerability assessment model 
Three dimensions were constructed in the vulnerability 
assessing diagram: exposure, sensitivity and adaptive 
capacity. Conceptual interactions and modules are de-
picted in Fig. 2. It is intrinsic that the definition of vul-
nerability must always linked to specific hazards (Blai-
kie et al., 1994). While in this case, meteorological 
drought, as a key stress, is a driving force of regional 
vulnerability, and is a more potential starting point for 
analysis as a consequence of climate changes. 

 
Table 1  Description of data used in this study 

Type & date Indicator Source 
Vegetation 

(1998–2008) 
Standard deviation of normalized difference vegetation 
index (NDVI) 

Spot/vegetation images from Institute of Technology in 
Belgium Flemish (VITO) (1 km by 1 km) (http://www.vito. 
be/VITO/EN/HomepageAdmin/Home) 

   

Climate 
(1958–2008) 

Coefficient of variance of precipitation, coefficient of vari-
ance of temperature, precipitation index 

Daily maximum /minimum /average precipitation and tem-
perature data of meteorological stations from National Mete-
orology Bureau of China (http://cdc.bjmb.gov.cn) 

   

Digital Elevation 
Model (2000) 

Elevation U.S Geological Survey GTOPO30 DEM (1 km by 1 km) 
(http://www.usgs.gov/pubprod/data.html#data) 

   

Socioeconomic data 
(2006) 

Per capita cultivated area, physicians per 1000 persons, 
ratio between agricultural and industrial output, technolo-
gists per 1000 persons, per capita savings deposits, per 
capita business volume of Post and Telecom Service (access 
to information), population density, per capita GDP 

Statistical Yearbook of China (Nationa Bureau of Statistics 
of China, 2007) and statistical information of counties and 
cities in Inner Mongolia provided by Inner Mongolia 
Autonomous Region Bureau of Statistics 
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Exposure measures the extent, duration or frequency 
of a stress on a system. Drought is the central risk in the 
study area and is therefore chosen as the exposure vari-
able, meteorological index on regional precipitation is 
used to detect the temporal climate changes and its spa-
tial distribution. Sensitivity is the degree to which a 
system is affected by a stress or perturbation, either 
positively or negatively. It is an inherent property of the 
human-environment system prior to perturbation and is 
influenced by both ecological and socioeconomic condi-
tions. Adaptive capacity is the ability of system to cope 
with actual or expected stress, including the ability of 
the system to initiate measures to prevent future damage 
and/or to extend the range of conditions to which it is 
adapted (Brooks et al., 2005; Smit and Wandel, 2006), 
and it may also be a function of several factors, includ-
ing income, education, information, skills, infrastruc-
tural access and management capabilities (McCarthy et 
al., 2001; Tol and Yohe, 2007).  

According to the conceptual correlations of vulner-
ability and its three dimensions, as depicted by the red 
or green arrows in Fig. 2, vulnerability was composed of 
two positively affected dimensions, i.e., exposure and 
sensitivity, and one negatively mitigating factor, i.e., 

adaptive capacity. Therefore, the most vulnerable county 
was characterized with a low adaptive capacity, a high 
drought exposure and a high sensitivity to environment 
fluctuations. The vulnerability index (VI) can be defined 
as follows: 

VI = EI + SI − AI              (1) 

Single index of each vulnerability dimension was 
produced to represent each facet. Sensitivity index (SI) 
and adaptive capacity index (AI) were obtained by prin-
ciple component analysis. Exposure index (EI) was in-
dicated by standardized precipitation index (SPI). Ac-
cording to the scheme of the indexing method, the cal-
culation based on indexes of three dimensions is as fol-
lows: 

VI = −SPI + SI − AI              (2) 

where EI has been replaced by the negative SPI, because 
negative SPI denotes drought events and positive SPI 
denotes moist conditions. EI equals SPI rescaled to a 
range between 0 and 1 with the extreme values stan-
dardization method. 

What we should note is that all the indexes involved 
in the model were values for measurement of spatial diff- 

 

 
 

Fig. 2  Module of vulnerability assessment based on exposure, sensitivity and adaptive capacity  



 LIU Xiaoqian et al. Assessing Vulnerability to Drought Based on Exposure, Sensitivity and Adaptive Capacity 17 

 

erentiation rather than the true values representing the 
specific conditions of certain counties. That is to say, 
comparison between indexes is only suitable for coun-
ties in the study area.  

2.4  Exposure index calculation  
When climate change and shortage of precipitation are 
considered, the annual precipitation and its variability 
become the keys to measure how much a region is ex-
posed to threat. Exposure in this case is the occurrence 
of drought events due to absence of precipitation, which 
is a common phenomenon in this semi-arid area. While, 
certainly, rising of temperature could also manifest 
drought stress, but it is more subjects to vary with mi-
cro-geomorphology and hardly to capture by the data set 
available from remote sensing images at a medium scale 
(Birkmann, 2007). 

Index indicating the amount of precipitation and its 
pattern is widely used for measuring exposure, espe-
cially when analyzing the stochastic characteristic of 
precipitation. Single index host its advantage on both 
telling the spatial divergence of potential threats on a 
straight way and more applicable to sample contrast. In 
the present study, SPI was used as a virtual value to 
measure the degree of regional drought stress by quan-
titative description methods. It could be used to define 
how eco-environmental vulnerability changes with ex-
ternal threats when the counties are similar in their 
natural and geographical conditions.  

SPI is a simple indicator of exposure to drought at 
different time scales with spatial homogeneity, and has 
been used in many studies related to drought hazard 
based on the probability of precipitation in a given time 
period (Mckee et al., 1993; Wu et al., 2001; 2007). The 
SPI allocates a single numeric value to the precipitation 
so that comparisons can be made across regions with 
different climates. In this case, SPI of each county was 
calculated from a time series of annual precipitation data 
for 50 years between 1958 and 2008 as follows:  

std

i
i

P P
SPI

P
−

=
                

  (3) 

where Pi is the average precipitation for county i (1, 2, 3, 
4, …, 74) since 1958 to 2008; P is the average precipi-
tation in the study area and Pstd is the standard deviation 
value of precipitation derived from the climate records 

for nearly 50 years. Negative values obtained from this  
equation indicate precipitation deficit (drought events), 
while positive values represent wet conditions (Mckee 
et al., 1993). The SPI was rescaled to a range between 0 
and 1 to obtain the EI as follows by the extreme values 
standardization method. A similar rescaling process was 
also used to formulate AI and SI to make sure they had 
similar impacts on VI by inspection of the different 
magnitudes of related indicators. 

2.5  Sensitivity and adaptive capacity indexes   
calculation 
Sensitivity indexes are involved with a number of natu-
ral indicators such as temperature, precipitation, NDVI 
and elevation. The indexes are highly interactive through 
coupled ecological processes, so principal components 
analysis (PCA) was used to analyze the correlations 
among the data through SPSS 16. Apart from dealing 
with data redundancy, PCA also provides an objective 
basis for weighting the indices, which is crucial for the 
overall evaluation criteria.  

The steps in the PCA method are as follows: 1) stan-
dardize primary data; 2) extract principle components 
by PCA in SPSS 16; 3) compute eigenvalues βi of matrix 
R and its corresponding eigenvectors αi; 4) group αi by 
linear combination to extract two to three principal 
components; 5) rotate the component matrix by the 
variation max standardizing method with Kaiser nor-
malization; candidate indicators with lower scores than 
needed will fail to be significant enough in the principle 
component; 6) according to their eigenvalues βi and the 
component scores of each county, obtain the new scores 
of each county. Then an evaluation function can be set 
up to compute an integrated index on the basis of se-
lected components (Li et al., 2006; Braimoh, 2009).  

Principal components analysis was also used in ana-
lyzing the adaptive capacity to deal with the highly in-
terrelated social-economic indicators, which played the 
most important role in improving the capacity to adapt 
to changes and to mitigate harm in ecosystem manage-
ment. According to the PCA, components and their 
weights could be defined. The cumulative index of 
county i could be calculated as follows: 

  ( 1,  2, 3, , 74)i j ijI S iα= × =∑ …  

in which 

1jα =∑                 (4) 
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where Ii is the sensitivity or adaptive index of county i 
resulting from a linear combination of principle compo-
nents; αj is the weight of principle j obtained from the 
component scores, and Sij is the value of the principle 
component j of county i calculated as follows: 

( )ij m m mS Xβ β α= × >∑
         

  (5) 

where Xm is the indicator m in principle j; βm indicates 
the correlation significance between the indicator and 
the principle, displaying the contribution to the principle 
j; α is a dependent variables, which varies with interpre-
tation of components analysis. Indicators with βm greater 
than the threshold α will be taken into account。 

3  Results and Analyses 

3.1  Sensitivity index  
We specifically introduce the indices that could be used 
to measure the variability of a certain array of data by 
calculating its coefficient of variance (CV). The CV was 
calculated as the ratio of the standard deviation index (x*) 
to the average of an estimated series value x . The vari-
able x could be a time series of climate, e.g., tempera-
ture or precipitation; it also could be a series of the 
vegetation index of a certain area during the years.  

From the PCA, two components were extracted. In-
dicators with a weight βm greater than 0.6 were taken 
into account and are noted with an asterisk in Table 2. 
Two principal components accounted for about 73% of 
the variability in the data. The first component has a 
high loading on temperature, precipitation and NDVI 
variation and could therefore be referred to as ′climate- 
land cover sensitivity′. The second component is highly 
correlated with altitude and could be referred to as 
′elevation sensitivity′. Each of the two components was 
weighted based on its relative contribution to total vari-
ance (Table 2) and integrated to produce the sensitivity 
map. 

Rescaling of the indices, including SI, to a range be-
tween 0 and 1 was performed to standardize the SI to 
make sure that each dimension had a similar effect on 
vulnerability. The most sensitive counties are located in 
the area near Mongolia (as shown in red zone of Fig. 3b), 
where the continental climate characteristics are more 
obvious. The less sensitive areas have better vegetation 
coverage and are dominated by agro-pastoral activities. 

Table 2  Principal component loadings on indicators of sensitivity 

Indicator Component 1 Component 2 

Coefficient of variance of precipitation 0.79* 0.36 

Coefficient of variance of temperature –0.92* –0.05 

Elevation 0.08 0.89* 

Coefficient of variance of NDVI 0.61* –0.38 

Weight (α) 0.63 0.37 

Note: * represents that indicators with a weight βm greater than 0.6 

3.2  Adaptive capacity index 
After the PCA, three components were included in the 
index calculation. Considering the meaning of each in-
dicator and the components, indicators with a weight βm 
greater than 0.56 are noted with an asterisk in Table 3. 

Three components account for over 66% of the vari-
ability in the adaptive capacity data. The first compo-
nent has a high loading on per capita cultivated land 
area, ratio of agriculture and industry output, and popu-
lation density. It can therefore be referred to as a ′popu-
lation-economic production′ factor. The second compo-
nent has a high loading on per capita savings deposit 
and access to information and can therefore be referred 
to as a ′income-information access′ factor. The last com-
ponent is highly positively correlated with number of 
technologists and per capita GDP and can be referred to 
as a ′skills and total productivity′ factor. 

Rescaling of the indices to a range between 0 and 1 
was also carried out to standardize the AI and SI. Thus, 
the three indices of vulnerability are statistically similar 
and range between 0 and 1. The highest adaptive capac-
ity occurs for the Ordos Region in the southwestern part 
of the MIM (Fig. 3c), encompassing the highest indus-
trial production and per capita GDP emanating from a 
relatively rich natural resources and energy industry. 
Medium adaptive capacity is associated mostly with 
counties in the middle part of MIM, which includes 
predominantly urbanized areas with higher levels of 
social infrastructure compared to rural areas. Perhaps 
the reason is that regionally important ecological effects 
of projected land-use change are still limited to major 
urban areas, while there is a demand for initiatives to 
promote high ecological adaptation in rural areas (Jack-
son et al., 2004). 

3.3  Vulnerability indices  
As all the vulnerability indexes were rescaled to the 
range between 0 and 1, their spreads were measured by  
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Table 3  Principal component loadings on indicators of adaptive capacity 

Indicator Component 1 Component 2 Component 3 

Per capita cultivated land area 0.83* –0.08 –0.03 

Physicians per 1000 persons –0.28 0.46 –0.41 

Ratio of agriculture and industry output 0.90* 0.09 0.01 

Technologists per 1000 persons –0.08 0.17 0.85* 

Per capita savings deposit 0.00 0.82* 0.36 

Per capita business volume of post and telecom service 0.03 0.87* 0.14 

Population density 0.56* –0.06 0.16 

Per capita GDP 0.20 0.19 0.74* 

Weight (α) 0.37 0.33 0.30 

Note: * represents that indicators with a weight βm greater than 0.56 

 
calculating their inter-quartile range (IQR), with the re-
sults shown in Table 4. 

The value of the IQR is important when two sets of 
similar data are compared. First we divide each value of 
EI, SI and AI into four equal parts, and then the lines 
marking each division are quartiles. The IQR is a robust 
statistic with the advantage of excluding extreme values. 
It equals to the distance between the top of the lower 
quartile and the bottom of the upper quartile of a distri-
bution. The median is the corresponding measure of 
tendency. It equals to the midhinge, which is the average 
of the first and third quartiles and is thus a measure of 
location. The closer the clustering of values around the 
median, the smaller the IQR. 

The spread of the three components measured by the 
IQR is in the order sensitivity > exposure > adaptive 
capacity. The fact that adaptive capacity index has the 
lowest values in both IQR and mean value is a quantita-
tive manifestation of unequally development of regional 
economy. About 50% of the counties have rescaled ex-
posure indexes of at least 0.54, as shown in Table 4, 
which indicates a climate-dominated vulnerability pat-
tern. Precipitation is the most important factor in shap-
ing the vulnerability to climate changes on a regional 
level, as most of these counties are covered with semi- 
arid steppe or desert and face threats from grassland 
degradation and desertification. Cumulative distribution 
functions of the vulnerability components indicate that 
75% of the counties have a rescaled AI of 0.36, reflect-
ing uneven economic development in MIM among other 
factors. The rescaled median AI of 0.24 suggests that 
adaptive capacity is generally low across the counties. 
The low adaptive capacity is potentially a manifestation 
of underdeveloped social services and relatively simple 

economic structure. Rescaled median SI was at least 
0.39, and a moderately high IQR suggests that most of 
the counties in the study area are naturally sensitive to 
drought. Proximity to deserts and scarcity of water and 
low coverage of vegetation both contribute to the sensi-
tivity to disturbances.  

 
Table 4  Quartiles of vulnerability indices 

Percentile 
Index 

25th Median 75th 
Inter-quartile 

range 

Exposure index 0.35 0.54 0.73 0.38 

Sensitivity index 0.22 0.45 0.68 0.46 

Adaptive capacity index 0.12 0.24 0.36 0.24 

Vulnerability index 0.30 0.45 0.60 0.30 
 

3.4  Vulnerability mapping 
To compare the spatial differences of vulnerability indi-
ces, we classified the values into five levels of three di-
mensions by a geometrical interval method: high, me-
dium high, medium, moderate low, low (Fig. 3). This 
classification method is a scheme whereby the class 
breaks are based upon class intervals for minimizing the 
square sum of element per class. This ensured that each 
class range had approximately the same number of val-
ues, and it can even work reasonably well on data that 
are not normally distributed. 

The map of exposure to drought indicates that coun-
ties in the western part are more exposed to drought 
hazard (Fig. 3a). Interior land is more exposed than 
counties nearer to the eastern part, the region near the 
sea. The higher exposure index indicates more severe 
drought. Coincidentally, counties in the western part 
also have low adaptive capacity due to underdeveloped 
social economics that consequently increase their vul-
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nerability.  
As shown in Fig. 3b, counties in Ordos City and Ba-

yannur City were also most frequently influenced by 
multiple climate variances coupled with instability in 
land coverage and thus showed the highest value of sen-
sitivity index.  

Potentially the most adaptive counties are located in 
the eastern part with humid climate and relatively well- 
developed farming as shown in Fig. 3c, including Feng-
zhen City in Ulanqab City, Ewenki Autonomous Banner 
in Hulunbuir City, Holin Gol City, Horqin Right Wing 
Rear Banner in Tongliao City, Duolun County in and 
Taibus Banner in Xilin Gol League. Different activities 
have various blends of adaptive capacity. In some cases, 
high sensitivity and low adaptive capacity may lead to 
large residual vulnerability. On the other hand, a strong 
adaptive capacity may mean that residual risks are small 
or non-existent in other counties. 

The VI results indicating that the most exposed inner 
land areas were the most fragile are depicted in Fig. 3d. 
Counties with the highest VI are mostly located in Ba-
yannur City and Hulunbuir City, including Hanggin 

Rear Banner, Urad Rear Banner, Urad Middle Banner, 
Dengkou County, Wuyuan County and Xin Barag Right 
Banner. The counties are located in inland Inner Mon-
golia and have an arid climate. They are mostly covered 
by dry grassland and desert grassland, and the economy 
is relatively underdeveloped, the main agricultural pro-
duction relying on animal husbandry, overgrazing and 
other inappropriate land uses that cause serious land 
degradation and desertification. In contrast, most of the 
municipal districts are found to be less vulnerable, 
probably because they are less dependent on agricultural 
production and have greater adaptively originating from 
high technology development and information accessi-
bility. Examples include Dongsheng City, Chifeng City 
and Baotou City.  

3.5  Vulnerability zoning 
A zoning method for understanding the characteristics 
of the region as a whole is important. Spatial differentia-
tion drafting by zones, defining the quantitative bound- 
ary values, has been applied in many previous studies. 

The triangular chart was initially introduced by the 
  

 
 

Exposure, sensitivity and adaptive capacity were all standardized to range between 0 and 1 
 

Fig. 3  Distribution of exposure, sensitivity, adaptive capacity, vulnerability indexes classified by geometrical interval method  
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United States Department of Agriculture (USDA) to 
classify soil types by giving names to various combina-
tions of clay, sand and silt before it was widely used in 
measuring types of one thing based upon multiple com-
binations of the other three measures. 

In Fig. 4, there are three orientations of the percent-
ages on the sides of the triangle. The numbers are ar-
ranged symmetrically around the perimeter. Perimeters, 
either on the left or right or at the bottom of the chart, 
represent different numbers corresponding to the per-
centages of three measures. Intersection of three lines 
corresponding to three proportions should be identified 
before classifying. All of the percent will add up to 
100%. 

In this study, the composition of VI was analyzed in 
depth by comparison between the absolute values of 
dimensional indices. Different structures of contribution 
of each index to the summary of the three values of AI, 
SPI and SI were depicted in an equilateral triangle map 
(Fig. 4). AVI denotes the summary of EI, SI and AI. 
Each side of the triangle represents the perimeter of the 
rate of each index divided by AVI, with a range between 
0 and 100%. The bottom, right and left sides of the tri-
angular are respectively standing for REI (ratio of EI 
divided by AVI), RSI (ratio of SI divided by AVI) and 
RAI (ratio of AI divided by AVI). The range position of 
counties on the triangular map could be defined by a 
coordinate system as REI, RSI, and RAI.  

The intersection of the three lines indicating the mean 
values of REI, RSI and RAI (REI = 44%, RSI = 36%, 
RAI = 20%) were drawn to define the six crossing areas 
in the triangle representing six combination types of 
vulnerability index. The number of counties in each 
category is given in the circles in the crossing ranges in 
Fig. 4 and in the last row of Table 5. Considering the 
regional character and the assessment results, three 
categories (A, B and C) representing different sources of 
regional vulnerability were drawn according to the pe-
rimeters given in Table 5. 

Thirty-nine counties were located in zone B (Fig. 5), 
25 of which were in the ranges of REI ≥ 44%, RSI < 
36% and RAI < 20% (as shown in lower left corner of 
Fig. 4). This result implies a high exposure impact on 
the evaluation result of vulnerability, a low influence 
from adaptive management and sensitivity to change. A 
more effective strategy to improve social economical 
mitigation of the process could be a key solution to this 
problem in MIM at present. 

 
 

Numbers in circles mean number of counties; AVI is summary of absolute 
value of adaptive capacity index (AI), exposure index (EI) and sensitivity 
index (SI) 

 

Fig. 4  Triangular map of vulnerability index structure 
 
Table 5  Categories of vulnerability zones based on structure of 
triangular map of absolute values of vulnerability indexes  

Index structure (%) Zone 
code 

Vulnerability 
zone REI  RSI  RAI 

Number of 
counties 

0–44 0–36 ≥20 7 
A 

Adaptive and 
sensitivity inter-

acted ≥44 0–36 ≥20 14
21

≥44 0–36 0–20 25
B Exposure domi-

nated ≥44 ≥36 0–20 3 
28

0–44 ≥36 0–20 10
C Sensitivity 

dominated 0–44 ≥36 ≥20 15
25

Notes: AVI is summary of absolute value of adaptive capacity index (AI), 
exposure index (EI) and sensitivity index (SI); RAI is rate of AI in AVI; 
SPI is standardized precipitation index; REI is rate of SPI in AVI; RSI is 
rate of SI in AVI. Each vulnerability zone includes two parts separated by 
extension line of average index value (gray dotted line in Fig. 4) 

4  Discussion 

There is evidence that natural drought frequencies and 
shortage of precipitation still dominated the overall re-
gion, as shown in the analysis of vulnerability zones and 
vulnerability index structure. Investigation of the influ-
ence of exposure to drought in the region is especially 
important. 

In this study, we will divide the study area into three 
climate zones based on differences in SPI. The SPI 
value of each county is depicted in Fig. 3a, which indi- 
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Fig. 5  Vulnerability zone divided according to triangular struc-
ture of indices 
 

cates that the counties most exposed to drought are lo-
cated in the western part. Considering the situation in 
the specific region and practical utilization, three 
threshold levels of drought intensity were calculated to 
redefine the boundaries of dry/moist climate defined by 
negative/positive SPI as depicted in the climate zone 
map (Fig. 6). Consistent definition of drought categories 
and SPI threshold can be found in other studies (Gutt-
man, 1998; Li et al., 2003; Wu et al., 2007; Zhang et al., 
2007). According to Mckee et al. (1993) study of 
drought intensity categories based on SPI, 2/3 of the 
counties in MIM were experiencing moderate drought, 
with SPI ranging from –1.63 to 1.64. According to Table 
6, moderate drought climate zone was the counties with 
SPI values lower than –0.84, where are frequently in-
fluenced by drought threats. Mild drought climate zone 
was defined as those with SPI values between –0.84 and 
0.65, where faced with seasonally occurring drought and 
relatively low precipitation. Counties located in the 
eastern part were relatively humid with SPI values 
higher than 0.65.  

A surprising relationship is found when the two zones 
in Fig. 5 and Fig. 6 are compared. The three climate 
zones obtained from SPI values revealed a remarkably 
similar trend of different formation of vulnerability 
sources. Counties in the least exposed humid zone and 
mildly drought zone were also experiencing expo-
sure-dominated vulnerability. In other words, exposure 
differences played a major role in regional differentia-
tion. A conclusion that could be drawn is that more pre-
cise forecasting of the mechanism of drought events 
could play an important role in vulnerability prevention. 

The exposure extent of widespread drought hazard is 

envisioned as the main initiating process of the regional 
vulnerability, while the potential difference in the capac-
ity to adapt to changes is the main cause of its spatial 
differences. Counties that are most exposed to the 
drought hazard in zone I (in Fig. 6) show two types of 
vulnerability (roughly corresponding to zones A and B 
in Fig. 5): the effectively adaptive ones and the sensitiv-
ity-dominated ones. Half of them were more affected by 
the higher values of AI, indicating a more developed 
adaptive capacity in zone A. 

Assessment results also indicate that although all the 
indicators were based upon county unit, there is a ten-
dency for the index distribution to extend to a regional 
scale. Considering the high spatial correlation in sensi-
tivity and exposure elements, it is difficult to explain 
this relative vulnerability of the relatively fragmented 
vulnerability zones. Thus, a reasonable inference would 
be that there is the potential derived from the regional 
adaptive management that increased the spatial frag-
mentation in vulnerability. In fact, many scholars have 
proposed the role of adaptive management on its scale 
effect. Jones et al. (2007) indicated that mitigative and 
adaptive capacity do not share the same scale, that is, 
adaptive capacity is expressed locally, whereas mitiga-
tive capacity is different for each activity and location 
but needs to be aggregated at the global scale to prop-
erly assess its potential benefits in reducing climate 
hazards. This can be seen as an explanation of social- 
economic factors that extend out of the county and also 
as a demand for mitigation, which can be exercised at the 
local scale through the exercise of mitigative capacity. 

One of the best examples can be found in Ordos City 
as shown by the red line in Fig. 5 and Fig. 6. Located in 
the southwest of MIM and experiencing an unprece-
dented rate of development since 1990, Ordos leads the 
regional economic development, mostly benefiting from 
the abundant reserves of mineral and energy resources. 
However, the advantages also bring with them intense 
destruction of land resources. Extensive interventions 
have increased its frangibility by increasing its sensitiv-
ity. For example, variation of vegetation coverage due to 
mineral exploration has been witnessed in the Ordos 
region during this period. 

A possible explanation for the moderate vulnerability 
in Ordos shown in Fig. 3d is that restoration programs 
significantly enhance adaptive capacity (Fig. 3c), even 
though Ordos is located in the most sensitive and highly 
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exposed area. Since 2002, ecological restoration, such as 
return of farmland to grassland, has slowed ecological 
deterioration and desertification. Restoration programs 
have been supported by huge government investment 
(Song and Zhang, 2007). The history of Ordos fore-
shadows a more favorable future in ecosystem man-
agement, and it is also a reminder of an issue in regional 
economic development. A locally concentrated applica-
tion of development strategies invariably brings with it 
intensive pressure on ecosystems, or necessitating a re-
allocation of resources and funding. This may imply that 
different environmental impacts from these regional 
economic strategies through a region′s history should be 
taken into consideration in the future research. Models 
should not only present regional comparisons within 
certain current social-economical patterns, but also pro-
vide adjusted patterns with the feedback between sensi- 

tive ecosystems and better ecological restoration and 
environmental protection.  

 

 
 

Fig. 6  Climate zone defined according to value of standardized 
precipitation index (SPI) 

 
Table 6  Climate zones defined according to standardized precipitation index (SPI) 

Code SPI value Climate zone Number of counties Description 

I –1.63– –0.84 Moderate drought climate zone 12 Exposed to drought threats, dry and water shortage 

II –0.84–0.65 Mildly drought climate zone 34 Seasonally influenced by drought events, dry climate, low 
precipitation 

III 0.65–1.64 Humid climate zone 28 Occasionally threatened by drought, more surface water 

 
5  Conclusions 

Vulnerability quantification is not easy for hardly ac-
cessed information and uncertain endpoint. Complexity 
urges us to build a convincing standard method, and 
application brings a need for a clear but not simple solu-
tion.  

The results indicated that vulnerability to the drought 
in the study area was at a medial level, and its distribu-
tion was highly correlated with regional precipitation. 
Based on the triangular map of index structure, key fac-
tors in shaping the vulnerability were identified. Expo-
sure is the dominated factor of vulnerability. In addition, 
further investigation of the interaction mechanism of 
social and ecological factors and their effects provides 
evidences for adaptive management which could miti-
gate the frangibility of ecosystem although it is usually 
encompassed with economic status and functioned only 
at a local scale. A combination of exposure, sensitivity 
and adaptive capacity based on geographical statistical 
methods and GIS analysis function is a robust frame for 
vulnerability assessment, and could be applied to vari-
ous geographical backgrounds, certifying the method of 

vulnerability assessment of CHANS. 
Additionally, we found that the evaluation criteria 

might be effective in validating the spatial differentia-
tion but potentially ineffective because of the limited 
time scope of the analysis. The main actions in the fur-
ther researches may include: 1) Vulnerability reducing 
actions increased potential adaptive capacity at the local 
level. Potential calibrations on indices will increase the 
reliability a lot since accurate vegetation/soil and other 
spatial GIS-based data are not available at county level. 
2) Assumptions may affect the results, especially the 
definition of drought as the main regional exposure to 
climate change. For example, climate change scenarios 
can hardly be explicitly calculated and depicted in the 
comprehensive analysis, as demonstrated by the fact that 
multiple causes and response strategies were hardly in-
dicated by the statistical data. 3) Time span of the re-
search limits the evaluation, as drought is very sensitive 
to it. Longer-term observation in the study area will re-
duce this uncertainty. Factors such as land use policies 
and ecological conservation strategies are the key meas-
ures of drought hazard in a social-ecological system, 
and always have long-lasting and time-lagged impacts 
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on regional adaptive capacity. Despite these shortcom-
ings, it also indicates possible directions taken by add-
ing a historical view and future simulation to the crite-
rion.  
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