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Abstract
This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent
can only access its own cost function and a convex set, and can only exchange local state information with its current neighbors
through a time-varying digraph. In addition, the agents do not have access to the information about the current cost functions
until decisions are made. Different from most existing works on online distributed optimization, here we consider the case
where the cost functions are strongly pseudoconvex and real gradients of the cost functions are not available. To handle this
problem, a random gradient-free online distributed algorithm involving the multi-point gradient estimator is proposed. Of
particular interest is that under the proposed algorithm, each agent only uses the estimation information of gradients instead
of the real gradient information to make decisions. The dynamic regret is employed to measure the proposed algorithm. We
prove that if the cumulative deviation of the minimizer sequence grows within a certain rate, then the expectation of dynamic
regret increases sublinearly. Finally, a simulation example is given to corroborate the validity of our results.

Keywords Multi-agent system ·Online distributed optimization · Pseudoconvex optimization ·Random gradient-free method

1 Introduction

In recent years, distributed optimization has attracted exten-
sive attention in various fields [1–6]. This is due to its wide
range of practicability in numerous fields such as distributed
resource allocation [1], distributed economic dispatch [2],
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distributed machine learning [3], distributed coordination
control [4], etc.

Distributed optimization in static environments has been
widely studied in [7–9]. However, in practical applications,
the scenarios that distributed optimization occurs are often
dynamic. In recent years, online distributed optimization has
been extensively studied [10–14]. For example, in [10], an
online distributed push-sum algorithm is proposed for the
unconstrainedproblem, and anonline distributed coordinated
algorithm based on the gradient descent method is developed
in [11]. In [12], an online distributed saddle point algo-
rithm is developed for optimization problem with a global
set constraint, an online distributed mirror descent algorithm
is proposed in [13], and an online distributed dual averaging
algorithm is designed in [14].

It is worth pointing out that all the above works rely on
real gradient information. However, it is not feasible or costly
to calculate the gradient information accurately in practical
applications. For example, in the Internet of Things [15],
fog computing can not get the closed expression of delay
since its online decision-making needs to adapt to the user
preferences and the availability of resources is temporarily
unpredictable. Moreover, in bandit optimization [16], agents
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can only observe the values of the cost functions, not the
specific cost functions. In these cases, using zero-order infor-
mation is desirable for distributed optimization. Recently,
zeroth-order randomonline distributed optimization has been
investigated in [17–20]. In [17, 18], zeroth-order random
online distributed algorithms are proposed, where the zeroth-
order information of cost functions is used. Furthermore,
in [19, 20], two different random gradient-free algorithms
are proposed for online distributed optimization under time-
varying networks.

It is worth noting that most of the mentioned articles
are applied to convex optimization problems. However, the
problems of pseudoconvex optimization exist widely in real-
ity. For example, in computer vision [21], the geometric
expressions are usually modeled by pseudoconvex functions.
Also, in portfolio planning [22] and fractional programming
problems [23], cost functions are commonly formulated as
pseudoconvex functions. Pseudoconvex optimization has a
wider application range than convex optimization, as it can
also be applied to some nonconvex cases. In fact, distributed
optimization problems with pseudoconvex functions have
only been studied in [24, 25], where real gradient information
of cost functions is required.

Motivated by [19, 20, 24–26], we study the online dis-
tributed optimization problems with strongly pseudoconvex
cost functions and randomgradient-freemethod in this paper.
Compared with [24, 25], where agents need to achieve real
gradient information, here agents only use estimation of gra-
dients instead of real gradient information tomake decisions.
To solve this problem, an online distributed algorithm with
random gradient-free method is proposed, where a multi-
point gradient estimator is used to estimate the gradients
of local cost functions. Different from [11–17], which are
based on the fact that the cost functions are convex, here
the cost functions are considered to be strongly pseudocon-
vex. In [19, 20], gradient-free method and the convexity
of cost functions are used to analyze the convergence of
the proposed algorithms. Different from them, here we
employ the strong pseudomonotonicity of cost functions and
the Karush–Kuhn–Tucker (KKT) condition associated with
pseudoconvex optimization to guarantee the effectiveness.
We prove that if the graph is B-strongly connected, and the
cumulative deviation of theminimizer sequence growswith a
certain rate, then the expectation of dynamic regret increases
sublinearly.

This paper is organized as follows. In Sect. 2, we formu-
late the problem and propose an algorithm. In Sect. 3, the
main results are presented and the detailed proofs are given.
A simulation example is given in Sect. 4. Section 5 is the
conclusion of the full paper.

Notations We use∇ψ(u) to denote the gradient of func-
tion ψ at point u. �T � is defined as set {0, 1, . . . , T } for any
T ∈ N. For vectors u, v ∈ R

m and matrix W ∈ R
m×m, we

denote [u]i represents the i th element of u, ‖u‖ = √
uTu,

〈u, v〉W = 〈Wu, v〉, ‖u‖2W = uTWu. We use E{u} to
denote the expectation of random variable u.

2 Problem formulation

2.1 Basic graph theory

A time-varying directed communication graph is defined as
G(t) = (V, E(t),W(t)), where V = {1, . . . , n} is a vertex
set, E(t) ⊂ V ×V denotes an edge set andW(t) = (wi j )n×n

is a non-negative matrix to represent the weight of adjacent
edges. The neighbor set of agent i is defined as Ni (t) =
{ j ∈ V| ( j, i) ∈ E}, where agent i can receive information
from agent j . For digraph G(t) and some B > 0, EB =⋃(t+1)B−1

k=t B E(k) denotes the B-edge set. Based on the above
conditions, if digraph G(t) and the edge set EB(t) are all
strongly connected for any t ≥ 0. Then, G(t) is called B-
strongly connected graph.

In this paper, the following assumption is made for the
communication graph G(t).

Assumption 1 For any t ≥ 0, G(t) is B-strongly connected
graph and matrix W(t) is doubly stochastic.

For distributed optimization, W(t) is an essential part in
facilitating agents to achieve consensus [25]. For any t ≥
k ≥ 0, we define

{
Φ(t, k) = W(t−1) · · ·W(k+1)W(k), if t > k;
Φ(t, k) = 1n, if t = k.

(1)

Lemma 1 [25] Based on Assumption 1, for any i, j ∈ V and
t ≥ k, there exist certain D > 0 and 0 < ρ < 1 satisfying

∣
∣[Φ(t, k)]i j − 1

n

∣
∣ ≤ Dρt−k . (2)

2.2 Online distributed optimization

In this paper, we consider a multi-agent system with n
agents, where agents exchange local information via graph
G(t). For any i ∈ V, a sequence of cost functions is given
by {ψ1

i , . . . , ψT
i }, where T is a finite time horizon but is

unknown by agents. For any t ∈ �T �, ψ t
i : Ω → R is the

cost function of agent i at time t and Ω ⊂ R
m . Then, all

agents aim to collaboratively solve the following optimiza-
tion problem with a set constraint, which has the form:

min ψ t (z) =
n∑

i=1
ψ t
i (z) s.t. z ∈ Ω. (3)

Here, we make some basic assumptions for the problem.
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Assumption 2 Constraint set Ω is nonempty, convex, and
compact.

Assumption 3 (Strong pseudomonotonicity) For anym, n ∈
Ω, if 〈∇ψ t (n),m−n〉 ≥ 0, then 〈∇ψ t (m),m−n〉 ≥ β‖m−
n‖2 for some β > 0.

It follows from [27] that if∇ψ t is strongpseudomonotone,
thenψ t is strongly pseudoconvex. The definitions of strongly
pseudoconvex functions are given as follows.

Definition 1 For a differentiable function ψ(·) : Rm → R

and a convex set Ω ∈ R
m, ψ(·) is named a pseudoconvex

function if 〈∇ψ(n),m − n〉 ≥ 0 implies ψ(m) − ψ(n) ≥ 0
for each pair of different points m, n ∈ Ω. Moreover, if
〈∇ψ(n),m − n〉 ≥ 0 implies ψ(m) − ψ(n) ≥ β‖m − n‖2
for some β > 0 and each pair of different points m, n ∈ Ω,

then ψ(·) is named a strongly pseudoconvex function on Ω.

Assumption 4 (Lipschitz continuous gradient) ‖∇ψ t
i (m) −

∇ψ t
i (n)‖ ≤ L1‖m − n‖, ∀m, n ∈ Ω for some L1 > 0.

In this paper, we are committed to developing a gradient-
freemethod for solvingproblem (3). From [28], the smoothed
version of ψ t is defined as

ψ t
μ(z) = 1

(2π)m/2

∮

Rm
ψ t (z + μξ)e− 1

2 ‖ξ‖2dξ, (4)

where μ > 0 is the smoothing parameter of function ψ t
μ(z).

And the multi-point unbiased gradient estimation is defined
as

ĝ(zi (t))

= 1

Qi

Qi∑

qi=1

ψ t
i

(
zi (t) + μiξqi (t)

) − ψ t
i

(
zi (t)

)

μi
ξqi (t), (5)

where ĝ(zi (t)) ia an unbiased estimator of ∇ψ t
μi

(zi (t)),
μi > 0 is the smoothing parameter and the random sequence
ξqi (t) is locally generated from an i.i.d. standard Gaussian
distribution for any q ∈ Q, where Q ∈ N

+ is the number
of multi-point estimation. Based on results in [29], we know
that ifψ t (·) is differentiable, thenψ t

μ(·) is also differentiable,
the gradient of ψ t

μ(·) is defined as

∇ψ t
μ(z)

= 1

(2π)m/2

∮

Rm

ψ t
(
z + μξ

) − ψ t
(
z
)

μ
ξe− 1

2 ‖ξ‖2dξ. (6)

Any online algorithm should mimic the performance of its
offline counterpart, and the gap between them is called regret
[25]. The regret with most stringent offline benchmark is
the dynamic regret, whose offline benchmark is to minimize

ψ t (z) at each time. The definition of dynamic regrets is given
by

Rd
i (T ) =

T∑

t=0
ψ t (zi (t)) −

T∑

t=0
ψ t (z∗(t)), i ∈ V, (7)

where z∗(t) = argminz∈Ωψ t (z) for any t ∈ �T �. An online
optimization algorithm is announced “good” if regret (7)
increases sublinearly, i.e., limT→∞ Rd

i (T )/T = 0. Unfor-
tunately, using dynamic regret will cause the problem to
become insolvable when the minimizer of the cost function
changes rapidly. Inspired by [25], the difficulty is described
by the deviation of the minimization sequence {z∗(t)}Tt=0 :

ΘT =
T∑

t=0
‖z∗(t + 1) − z∗(t)‖. (8)

2.3 Online distributed gradient-free algorithm

Now, we consider an offline and centralized optimization
problem, defined as

min ψ(z), s.t. z ∈ Ω, (9)

where objective function ψ is strongly pseudoconvex, and
constraint set Ω satisfies Assumption 2. The KKT condi-
tion of pseudoconvex optimization in terms of variational
inequality is given in the following lemma.

Lemma 2 [25] Suppose functionψ : Rm → R is pseudocon-
vex and differentiable and constraint set Ω is convex. Then,
z∗ is a minimum point ofψ onΩ if it can satisfy the following
variational inequality

〈∇ψ(z∗), z − z∗〉 ≥ 0, ∀ z ∈ Ω. (10)

Based on Lemma 2, we can know problem (9) is solved if
there exists a point z ∈ Ω satisfying

〈∇ψ(z), u − z〉 ≥ 0, ∀ u ∈ Ω. (11)

Combining with multi-point unbiased gradient estimation,
we construct an auxiliary problem, defined as

min zTPz + 〈α ĝ(z0) − 2Pz0, z〉, s.t. z ∈ Ω, (12)

where z0 ∈ Ω, α > 0 and matrix P ∈ R
m×m is positive

definite and symmetric. Based on KKT condition, z∗ ∈ Ω is
the solution to (12) if and only if

〈2Pz∗ + α ĝ(z0) − 2Pz0, u − z∗〉, ∀u ∈ Ω. (13)

By comparing (11) and (13), we can achieve that z∗ is also
the solution to (9) when z∗ = z0. By replacing z0 with z(t)
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and z∗ with z(t + 1), we propose the following auxiliary
optimization strategy:

z(t + 1)

= argmin
z∈Ω

{
zTPz + 〈α(t) ĝ(z(t)) − 2Pz(t), z〉

}
. (14)

Note that if z(t + 1) = z(t) in (14), then problem (9) is
solved, which means that the solution of problem (9) is the
equilibrium point of problem (14). Let matrix P = Im, if
ψ t
i is a convex function, then we have argminz∈Ω {zTPz +

〈α(t) ĝ(z(t)) − 2Pz(t), z〉} = z(t) − α(t)
2 ĝ(z(t)). Thus, (14)

can be regarded as an extension of the gradient descent algo-
rithm. The detailed proofs of the convergence for algorithm
(14) can be found in [30, 31].

To solve problem (3), a random gradient-free online dis-
tributed algorithm is proposed

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi (t + 1)

= argmin
z∈Ω

{
zTPz + 〈α(t) ĝ(zi (t)) − 2Pνi (t), z〉

}
,

νi (t) = ∑

j∈Ni

wi j z j (t),

ĝ(zi (t))

= 1

Qi

Qi∑

qi=1

ψ t
i (zi (t) + μiξqi (t)) − ψ t

i (zi (t))

μi
ξqi (t),

(15)

where zi (t) is the state of agent i at time t with zi (0) ∈ Ω

and α(t) > 0 is a diminishing learning rate with initial value
α(0) = α0.Motivated by the multi-point gradient estimation
method, consensus algorithm, and the auxiliary optimization
strategy,wepropose algorithm (15).When running algorithm
(15), each agent updates status at each time only using the
information received from its neighbors and its own gradi-
ent estimation at past time. Therefore, (15) is an online and
distributed algorithm.

3 Main results

In this part, we will elaborate the main results of this paper
and give their concrete proof.

Theorem 1 Based on Assumptions 1–4, if the learning rate
α(t) = c√

t+1
for some c > 0, then for any i ∈ V and T ∈ N,

the following inequality holds

E{Rd
i (T )} ≤ nL0

√

Γ + F1T

υ ln(T + 1)

n∑

i=1
μi + 16hMΘT

cμ ln 2

·
(
(T + 1)

3
4
√
ln(T + 1)

)
, (16)

whereΓ = (4ρ̂1/(cυ)+2K̂1))+3c2(4ρ̂2/(cυ)+2K̂2)
ρ(1−ρ) ln 2 + 6ncL2

0
υε

+ 4d
cυ ln 2 ,

K̂1 = C2 + CL0Dn
√
m

ε(1−ρ)
(m + 4)L0, ρ̂2 =

n(5MK2+
√
m+4L0(kL1+L0)Dn

√
m)

ε
, K̂2 = mn2H2

4ε2(1−ρ)
(m +4)2L2

0,

ρ̂1 = n(5MK̂1 + (kL1 + L0)cC), F1 = L1kc(m + 3)
3
2 ,

L0 = supt∈�T �,i∈V,z∈Ω ‖∇ψ t
i (z)‖, d = Mk2, ε = λmin(P),

C = D
√
m

n∑

i=1
‖zi (0)‖1, β1 = supt∈�T �,i∈V,z∈Ω ‖ ĝ(zi (t))‖,

M = nλmax(P), L1 = supt∈�T �,i∈V,z∈Ω ‖∇2 f ti (z)‖, and
h = supz∈Ω ‖z‖.

By Theorem 1, we know that both ΘT and μi play impor-
tant roles in the bound of dynamic regret expectation. Note

that if μi = T− 1
2−� for any � > 0 and ΘT grows sub-

linearly with
√
T+1

ln(T+1) , then E{Rd
i (T )} increase sublinearly

with T , which implies the performance of online distributed
algorithm (15) is “good”. Therefore, algorithm (15) can be
employed to solve some strongly pseudoconvex optimization
problems, where the specific gradient information is unavail-
able or expensive to obtain. If the fluctuation of minimizer
sequence {z∗(t)}Tt=0 is dramatical, ΘT might become linear

with
√
T+1

ln(T+1) , then the problem becomes insolvable. It is a
natural phenomenon, even in online convex optimization.

Before proving Theorem 1, some useful lemmas are need
to be presented. First, we use Ft to denote the σ -field gener-
ated by the entire history of the random variable as

Ft = {col(zi (s))i∈V , col(ςi (s))i∈V , s = 0, . . . , t}. (17)

Based on the above definition, the following lemma can be
achieved.

Lemma 3 [19, 28] If ∇ψ t
i is L1-Lipschitz continuous on Ω,

then

(a) E{‖ ĝ(zi (t))‖2|Ft } ≤ (m + 4)2L2
0.

(b) ‖∇ψ t
μi

(zi (t)) − ∇ψ t
i (zi (t))‖ ≤ μ

2
L1(m + 3)

3
2 .

(c) E{‖ ĝ(zi (t)) − ∇ψ t
μi

(zi (t))‖|Ft } = 0. (18)

To prove Theorem 1, first, we present the following
lemma, which gives the upper bound of the discrepancy
between each agent’s state and their average state at each
update.

Lemma 4 Based on Assumptions 1–4, for any i ∈ V,

‖zi (t) − z̄(t)‖ ≤ Cρt + nD
√
mβ1

ε

t∑

γ=0
ρt−γ α(γ ) (19)

and

‖zi (t) − z̄(t)‖2 ≤ K1ρ
t + K2

t∑

γ=0
ρt−γ (α(γ ))2, (20)
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where z̄(t) = 1
n

n∑

i=1
zi (t), K1 = C2 + CDn

√
mβ1

ε(1−ρ)
, K2 =

m(nDβ1)
2

4ε2(1−ρ)
.

Proof See Appendix 1. ��
Next, we give the expectation for the upper bound of the

cumulative square error between agents’ optimal state and
their average state at each iteration time.

Lemma 5 Under Assumptions 1–4, we have

E

{ T∑

t=0
‖z̄(t) − z∗(t)‖2

}

≤ 2d

uα(T )
+ 8hMΘT

uα(T )
+ 2ρ̂1

uα(T )

T∑

t=0
ρt

+ 2ρ̂2
uα(T )

T∑

t=0

t+1∑

γ=0
ρt−γ (α(γ ))2

+
F1T

n∑

i=1
μi

uα(T )
+ nL0

εuα(T )

T∑

t=0
(α(t))2. (21)

Proof See Appendix 1. ��
Proof of Theorem 1 Based on Lemmas 4–5, we can achieve

E

{ T∑

t=0
‖z(t) − z∗(t)‖2

}

≤ 2E
{ T∑

t=0
‖z̄(t)−z∗(t)‖2

}
+ 2E

{ T∑

t=0
‖zi (t)− z̄(t)‖2

}

≤
(

4ρ̂1
uα(T )

+ 2K̂1

)
T∑

t=0
ρt + 4d

uα(T )
+ 16hMΘT

uα(T )

+
(

4ρ̂2
uα(T )

+ 2K̂2

)
T∑

t=0

t+1∑

γ=0
ρt−γ (α(γ ))2

+
2F1T

n∑

i=1
μi

uα(T )
+ 2nL0

εuα(T )

T∑

t=0
(α(t))2. (22)

Let α(t) = c√
t+1

, there holds

T∑

t=0

t+1∑

γ=0
ρt−γ (α(γ ))2

=
T+1∑

γ=1

T∑

t=γ−1
ρt−γ (α(γ ))2 +

T∑

t=0
ρt (α(0))2

≤
(
T+1∑

γ=1
(α(γ )

)2 (
T∑

t=0
ρt

)2

+
T∑

t=0
ρt (α(0))2

≤ c2(1 + ρ + ln(T + 1))

(1 − ρ)ρ
≤ 3c2 ln(T + 1)

(1 − ρ)ρ ln 2
. (23)

Based on Jensen’s inequality, we have

( T∑

t=0
‖zi (t) − z∗(t)‖

)2 ≤ (T + 1)
T∑

t=0
‖zi (t) − z∗(t)‖2.

(24)

Now, by taking expectation on both sides of inequality (24),
we can obtain

E

{( T∑

t=0
‖zi (t) − z∗(t)‖

)2}

≤ (T + 1)E
{ T∑

t=0
‖zi (t) − z∗(t)‖2

}
. (25)

Based on (22), (23), and (25), we have

E

{ T∑

t=0
‖zi (t) − z∗(t)‖

}

≤
√

(T + 1)E
{ T∑

t=0
‖zi (t) − z∗(t)‖2

}

≤

√
√
√
√
√

Γ +
2(T + 1)F1

n∑

i=1
μi

υc ln(T + 1)
+ 16hMΘT

cμ ln 2

· (
T + 1

) 3
4
√
ln(T + 1). (26)

Note that ∇ψ t
i is bounded by L0 for any i ∈ V and t ∈ �T �.

Thus,

E

{
Rd

i (T )
}

= E

{ T∑

t=0
(ψ t (zi (t)) − ψ t (z∗(t))

}

≤ E

{ T∑

t=0

n∑

j=1
‖ψ t

j (zi (t)) − ψ t
j (z

∗(t)‖
}

≤ E

{
nL0

T∑

t=0
‖zi (t) − z∗(t)‖

}
. (27)

Substituting (26) into (27) yields (16). Thus, Theorem 1 is
proved. ��

4 A simulation example

In this part, we illustrate the validity of proposed algorithm
by using a numerical example. Assume a multi-agent system
with six agents, labeled as V = {1, 2, . . . , 6}. Each agent
exchange information with its neighbors via a time-varying
digraph as shown in Fig. 1. For any i ∈ V, cost function of
agent i is given by

ψi (z) = pi z
3 + qi (t)z,

1 3
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Fig. 1 The time-varying directed graph sequence
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Fig. 2 The state trajectories of all agents under algorithm (15)

where z ∈ Ω. In this simulation, parameters are selected as
p1 = 0.6, p2 = 0.8, p3 = p6 = 1, p4 = 0.5, p5 = 0.1,
qi (t) is randomly selected from [−i, i] and subject to a uni-
form distribution. Moreover,Ω = {z|−10 ≤ z ≤ −1} is the
constraint set of the objective function. Initial states of agents
are selected as z1(0) = 0.3, z2(0) = −0.5, z3(0) = −0.5,
z4(0) = 0.4, z5(0) = −0.1 and z6(0) = −0.2. Algo-
rithm (15) is applied to solving this problem. Let α(t) =
1/

√
200t + 500, μi = 0.05 and Q = 1. The trajectories

of xi (t), i = 1, . . . , 6 are represented in Fig. 2 and Fig. 3
displays the trajectories of the average regrets of all agents.
From Fig. 2, it can be clearly seen that all agents’ states grad-
ually approach to the optimal solution z∗(t). Furthermore,
by observing Fig. 3, one can find that average regret of each
agent gradually diminishes to zero. These observations indi-
cate the correctness of achieved theoretical results.
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Fig. 3 The average regret trajectories of all agents under algorithm (15)

5 Conclusions

This paper dealswith the zeroth-order online distributed opti-
mization problem where the sum of local cost functions is
strongly pseudoconvex. To solve this problem, a random
gradient-free algorithmbasedonmulti-point gradient estima-
tion method and auxiliary optimization strategy is proposed.
Under this algorithm, each agent updates state at each time
only using the information received from its neighbors at the
current moment and the information of its own gradient esti-
mation at previous time.The proposed algorithm is measured
by the dynamic regret. The results indicate that if the com-
munication graph is B-strongly connected, and the deviation
of the minimizer sequence grows with a certain rate, then the
expectation of dynamic regret increases with some sublinear
bound. The simulation example in the previous section has
verified its validity. The cases of communication delays and
packet losses will be our future work, which means that there
will be new difficulty for the online distributed pseudoconvex
optimization problems.
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Appendix

Proof of Lemma 4

Note that zi (t+1) generated by algorithm (15) is the solution
to the following optimization:
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min
z∈Ω

zTPz + 〈α(t) ĝ(zi (t)) − 2Pνi (t), z〉. (28)

Then according to the KKT condition, we can have

〈zi (t + 1) − νi (t), zi (t + 1) − z〉P
≤ α(t)

2
〈 ĝ(zi (t)), zi (t + 1) − z〉 (29)

for any z ∈ Ω. Note that νi (t) ∈ Ω. Let z = νi (t), based
on 2ε‖zi (t + 1) − νi (t)‖2 ≤ ‖zi (t + 1) − νi (t)‖2P and
‖ ĝ(zi (t))‖ ≤ β1, the following inequality holds

2ε‖zi (t + 1) − νi (t)‖2 ≤ β1α(t)

2
‖zi (t + 1) − νi (t)‖. (30)

For any i ∈ V, ri (t) is defined as ri (t) = zi (t + 1) − νi (t).
From inequality (30), one can obtain ‖ri (t)‖ ≤ β1α(t)/(2ε).
Moreover,

zi (t + 1) = ∑

j∈Ni (t)
wi j z j (t) + ri (t). (31)

For any i ∈ V, vector z̃s(t) ∈ R
n and r̃s(t) ∈ R

n are defined
as a superposition of the sth entry of zi (t) and ri (t), respec-
tively. Then, it follows that

z̃s(t + 1) = W(t)z̃s(t) + r̃s(t), (32)

which means the following equation holds

z̃s(t) = Φ(t, 0)z̃s(0) +
t∑

γ=1
Φ(t, γ )r̃s(γ − 1), (33)

where the definition of Φ(t, k) can be found in (1). Since
matrix Φ(t, k) is doubly stochastic, Eq. (33) can be further
expressed

1T z̃s(t) = 1T z̃s(0) +
t∑

γ=1
1Tr̃s(γ − 1). (34)

Combining (33) and (34), one can obtain

∣
∣
∣[z̃s(t)]i − 1

n
1T z̃s(t)

∣
∣
∣

≤
∣
∣
∣
(
[Φ(t, 0)]i . − 1

n
1T

)
z̃s(0)

∣
∣
∣

+
t∑

γ=1

∣
∣
∣
(
[Φ(t, γ )]i . − 1

n
1T

)
r̃s(γ − 1)

∣
∣
∣

≤ max
1≤ j≤n

∣
∣
∣[Φ(t, 0)]i j − 1

n

∣
∣
∣‖z̃s(0)‖1 nβ1

2ε

·
t∑

γ=1
α(γ − 1) max

1≤ j≤n

∣
∣
∣[Φ(t, γ )]i j − 1

n

∣
∣
∣ (35)

for any i ∈ V. Based on inequality (2), one has

∣
∣
∣[z̃s(t)]i − 1

n
1T z̃s(t)

∣
∣
∣

≤ Dρt‖z̃s(0)‖1 + nDβ1

2ε

t∑

γ=1
ρt−γ α(γ − 1)

≤ Dρt‖z̃s(0)‖1 + nDβ1

2ε

t∑

γ=0
ρt−γ α(γ ). (36)

This inequality directly proves the validity of inequality (19).
��

Furthermore, we can have

E‖zi (t) − z̄(t)‖
≤ Cρt + nD

√
m

2ε
(m + 4)L0

t∑

γ=1
ρt−γ α(γ ). (37)

Note that 0 < ρ < 1 and learning rateα(t) is non-increasing,
we can obtain

‖zi (t + 1) − z̄(t)‖2

≤
(

C2 + CnD√
mα0β1

ε(1 − ρ)

)

ρt

+ m(nβ1D)2

4ε2

( t∑

γ=0
ρt−γ α(γ )

)2
. (38)

By Cauchy–Schwarz inequality, we can obtain

(
t∑

γ=0
ρt−γ α(γ − 1)

)2

≤
(

t∑

γ=0
ρt−γ

) (
t∑

γ=0
ρt−γ (α(γ ))2

)

≤ 1

1 − ρ

t∑

γ=0
ρt−γ (α(γ ))2. (39)

Combining (38) and (39), we can obtain the validity of
inequality (20). ��

Furthermore, we can achieve

E‖zi (t) − z̄(t)‖2

≤ K1ρ
t + K2(m + 4)2L2

0

t∑

γ=1
ρt−γ α(γ )2. (40)

Proof of Lemma 5

To prove Lemma 5, an auxiliary lemma is given as follows.

Lemma 6 Based on Assumptions 1–4, for t ∈ �T � and any
u ∈ R

m,

n∑

i=1
〈zi (t) − νi (t), u − zi (t + 1)〉P
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≤ 5nL

2
K1ρ

t + 5nL

2
K2

t+1∑

γ=0
ρt−γ (α(γ ))2. (41)

Proof of Lemma 6 Note that

n∑

i=1
〈zi (t) − νi (t), u − zi (t + 1)〉P

=
n∑

i=1
〈zi (t) − νi (t), u − z̄(t + 1)〉P

+
n∑

i=1
〈zi (t) − νi (t), z̄(t + 1) − zi (t + 1)〉P

≤
〈

n∑

i=1
(zi (t) − νi (t)), u − z̄(t + 1)

〉

P

+ M
n∑

i=1
‖zi (t) − νi (t)‖‖z̄(t + 1) − zi (t + 1)‖. (42)

It is not hard to prove that
∑n

i=1 Pνi (t) = ∑n
i=1 Pzi (t),

Then,
〈∑n

i=1

(
zi (t +1)− νi (t)

)
, u− z̄(t +1)

〉
P = 0. Using

Young’s inequality and the fact that
∑n

i=1 ‖zi (t)−νi (t)‖2 ≤
4

∑n
i=1 ‖zi (t) − z̄(t)‖2, we can have

n∑

i=1
〈zi (t + 1) − νi (t), u − zi (t + 1)〉P

≤ 2M
n∑

i=1
‖zi (t) − z̄(t)‖2

+ M

2

n∑

i=1
‖z̄(t + 1) − zi (t + 1)‖2. (43)

Combining with (20) in Lemma 4, it immediately implies
(41). ��
Proof of Lemma 5 Note that

1

2
‖z∗(t + 1) − zi (t + 1)‖2P − 1

2
‖z∗(t) − zi (t)‖2P

= 〈zi (t) − zi (t + 1), z∗(t) − zi (t + 1)〉P − 1

2
‖zi (t)

− zi (t + 1)‖2P +
n∑

i=1

〈1

2

(
z∗(t + 1) + z∗(t)

)

− zi (t + 1), z∗(t + 1) + z∗(t)
〉
P . (44)

Now, we denote O(t) = 1
2

∑n
i=1 ‖zi (t)∗ − zi (t)‖2P . Then,

∇O(t)

= O(t + 1) − O(t)

=
n∑

i=1

〈
zi (t) − zi (t + 1), z∗(t) − zi (t + 1)

〉

P

− 1

2

n∑

i=1
‖zi (t) − zi (t + 1)‖2P +

n∑

i=1

〈1

2
(z∗(t + 1)

+ z∗(t)) − zi (t + 1), z∗(t + 1) − z∗(t)
〉

P

≤
n∑

i=1

〈
zi (t) − zi (t + 1), z∗(t) − zi (t + 1)

〉

P

−
n∑

i=1

ε

2
‖zi (t) − zi (t + 1)‖2

+ 2hM‖z∗(t + 1) − z∗(t)‖2. (45)

Based on KKT condition, one can obtain

〈νi (t) − zi (t + 1), z∗(t) − zi (t + 1)〉P
≤ α(t)

2
〈 ĝ(zi (t)), z

∗(t) − zi (t + 1)〉. (46)

Using (41) in Lemma 6, we have

n∑

i=1
〈zi (t) − zi (t + 1), z∗(t) − zi (t + 1)〉P

=
n∑

i=1
〈νi (t) − zi (t + 1), z∗(t) − zi (t + 1)〉P

+
n∑

i=1
〈zi (t) − νi (t), z∗(t) − zi (t + 1)〉P

≤
n∑

i=1

α(t)

2

〈
ĝ(zi (t)), z∗(t) − zi (t + 1)〉P

+ 5Mn

2
K1ρ

t + 5Mn

2
K2

t+1∑

γ=0
ρt−γ α((γ ))2. (47)

Based on Lemma 2 andAssumption 3, the following inequal-
ity can be achieved

〈 n∑

i=1
∇ψ t

i (z̄(t)), z̄(t) − z∗(t)
〉
≥ υ

2
‖z̄(t) − z∗(t)‖2. (48)

Note that ‖∇2ψ t
i ‖ ≤ L1 for any z ∈ Ω, it implies

‖∇ψ t
i (zi (t))−∇ψ t

i (z̄(t))‖ ≤ L1‖zi (t)−z̄(t)‖ for any i ∈ V.

By combining the boundedness of Ω in Assumption 2, one
can obtain

n∑

i=1
〈∇ψ t

i (zi (t)), z
∗(t) − zi (t)〉

=
n∑

i=1
〈∇ψ t

i (zi (t)) − ∇ψ t
i (z̄(t)), z

∗(t) − zi (t)〉

+
n∑

i=1
〈∇ψ t

i (z̄(t)), z̄(t) − zi (t)〉

−
n∑

i=1
〈∇ψ t

i (z̄(t)), z̄(t) − z∗(t)〉

≤
n∑

i=1
(κL1 + L0)‖zi (t) − z̄(t)‖ − υ

2
‖z̄(t) − z∗(t)‖2.

(49)
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Thus, the following inequality can be achieved

α(t)
n∑

i=1
〈∇ψ t

i (zi (t)), z
∗(t) − zi (t + 1)〉

=
n∑

i=1
α(t)〈∇ψ t

i (zi (t)), z
∗(t) − zi (t)〉

+
n∑

i=1
α(t)〈∇ψ t

i (zi (t)), zi (t) − zi (t + 1)〉

≤ −υα(t)

2
‖z̄(t) − z∗(t)‖2

+
n∑

i=1
L0α(t)‖zi (t) − zi (t + 1)‖

+
n∑

i=1
(κL1 + L0)α(t)‖zi (t) − z̄(t)‖

≤ −υα(t)

2
‖z̄(t) − z∗(t)‖2

+
n∑

i=1
(κL1 + L0)α(t)‖zi (t) − z̄(t)‖

+
n∑

i=1

ε

2
‖zi (t) − zi (t + 1)‖2 + n(L0α(t))2

2ε
. (50)

Moreover, we can also achieve that

n∑

i=1
α(t)〈∇ψ t

μi (zi (t))−∇ψ t
i (zi (t)), z

∗(t)−zi (t+1)〉

≤
n∑

i=1
α(t)k‖∇ψ t

μi (zi (t)) − ∇ψ t
i (zi (t))‖

≤
L1ck(m + 3)

3
2

n∑

i=1
μi

2
. (51)

Note that

n∑

i=1
α(t)〈 ĝ(zi (t)), z∗(t) − zi (t + 1)〉

=
n∑

i=1
α(t)〈 ĝ(zi (t)) − ∇ψ t

μi (zi (t)), z
∗(t) − zi (t + 1)〉

+
n∑

i=1
α(t)〈∇ψ t

i (zi (t)), z
∗(t) − zi (t + 1)〉

+
n∑

i=1
α(t)〈∇ψ t

μi (zi (t)) − ∇ψ t
i (zi (t)), z

∗(t)

− zi (t + 1)〉. (52)

Substituting (50) and (51) into (52), using (c) in Lemma 3,
then taking the total expectation for the achieved inequality
after taking the conditional expectation over Ft , so we can
obtain

E{
n∑

i=1
α(t)〈 ĝ(zi (t)), z∗(t) − zi (t + 1)〉}

=
n∑

i=1
α(t)〈∇ψ t

i (zi (t)), z
∗(t) − zi (t + 1)〉

+
n∑

i=1
α(t)〈∇ψ t

μi (zi (t)) − ∇ψ t
i (zi (t)), z

∗(t)

− zi (t + 1)〉

≤
L1kc(m + 3)

3
2

n∑

i=1
μi

2
− υα(t)

2
‖z̄(t) − z∗(t)‖2

+
n∑

i=1
(κL1 + L0)α(t)‖zi (t) − z̄(t + 1)‖

+
n∑

i=1

ε

2
‖zi (t) − zi (t + 1)‖2 + n(L0α(t))2

2ε
. (53)

By (45), (47), and (53), using (25), we have

E{∇O(t)}

≤ −υα(t)

4
E{‖z̄(t) − z∗(t)‖2} +

F1
n∑

i=1
μi

4

+ ρ̂1

2
ρt + n(L0α(t))2

2ε
+ ρ̂2

2

t+1∑

γ=1
ρt−γ (α(γ ))2

+ 2hL‖z∗(t + 1) − z∗(t)‖. (54)

Due to O(t) ≥ 0 for any t ∈ �T �, we can have
−∑T

t=0 ∇O(t) = O(0) − O(T ) ≤ O(0) ≤ d/2. By sum-
ming from t = 0 to T on both sides of inequality (54), the
validity of Lemma 5 is verified. ��
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