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Abstract
Vision-based target motion estimation based Kalman filtering or least-squares estimators is an important problem in many
tasks such as vision-based swarming or vision-based target pursuit. In this paper, we focus on a problem that is very specific
yet we believe important. That is, from the vision measurements, we can formulate various measurements. Which and how
the measurements should be used? These problems are very fundamental, but we notice that practitioners usually do not pay
special attention to them and often make mistakes. Motivated by this, we formulate three pseudo-linear measurements based
on the bearing and angle measurements, which are standard vision measurements that can be obtained. Different estimators
based on Kalman filtering and least-squares estimation are established and compared based on numerical experiments. It is
revealed that correctly analyzing the covariance noises is critical for the Kalman filtering-based estimators. When the variance
of the original measurement noise is unknown, the pseudo-linear least-squares estimator that has the smallest magnitude of
the transformed noise can be a good choice.

Keywords Pseudo-linear measurements · Kalman filter · Least-squares estimator · Vision-based target motion analysis ·
Fisher information

1 Introduction

Thework in this paper ismotivated by the aerial target pursuit
task, where one micro aerial vehicle (MAV) uses its onboard
camera to detect, localize, and then pursue another flying
MAV [1, 2]. The study of this task can be potentially applied
to the defence ofmaliciousMAVs. In particular, whileMAVs
have been applied in many domains nowadays such as video
shooting, surveillance, and inspection [3], misused ones have
caused serious security problems. Aerial target pursuit may
provide a promising technical solution that is complementary
to the existing countermeasures [1, 4].
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One key problem in the aerial target pursuit task is to use
vision measurements to estimate the motion of the target.
This problem is the prerequisite for subsequent tasks such
as pursuit control. The existing approaches for vision-based
motion estimation can be classified into two categories.

In the first category, the vision measurement is modelled
as a bearing-only vector that points from the camera to
the target. Using bearing-only vectors to estimate the tar-
get’s motion is usually called bearing-only target motion
estimation [2, 5, 6]. One fundamental problem about bearing-
only estimation is observability. In particular, since the
depth/distance of the target cannot be measured directly, it is
necessary to ensure proper relative motion between the cam-
era and the target to recover the target’s motion. In fact, the
camera’s motion must have high-order components than the
target’s motion [5]. Otherwise, the target’s motion is unob-
servable.

In the second category, in addition to the bearing vector,
other vision measurements are also assumed to be available
[1, 7]. For example, if the exact geometric information of
the target is known, its relative position and attitude can be
recovered by using a pose estimation algorithm [1]. If the
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target can be approximated as a sphere and the diameter of
the sphere is known, then the distance of the target can be
recovered based on the pin-hole camera model [8].

The advantage of the bearing-only approach is that it does
not require knowing the size of the target. As long as the
target can be recognized by a vision algorithm, its bearing
can be readily obtained from the pixel coordinate of the target
in the image. However, the disadvantage is that it requires
that the camera’s motion must be of higher order than the
target’s motion. This requirement may be difficult to achieve
in practice. In this case, it is favourable to directly estimate the
target’s distance from the size information of the target. The
size information may be available in practice. For example, a
vision algorithm may not only be able to detect an MAV but
also can classify itsmodel.Whenwe know it is a specific type
of commercialMAV, then the size information can be known.
In addition, the size information is available in cooperative
tasks such as vision-based formation control since all the
robots are known in advance [9, 10].

Once we have obtained vision measurements, we can
readily establish an estimator such as a Kalman filter to
estimate the target’smotion. It is notable that visionmeasure-
ments such as bearing vectors are highly nonlinear functions
of the target’s motion. The conventional extended Kalman
filter shows unstable performances when handling bearing
measurements [11]. Therefore, pseudo-linear measurements
and pseudo-linear Kalman filters have been widely used in
bearing-related estimation problems [2, 12, 13].

This paper focuses on a very specific problem. That is,
once we have obtained the vision measurements, there are
different ways to convert the nonlinear vision measurements
to pseudo-linear. Which pseudo-linear measurement should
be used and how to set the covariance matrix for the pseudo-
linear noise? These problems are important for achieving
high-performance motion estimation. However, we notice
that practitioners usually do not pay special attention to them
and often make mistakes. Motivated by this, we compare
different types of pseudo-linear measurements and provide
advice for practitioners on how to properly utilize visionmea-
surements.

First of all, three different pseudo-linearmeasurements are
established based on the bearing and angle measurements.
Then, three pseudo-linear Kalman filter (PL-KF) estima-
tors and three pseudo-linear recursive least square (PL-RLS)
estimators are built up based on proposed pseudo-linear
measurement equations, respectively. To reveal the roles of
different measurements, we compared the performances of
these estimators based on numerical experiments for three
different scenarios.

In the first set of numerical experiments, it is revealed that
all the estimators show similar performances even though
they are built based on different measurement equations. The
experimental results are supported by the theoretical analysis

that the three pseudo-linear measurement equations have the
same Fisher information about the states. Although the esti-
mators show similar performances, some differences are still
observed. In particular, the three PL-RLS estimators have
different performances. That is because the magnitudes of
transformed noises in the three different measurement equa-
tions are different. However, the PL-RLS estimators do not
well incorporate this property. By contrast, the three PL-
KF estimators show almost the same performance when
the covariances of the measurement noises can be correctly
setup.

Furthermore, the covariance setups in the PL-KF estima-
tors are studied in the second set of numerical experiments.
Because of the pseudo-linear transformation, the covariance
of the pseudo-linear measurement noises are different in dif-
ferent measurement equations. It is revealed that incorrect
values of the covariance parameters in PL-KF estimators
would downgrade the estimation performance.

In summary, the contribution of this paper is to clarify
somemistakes that practitioners maymake when conducting
vision-based motion estimation in practice. The following
advice is given to practitioners. First, if the variances of the
original measurement noises are known in advance, any PL-
KF estimator is the best choice as long as the calculation of
the covariance of the noises is correct. Second, if the variance
of the original measurement noise is unknown, the PL-RLS
estimator that has the smallest magnitude of the transformed
noise can be a good choice.

2 Measurements obtained from visual
sensing

This section presents themeasurements obtained from vision
and the corresponding nonlinear measurement equations.

2.1 Visionmeasurements

Consider a target MAV flying in 3-D space. Its position and
velocity are denoted as pT , vT ∈ R

3 respectively. Let � ∈ R

be the physical size of the wheelbase of the target multirotor
MAV. Suppose that we know �. There is an observer carrying
a monocular camera to observe the target. The position of the
observer camera is denoted as po ∈ R

3.
A bounding box surrounding the target in the image can

be obtained if the target MAV can be detected by a vision
algorithm. There are twomeasurements that can be extracted
from the bounding box.

First, the position of the bounding box in the image qpix =
[xpix, ypix, 1]T ∈ R

3 can be used to calculate the bearing
vector that points from the observer to the target (see Fig. 1).
Denote g ∈ R

3 as the unit bearing vector, and ĝ ∈ R
3 as

the noise corrupted bearing measurement. According to the
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Fig. 1 The bearing vector g and angle θ can be obtained from the
bounding box in the image

pin-hole camera model [8], it can be calculated as

ĝ = Rw
c P−1

camqpix

‖Rw
c P−1

camqpix‖
,

where Pcam ∈ R
3×3 is the intrinsic parameter matrix of the

camera [8], Rw
c ∈ R

3×3 is the rotationmatrix from the camera
frame to the world frame.

Second, the size of the bounding box can be used to calcu-
late the angle subtended by the target object in the camera’s
field of view. Here, the size can be either the width or the
height of the bounding box. In this paper, we consider the
widthwhich corresponds to thewheelbase of themulti-copter
(Fig. 1). Denote θ ∈ (0, π/2) as the subtended angle, and θ̂

as the noisy angle measurement. According to the pin-hole
camera model [8], the angle can be calculated as

θ̂ = arccos
( l2left + l2right − s2pix

2lleftlright

)
,

where lleft =
√

( f /α)2 + (δxpix − spix/2)2 + δy2pix and

lright =
√

( f /α)2 + (δxpix + spix/2)2 + δy2pix are distances

in pixels from the center of the camera to the middle points
of the left and right sides of the bounding box respec-
tively (Fig. 1). Here, f and α are the camera’s focal length
and single-pixel size, respectively. Here, δxpix = ‖xpix −
iwidth/2‖ ∈ R and δypix = ‖ypix − iheight/2‖ ∈ R are the
distances between the center of the bounding box and the
center of the image, respectively.

The goal of the vision-based target motion analysis is
to estimate the target’s position and velocity, pT and vT ,
based on the noisy bearing ĝ and angle θ̂ measurements,
with known target’s physical size � and observer’s position
po.

2.2 Nonlinear measurement equations

We next establish the relationship between the vision mea-
surements and the state of the target.

Denote

x =
[
pT
vT

]
∈ R

6

as the state vector that we aim to estimate. Then, the bearing
ĝ and angle θ̂ measurements are non-linear functions of the
state vector.

The work in [14] proved that the measurement noises
from the camera are Gaussian distributed. In the vision-
based target motion analysis problem, many works treat the
vision-based measurement noises as Gaussian distribution
and perform well [1, 2, 7]. In particular, the noise-corrupted
non-linear measurement equations are

ĝ = pT − po
r

+ μ, (1)

θ̂ ≈ �

r
+ w, (2)

where

r = ‖pT − po‖

is the distance between the target and the observer. Here,
μ ∼ N (0, σ 2

μ I3×3) andw ∼ N (0, σ 2
w) are the measurement

noises. The approximation in (2) is accurate. Specifically,
when r > 3�, the approximation error is less than 0.08%.

It should be noted that the original noise of bearing mea-
surements is productive ĝ = R(η, ε)g, where R(η, ε) ∈
R
3×3 is a rotation matrix that perturbs g. This rotation matrix

rotates the vector g by an angle ε around the axis η. This pro-
ductive noise can be transformed into an additive one in (1).
This kind of operation has beenwidely used and shown stable
performance in bearing-only localization [2, 15, 16].

3 Pseudo-linear measurement equations

It is noted that the measurement equations in (1) and (2)
are nonlinear. When the conventional extended Kalman fil-
ter is directly applied, the estimation is usually unstable [11].
Therefore, we convert them to pseudo-linear in this section.
We will see that there are three different ways to obtain
pseudo-linear measurements and equations. They will be
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compared later in this paper.
Three pseudo-linear measurements are proposed first.

Then, three pseudo-linear measurement equations are pro-
posed based on transformed pseudo-linear measurements.

3.1 Three pseudo-linear measurements

In the following,we convert the non-linearmeasurement Eqs.
of (1) and (2) into pseudo-linear.

First, we convert the bearing measurement in (1) to be
pseudo-linear. Multiplying r Pĝ on both side of (1) yields

Pĝ po = Pĝ pT + r Pĝμ, (3)

where Pĝ = I − ĝĝT ∈ R
3×3 is an orthogonal projection

matrix, which plays an important role in the bearing-related
estimation and control problems [17]. The matrix Pĝ has
an important property: Pĝ ĝ = 03×1. Here, Pĝ po is the
transformed pseudo-linear measurements, and r Pĝμ is the
transformed noise.

Second, we convert the angle measurement in (2) to be
pseudo-linear. There are two types of pseudo-linear mea-
surements.

a) Multiplying r ĝ on both side of Eq. (2) yields

r θ̂ ĝ = �ĝ + rwĝ. (4)

Equation (1) implies r ĝ = pT − po + rμ. Substituting
it into the left-hand of (4) gives

θ̂ po + �ĝ = θ̂ pT + r(θ̂μ − wĝ). (5)

Here, θ̂ po+�ĝ is the transformed pseudo-linearmeasure-
ments, and r(θ̂μ−wĝ) is the corresponding transformed
noise.

b) Bearing and angle measurements can be used to calcu-
late the target’s position directly. Then, we have another
pseudo-linear transformation of the angle measurement.
Dividing both sides of (5) by θ̂ yields

po + �

θ̂
ĝ = pT + r

(
μ − w

θ̂
ĝ
)
. (6)

Here, po+ �

θ̂
ĝ is the transformed pseudo-linear measure-

ments, and r
(
μ− w

θ̂
ĝ
)
is the corresponding transformed

noise.

To sum up, Pĝ po, θ̂ po + �ĝ, and po + �

θ̂
ĝ in the left-hand

of Eqs. (3), (5), and (6) are three transformed pseud-linear
measurements. It should be noted that the corresponding
transformed noises are different.

3.2 Three pseudo-linear measurement equations

Choosing one or combining two of the proposed pseudo-
linear measurements properly yields the pseudo-linear mea-
surement equations that can be used in Kalman filtering
or least square algorithms. To fully compare the difference
of transformed noises under different transformations, we
propose three pseudo-linear measurement equations that cor-
respond to three PLKF or PLLS estimators.

First, the pseudo-linear measurements in (6) directly give
the target’s position. As a result, (6) itself can be seen as an
independent measurement equation. Rewriting equation (6)
in terms of the state vector x yields the first pseudo-linear
measurement equation:

z1 = H1x + ν1, (7)

where

z1 = po + �

θ̂
ĝ ∈ R

3,

H1 = [
I3×3 03×3

] ∈ R
3×6,

ν1 = r

(
μ − w

θ̂
ĝ

)
∈ R

3,

are the corresponding pseudo-linear measurement, pseudo-
linear measurement matrix, and transformed noises, respec-
tively. Although the expression of ν1 is complex, it can
be approximately treated as a zero mean Gaussian noise
ν1 ∼ N (0,Σν1). This kind of approximation has been
widely used in many works [2, 12, 13, 18]. Here Σν1 can
be calculated by

Σν1 = r2
(
σ 2

μ I3×3 + σ 2
w

θ̂2
ĝĝT

)
∈ R

3×3. (8)

Here, the distance r is unknown. We use r̂ = ‖ p̂T − po‖ to
replace it [2, 19]. Here p̂T is the estimated target’s position.

Second, the pseudo-linear measurements in (5) have a
pseudo-linear relationship with the target’s position. Rewrit-
ing (5) in terms of the state vector x yields the second
pseudo-linear measurement equation:

z2 = H2x + ν2, (9)

where

z2 = θ̂ po + �ĝ ∈ R
3,

H2 = [
θ̂ I3×3 03×3

] ∈ R
3×6,

ν2 = r(θ̂μ − wĝ) ∈ R
3,
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are the corresponding pseudo-linear measurement, pseudo-
linear measurement matrix, and transformed noise, respec-
tively.

Similar to ν1, we approximate ν2 as a Gaussian noise
ν2 ∼ N (0,Σν2), where the covariance matrix Σν2 can be
calculated as:

Σν2 = r̂2(θ̂2σ 2
μ I3×3 + σ 2

w ĝĝ
T) ∈ R

3×3. (10)

Third, the pseudo-linear measurements in (3) alone can
not recover the target’s position, because Pĝ does not have
full column rank. However, combining pseudo-linear mea-
surements in (3) and (5) together can. Combining (3) and (5)
together and rewriting it in terms of the state vector x yields
the third pseudo-linear measurement equation:

z3 = H3x + ν3, (11)

where

z3 =
[

Pĝ po
θ̂ po + �ĝ

]
∈ R

6,

H3 =
[

Pĝ 03×3

θ̂ I3×3 03×3

]
∈ R

6×6,

ν3 = r

[
Pĝμ

θ̂μ − wĝ

]
∈ R

6,

are the corresponding pseudo-linear measurement, pseudo-
linear measurement matrix, and transformed noise, respec-
tively.

Similarly, the transformed noise ν3 is treated as aGaussian
noise ν3 ∼ N (0,Σν3), where the covariance matrix Σν3 can
be calculated by

Σν3 = r̂2
[

σ 2
μPĝ θ̂σ 2

μPĝ
θ̂σ 2

μPĝ θ̂2σ 2
μ I3×3 + σ 2

w ĝĝ
T

]
∈ R

6×6. (12)

To sum up, the key specifications of three pseudo-linear
measurement equations are listed in Table 1.

4 Pseudo-linear estimators

This section proposes three PL-KF estimators and three PL-
RLS estimators based on the proposed three pseudo-linear
measurement equations.

4.1 PL-KF estimators

To estimate the motion of the target, it is common to model
its motion as a noise-driven double integrator:

x(tk+1) = Fx(tk) + q(tk), (13)

where

F =
[
I3×3 δt I3×3

03×3 I3×3

]
∈ R

6×6,

where δt is the sampling time, and I and 0 are identity and
zero matrices, respectively. Here, q ∼ N (0,Σq) is the pro-
cess noise, whose covariance is

Σq = diag(0, 0, 0, σ 2
v , σ 2

v , σ 2
v ) ∈ R

6×6,

where σv is the standard deviation of the target’s velocity.
With the state transition Eq. (13) and three pseudo-linear

measurement equations, three different PL-KF estimators
can be realized. They all share the same filtering procedure
as shown below. The differences between these three PL-KF
estimators are reflected in zi , Hi , and Σνi . The prediction
steps are

x̂−(tk) = Fx̂(tk−1),

P−
kf (tk) = FPkf(tk−1)F

T + Σq ,

where x̂−(tk) ∈ R
6 and P−(tk) ∈ R

6×6 are the prior
estimated states and covariancematrix, respectively. The cor-
rection and update steps are

Kkf(tk) = P−
kf (tk)H

T
i (tk)[Hi (tk)P

−
kf (tk)H

T
i (tk) + Σνi ]−1,

x̂(tk) = x̂−(tk) + Kkf(tk)[zi (tk) − Hi (tk)x̂
−(tk)],

Pkf(tk) = [I − Kkf(tk)Hi (tk)]P−
kf (tk),

where K (tk) is the gain matrix of Kalman filter, x̂(tk)
and P(tk) are posterior estimated states and corresponding
covariance matrix.

4.2 PL-RLS estimators

Similarly, three PL-RLS estimators can be proposed based
on the proposed three pseudo-linear measurement equations.

The form of the least square algorithm is as follows:

x(tk) = (AT
i Ai )

†AT
i bi ,

where

Ai =

⎡
⎢⎢⎢⎢⎢⎣

Hi (t1)F−(k−1)

Hi (t2)F−(k−2)

...

Hi (tk−1)F−1

Hi (tk)

⎤
⎥⎥⎥⎥⎥⎦

1 3



Comparison of different pseudo-linear estimators for vision-based... 453

Table 1 Comparison of key specifications of three pseudo-linear measurement equations

zi Hi νi Σνi

PL-KF1/PL-RLS1 po + �

θ̂
ĝ

[
I3×3 03×3

]
r
(
μ − w

θ̂
ĝ
)

r2
(
σ 2

μ I3×3 + σ 2
w

θ̂2
ĝĝT

)

PL-KF2/PL-RLS2 θ̂ po + �ĝ
[
θ̂ I3×3 03×3

]
r(θ̂μ − wĝ) r2(θ̂2σ 2

μ I3×3 + σ 2
w ĝĝ

T)

PL-KF3/PL-RLS3

[
Pĝ po

θ̂ po + �ĝ

] [
Pĝ 03×3

θ̂ I3×3 03×3

]
r

[
Pĝ

θ̂μ − wĝ

]
r2

[
σ 2

μPĝ θ̂σ 2
μPĝ

θ̂σ 2
μPĝ θ̂2σ 2

μ I3×3 + σ 2
w ĝĝ

T

]

and

bi =

⎡
⎢⎢⎢⎢⎢⎣

zi (t1)
zi (t2)

...

zi (tk−1)

zi (tk)

⎤
⎥⎥⎥⎥⎥⎦

.

Here, t1 is the initial time, and tk is the current time.
It should be noted that the original form of the least square

algorithm uses all times of measurements, which shows
unstable performance if the target has time-varying velocity.
We use the recursive least square (RLS) algorithm together
with a time-decay factor, which can solve this problem [20].

The process of the recursive least square algorithm is as
follows:

x̂−(tk) = Fx̂(tk−1),

P−
ls (tk) = FPls(tk−1)F

T,

Kls(tk) = P−
ls (tk)H

T
i (tk)[Hi (tk)P

−
ls (tk)H

T
i (tk) + λI ]−1,

x̂(tk) = x̂−(tk) + Kls(tk)[zi (tk) − Hi (tk)x̂
−(tk)],

Pls(tk) = λ−1[I − Kls(tk)Hi (tk)]P−
ls (tk),

where λ ∈ R is the decay factor.
As can be seen, the differences between the three PL-RLS

estimators are reflected in zi and Hi .

5 Numerical results

This section presents the simulation results to verify the
performances of three PL-KF estimators and three PL-
RLS estimators. Three different scenarios are considered in
the simulation: 1) MAV tracking scenario; 2) MAV guid-
ance scenario; 3) ground camera monitoring scenario. 1000
independent experiments are done for each scenario. Deep
analyses of the results are also given. We analyze the perfor-
mances of six estimators from the perspective of transformed
noises, the Fisher information, and the architecture of algo-
rithms.

5.1 Simulation setup

First, we give the simulation setup. All experiments use the
same setup and parameters.

The variances of measurements’ noises are set to σμ =
0.01, and σw = 0.01. The variance of the process noise is set
to σv = 0.1. The decay factor in the PL-RLS estimators is
λ = 0.8. The initial estimated states are set to p̂T = po + r̂ ĝ
and v̂T = [0, 0, 0]T. The initial variance of estimated states is
set to P̂ = I . The simulation time interval is set to dt = 0.1 s.

1) MAV tracking scenario. The initial target’s position is
at pT = [10, 0, 5]T. The target’s motion is a maneuver with
two 90◦’s turns, whose radius is 10m. The magnitude of the
target’s velocity is 2m/s. Then, the magnitude of the target’s
lateral acceleration can be calculated as around 0.4 m/s2.
The initial observer’s position is set to po = [0, 0, 10]T. The
observer’s velocity is controlled by a tracking algorithm

vo = v̂T + k
r2 − d2track

d2track
ĝ,

where k = 1 is the control parameter, and dtrack = 5 is the
desired tracking distance. As a result, the initial horizontal
distance between twoMAVs is 10m.With the observer track-
ing the target, their horizontal distance gradually narrowed
to 5m. The trajectory of twoMAVs is shown on the left-hand
of Fig. 2.

2) MAV guidance scenario. The target moves along a
straight line from the initial position pT = [10, 0, 5]T with
the speed of 2m/s. The initial observer’s position is set to
po = [0, 0, 0]T. The observer’s velocity is controlled by
a PNG guidance law to pursue the target with a speed of
2.4 m/s. As a result, their distance is getting smaller and
smaller. The trajectory of two MAVs is shown on the left-
hand of Fig. 3.

3) Ground camera monitoring scenario. The setup of the
target MAV is the same as the MAV tracking scenario.
While, the observer remains stationary at the position of
po = [20, 10, 0]T. This scenario simulates the ground moni-
toring camera. As a result, the target MAV flies overhead the
observer, and their distance first decreases and then increases.

1 3
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The trajectory of two MAVs is shown in the left-hand of
Fig. 4.

5.2 Simulation 1: Comparison between different
estimators

The estimation performances of three PL-KF estimators and
three PL-RLS estimators for three scenarios are shown in
Figs. 2, 3, and 4 respectively.

We use the norm error of estimated states ‖x̂ − x‖ as
metrics to evaluate six estimators. The error of estimated
states is shown in the middle-upper of Figs. 2, 3, and 4. In
the meantime, the average error of estimated states for 1000
times of independent experiments is shown in the middle-
down of Figs. 2, 3, and 4. Both results show that all six
estimators have similar performance.

In detail, three PL-KF estimators have the same perfor-
mance, while the performances of three PL-RLS estimators
are different. The PL-RLS estimator 3 has the highest per-
formance, PL-RLS estimator 2 is the second, and PL-RLS
estimator 1 is theworst. The performance differences of three
PL-RLS estimators are affected by the distance between the
target and the observer. Bigger distance results in greater
differences.

We next analyze the simulation results from three perspec-
tives: the transformed noises, the Fisher information, and the
architecture of the algorithms.

First, the results of similar performance between PL-KF
and PL-RLS estimators are analyzed from the perspective
of Fisher information, which indicates how much informa-
tion the measurements contain about the states. The Fisher
information matrix is calculated by

F I Mi =
tk∑
t=1

[
HT
i (t)Σ−1

νi
(t)Hi (t)

]
.

Here, we only consider the target’s position as states. As a
result, only the first three columns of Hi are extracted.

The average determinant of the Fisher information matrix
for 1000 times experiments are shown in the right-upper of
Figs. 2, 3, and 4. As can be seen, three different pseudo-
linear measurement equations have the same Fisher infor-
mation, and the determinant of the Fisher information matrix
increaseswith time. Itmakes sense because the pseudo-linear
transformation does not bring new information about the
states. The exactly same Fisher information means that six
estimators use the same amount of information to estimate
states. That is why different estimators have similar perfor-
mance.

Second, the result of different performances between the
three PL-RLS estimators is analyzed from the perspective
of transformed noises. We plot the average norm of pseudo-
linear measurements’ noises for 1000 times of experiments

in (3), (5), and (12) in the right-down of Figs. 2, 3, and 4. For
a quick review, the average norms of pseudo-linear measure-
ments’ noises are calculated by ‖r Pĝμ‖/3, ‖r(θ̂μ−wĝ)‖/3,
and ‖r(μ − (w/θ̂)ĝ)‖/6.

As can be seen, the noises are influenced by the distance,
but inmost time, the noise of pseudo-linear measurement 3 is
the biggest, while the noises of pseudo-linear measurements
1 and 2 are smaller. Compared to the performances of PL-
RLS estimators, we can conclude that smaller transformed
noises have better performance. From another perspective,
the transformed noises are actually the residual error of the
least square algorithm.

Third, the result that three PL-KF estimators have exactly
the same performance is analyzed from the perspective of
algorithm architecture. Comparing the estimation process of
PL-KF estimators and PL-RLS estimators, the calculation of
the gainmatrix in PL-KF estimators considers the covariance
of measurements’ noises, while PL-RLS estimators do not.
Together with the same Fisher information, the performance
of the PL-KF estimator is not affected by transformed noises.

5.3 Simulation 2: incorrect parameters in PL-KF
estimators

Sometimes, the variances of the original measurement noises
are difficult to estimate. Some users may overlook or make
a mistake in the calculation of the covariance of the trans-
formed noiseswhen applying PL-KF estimators. This section
investigates the influence of inappropriate setting of the
parameter (covariance of the pseudo-linear measurement
noise) in the PL-KF estimator.

Many new users directly use I as the covariance matrix of
the measurement noises. The second simulation experiment
setups Σνi = I , and all other parameters and measurement
data are the same as in simulation 1.

The simulation results are shown in Fig. 5. As can be seen,
inappropriate measurement covariance can bring uncertain
effects on the estimation performance in all three scenarios.
As a result, our advice is to use the correct calculation of the
covariance matrix of the pseudo-linear measurement noises
when applying PL-KF estimators.

5.4 Simulation 3: wrong variance of original noises

Sometimes, it is difficult to estimate the variance of the orig-
inal measurement noises. However, wrong value may bring
bad effects. The third simulation experiment setups σμ = 0.2
and σw = 0.2 when calculating the covariance matrix of Σνi

in the PL-KF estimators, while the real variances of mea-
surement noises remain σμ = 0.01 and σw = 0.01. Other
parameters and measurement data are the same as in simula-
tion 1.
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Fig. 6 Comparison of PL-KF estimators with the same wrong original measurement variance

The simulation results are shown in Fig. 6. As can be
seen, the performances become worse but remain the same
in all three scenarios. As a result, our advice is to use PL-
RLS estimators if the variances of the original measurement
noises are difficult to estimate.

6 Conclusion

This paper investigates the effectiveness of using different
pseudo-linear measurements on the estimation performance.
We choose the vision-based target motion estimation prob-
lem as an example to introduce. The visionmeasurements are
modelled as bearing and angle, and are then transformed into
three different pseudo-linear measurements. Three different
pseudo-linear measurement equations with corresponding
transformed noises are then proposed. Based on the pro-
posed pseudo-linear measurement equations, three PL-KF
and three PL-RLS estimators are proposed.

Simulation results and corresponding analysis show that
a) three PL-KF and three PL-RLS estimators have similar
performance; b) the smaller transformed noises, the better
performance of the PL-RLS estimator; c) three PL-KF esti-
mators have the same performance.

For the inappropriate parameters in PL-KF estimators, the
simulation results show that a) incorrect covariance brings
unknown influence; b) wrong original variance of the mea-
surement noisesmakes the performances worse but the same.

The final advice is to use the PL-KF estimator with correct
parameters if the variance of the original measurement noise
is known in advance. However, if the variance of the original
measurement noise is unknown, the PL-RLS estimator with
the smallest transformed noises is the best choice.

Data Availability The data used in this study are available from the
corresponding author upon request.
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