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Abstract
Consider the precision attitude regulation with vibration suppression for an uncertain and disturbed flexible spacecraft. The
disturbance at issue is typically any finite superposition of sinusoidal signals with unknown frequencies and step signals of
unknown amplitudes. First we show that the conventional mathematical model for flexible spacecrafts is transformable to a
multi-input multi-output (MIMO) strict-feedback nonlinear normal form. Particularly it is strongly minimum-phase and has a
well-defined uniform vector relative degree. Then it enables us to develop an adaptive internal model-based controller in the
framework of adaptive output regulation to solve the problem. It is proved that asymptotic stability can be guaranteed for the
attitude regulation task and the vibration of flexible appendages vanishes asymptotically. Hence, the present study explores a
new idea for control of flexible spacecraft in virtue of its system structures.

Keywords Flexible spacecraft · Disturbance rejection · Internal model principle · Attitude regulation

1 Introduction

Attitude control of a spacecraft has been a subject that has
attracted considerable amounts of interest in the control com-
munity, as well as in the field of aerospace. It generally aims
at designing feedback control laws to regulate the attitude of
a spacecraft, and meanwhile to eliminate the effects of var-
ious kinds of system parameter uncertainties, disturbances,
and vibrations.
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In the presence of system parameter uncertainties, many
approaches have been developed for rigid spacecraft systems,
see for instance [1–3] for adaptive control approaches. To
further cope with external disturbances, one of the popular
approaches is the nonlinear H∞ control approach, e.g., [4],
and its variant H∞ inverse optimal adaptive control [5]. By
this kind of approach, it is possible to attenuate external dis-
turbances to a certain level. Towards disturbance rejection of
rigid spacecraft, a number of nonlinear control schemes have
been proposed, such as sliding mode control in [1], extended
observer-based control in [6], and internal model-based con-
trol in [7–9].

On the other hand, vibration suppression has becomemore
significant as the appendages ofmodern spacecraft are lighter
and more flexible than before. For spacecraft systems with
flexible appendages (e.g., large solar arrays), the rigid hub
excites elastic vibration of the flexible appendages during
maneuvering, which in turn affects the attitude motion. For
example, as pointed out in [10], the elasticity in the solar
array of Hubble Space Telescope often cannot be neglected
for precise pointing control. In this direction, significant
attempts have been made under different assumptions and
scenarios to enhance the system stability and the control per-
formance.Many advanced controlmethods have been poured
into vibration suppression and robust attitude control, such
as sliding mode control (SMC) [11, 12], finite-time control
[13], fixed-time control [14], iterative learning control [15],
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internal model-based control [16], and so on [17–22]. In par-
ticular, Xu et al. [11] proposed a control strategy combining
the adaptive SMC with the component synthesis vibration
suppression method, Azimi et al. [12] used a modified SMC
and strain rate feedback control for simultaneous attitude
and vibration control, and Zhang et al. [13] proposed an
adaptive multivariable continuous twisting controller on the
basis of integral-type sliding mode surface for finite-time
attitude control and vibration suppression. Yao et al. [14]
proposed a neural adaptive fixed-time control approach. The
neural network was introduced to approximate the lumped
unknown function (including unknown parameters, external
disturbance, and elastic vibrations). Sun et al. [15] proposed
a control method by combining iterative learning control and
the contour of cosine jerk central angle interpolation. It can
effectively reduce single-axis tracking error to improve con-
tour accuracy. In [16], Zhong et al. developed an internal
model principle based regulator for disturbance rejection and
attitude control of flexible spacecraft. Di Gennaro [17] devel-
oped an output feedback controller for piezoelectric actuators
to realize active vibration suppression. In [18], a rapid attitude
control strategy was proposed to reduce vibrations based on
passive vibration isolation technique. Azimi et al. applied the
Homotopy Perturbation method to investigate the vibration
behavior of the rotating cracked beam in [19] and proposed
optimal controllers in [20]. Recently, some prescribed per-
formance approaches were proposed in [21, 22] for attitude
tracking and disturbance attenuation of flexible spacecraft.

The main objective of this study is to explore a gen-
eral investigation of robust attitude regulation of flexible
spacecraft with unknown system parameters and unknown
frequency harmonic disturbances. The flexible spacecraft
consists of a rigid hub and flexible appendages. The coupling
of rigid and flexible motion leads to a complicated inter-
connection structure in the mathematical model of flexible
spacecraft. Thus, although many disturbance rejection algo-
rithms have been proposed for rigid spacecraft, they cannot
be directly applied to the relevant disturbance rejection prob-
lem for flexible spacecraft.

The main contribution of the present study is two-fold.
Firstly, we prove that the conventional mathematical model
for flexible spacecrafts is transformable to an MIMO strict-
feedback nonlinear normal form, being strongly minimum-
phase and having a well-defined uniform vector relative
degree. The normal form facilitates subsequent control
design and stability analysis. To our knowledge, this would
be the first work toward normal form transformation for flex-
ible spacecrafts. What makes this idea important is that it
is potential to further apply the celebrated nonlinear con-
trol methods for multivariable systems. Secondly, based on
the normal form representation and by using adaptive output
regulation techniques, we propose adaptive internal model-
based controllers that are able to deal with uncertain system

parameters, unknown frequency harmonic disturbances, and
vibrations. We prove that asymptotic attitude regulation can
be achieved, and the vibration of flexible appendages van-
ishes asymptotically. In comparison with existing work [16]
which also incorporates internal models to counteract the
effect of external disturbances, our work has the follow-
ing novelties: (i) The frequencies of external disturbances
are unknown in this study, whereas they are assumed to be
known in [16]. (ii) We treat appendage vibration as dynamic
uncertainties, while [16] takes the appendage dynamics into
consideration in the controller design. The latter requires the
exact knowledge of system parameters, while ours does not.
Thus our proposed controller is robustness against uncertain-
ties in system parameters.

1.1 Outline

The remainder of this article is organized as follows. Sec-
tion2 introduces the mathematical model of a flexible space-
craft, and presents relevant preliminaries. Section3 presents
the main result of this paper. Section4 illustrates the effec-
tiveness of the proposed controllers by numerical examples.
Section5 closes the paper with some concluding remarks.

1.2 Notation

‖·‖ is theEuclidean normof a vector or the inducedEuclidean
norm of amatrix. In is the n-dimensional identitymatrix, and
I is an identitymatrixwith compatible dimension.K is the set
of functions f : [0,∞) → [0,∞) to be continuous, positive
definite, and strictly increasing. K∞ is the set of unbounded
K functions.

2 Modeling and preliminaries

The flexible spacecraft under investigation consists of a rigid
hub with flexible appendages attached to it. The equations
of attitude motion of a flexible spacecraft are given by the
kinematic equation of the spacecraft and dynamic equations
of the rigid hub and the flexible appendages. From [17, 23,
24] and the symbols defined in Table 1, the flexible spacecraft
attitude model is

σ̇ = G(σ )ω, (1a)

J ω̇ = −ω×(Jω + δη̇) − δη̈ + u + d, (1b)

η̈ = −2ζΛη̇ − Λ2η − δTω̇, (1c)

where (1a) is the kinematic equation of the rigid hub, and is
described in terms of modified Rodriguez parameters [23]:

σ = e tan
(φ

4

)
∈ R

3, −2π < φ < 2π,
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Table 1 Table of notations

Symbol Meaning

σ ∈ R
3 The attitude of the main body in inertial frame represented by modified Rodriguez parameters

ω ∈ R
3 The angular velocity of the spacecraft in body fixed frame

ω× The skew symmetric matrix of ω described by ω× =
⎡
⎣

0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ with ω =

⎡
⎣

ω1
ω2
ω3

⎤
⎦

η ∈ R
n The modal coordinate vector of the flexible appendages, with n being the number of flexible modes considered

u ∈ R
3 The vector of control input

d ∈ R
3 The external disturbance torque vector

J ∈ R
3×3 The symmetric inertia matrix of flexible spacecraft

δ ∈ R
3×n The coupling matrix between the flexible appendages and the rigid hub

Λ ∈ R
n×n The natural frequency matrix

ζ ∈ R
n×n The modal damping matrix

where e is the Euler axis of rotation in the body-fixed frame,
and φ is the Euler angle about axis e. The matrix G(σ ) is
given by

G(σ ) = 1

2

(
1 − σTσ

2
I3 + σ× + σσT

)
. (2)

Equation (1b) is the rigid dynamics of the total angular
momentum Ω , given as

Ω = Jω + δη̇,

where J is the symmetric inertia matrix of the whole space-
craft, and δ is the coupling matrix between the flexible and
rigid structures. Equation (1c) describes the flexible dynam-
ics usingmode formulation η ∈ R

n with n number of flexible
modes considered. The natural frequency matrix Λ and the
damping ratio matrix ζ are of diagonal form

Λ = diag(Λ1, . . . , Λn), ζ = diag(ζ1, . . . , ζn),

where Λi are the natural frequencies and ζi are the corre-
sponding dampings.

Remark 1 For the σ -subsystem (1a), we have the following
observations.

1. The matrix G(σ ) in (2) is invertible for all σ ∈ R
3. In

fact, the determinant amounts to G(σ ) can be directly
calculated: det G(σ ) = 1

64 (1 + σ 2
1 + σ 2

2 + σ 2
3 )3, which

implies the invertibility of G(σ ).
2. The attitude σ of the rigid hub may be alternatively

described by some other representations, such as unit
quaternions or Euler angle vectors, leading to expres-
sions formally similar to (1a).

The disturbance signal to be handled in this study is
assumed to be a combination of finite numbers of sine waves
and steps. Specifically, d = [d1, d2, d3]T, and for each
i = 1, 2, 3,

di (t) =
ni∑
j=1

Ai j sin(σ d
i j t + Υi j ) + Ai0, (3)

where Ai0 is the unknown step magnitude, σ d
i j , Ai j , and Υi j ,

j = 1, . . . , ni , are unknown frequencies, amplitudes, and
phase angles, respectively.

The control objective of this study is to realize desired
attitude regulation, and meanwhile to suppress the vibrations
induced by the flexible appendages of the spacecraft, in spite
of external disturbances and unknown system parameters.

For this purpose, we will give a normal form character-
ization of system (1). Then, based on the obtained normal
form representation, we approach the disturbance rejection
and attitude regulation problem in the framework of nonlin-
ear output regulation for multivariable nonlinear systems.

To be self-contained, let us revisit some basic concepts
involved in geometric control [25]. Consider a multivariable
nonlinear system as follows:

⎧⎨
⎩
ẋ = f (x) +

m∑
i=1

gi (x)ui ,

y1 = h1(x), . . . , ym = hm(x),
(4)

where f : R
n → R

n , gi : R
n → R

n , i = 1, . . . ,m are
smooth vector fields, and hi : Rn → R, i = 1, . . . ,m are
smooth functions.

Definition 1 [25] System (4) has a vector relative degree
{r1, · · · , rm} at a point x0 if
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(i) Lg j L
k
f hi (x) = 0, for all j = 1, . . . ,m, k = 1, . . . , ri −

2, i = 1, . . . ,m, and for all x in a neighborhood of x0;
(ii) the matrix

D(x) =

⎡
⎢⎢⎢⎢⎣

Lg1L
r1−1
f h1(x) · · · Lgm L

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) · · · Lgm L

r2−1
f h2(x)

...
...

Lg1L
rm−1
f hm(x) · · · Lgm L

rm−1
f hm(x)

⎤
⎥⎥⎥⎥⎦

is nonsingular at x = x0.

Moreover, system (4) is said to have uniform vector relative
degree if there are integers r1, . . . , rm such that system (4)
has vector relative degree {r1, . . . , rm} at each x0 ∈ R

n .

If system (4) has a well-defined vector relative degree
{r1, . . . , rm}, then it can be diffeomorphically transformed
into the following strict-feedback normal form [25, pp. 224–
225]

⎧⎪⎪⎨
⎪⎪⎩

ż = f (z, ξ),

ξ̇i, j = ξi, j+1, j = 1, . . . , ri − 1,
ξ̇i,ri = qi (z, ξ) + bi (z, ξ)u,

yi = ξi,1, i = 1, . . . ,m,

(5)

where z ∈ R
n−(r1+···+rm ), u ∈ R

m , the vector ξ ∈ R
r1+···+rm

is defined as

ξ = [ξT1 , . . . , ξTm]T,

ξi = [ξi,1, . . . , ξi,ri ]T, i = 1, . . . ,m,

and qi (z, ξ), bi (z, ξ), i = 1, . . . ,m are smooth functions.
As we will see in the subsequent section, the property of

the z-subsystem plays an important role in control design. In
this context, we introduce the following definition.

Definition 2 [26] System (5) is strongly minimum-phase if
the z-subsystem is input-to-state stable (ISS) w.r.t. state z
and input ξ in the sense of [27].

3 Main result

3.1 Normal form

The multivariable nonlinear system (1) has a complicated
interconnection structure. The attitude dynamics of rigid hub
(1b) and the appendages’ vibration (1c) are coupled by the
first and second time derivative of modal coordinate η̇, η̈ and
angular acceleration ω̇. The excitation source of the vibration
dynamics (1c) is ω̇. In turn, the excited vibrations are coupled
in the attitude dynamics (1b) via η̇ and η̈.

To derive amore tractable system,we rewrite system (1) in
some other representation to be of normal form [25, pp. 224–
225] as follows.

Proposition 1 Suppose J − δδT is nonsingular. Then there
exists a map (z1, z2, x1, x2) := T (η, η̇, σ, ω) to be a diffeo-
morphism that defines a global change of coordinates that
transforms system (1) into the normal form (5), specified as
follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż = Az + f0(x1, x2),

ẋ1 = x2,

ẋ2 = H−1(x1)
[ − C(x1, x2)x2 − g(x1, x2, z)

]
+H−1(x1)G−T(x1)(u + d)

(6)

with output y = x1, where z = [zT1 , zT2 ]T, matrix A is Hur-
witz, function G is defined by replacing the argument σ in
(2) with x1, and functions f0 : R3 × R

3 → R
2n, H : R3 →

R
3×3, C : R3 ×R

3 → R
3×3, and g : R3 ×R

3 ×R
2n → R

3

are smooth and satisfy the following properties:

P1 For each x1 ∈ R
3, H(x1) is positive definite.

P2 dH(x1)
d t − 2C(x1, x2) is skew-symmetric.

Proof The coordinate transformation can be constructed in
two steps.

• Firstly, to eliminate ω̇ in (1c), we define the following
change of coordinate:

(z1, z2) := (η, η̇ + δTω), z = [zT1 , zT2 ]T. (7)

Then, direct calculation gives the following expressions:

ż1 = z2 − δTω,

ż2 = −2ζΛη̇ − Λ2η − δTω̇ + δTω̇

= −2ζΛη̇ − Λ2η

= −Λ2z1 − 2ζΛz2 + 2ζΛδTω.

In short,

ż = Az + fz(ω), (8)

where

A =
[

0 I
−Λ2 −2ζΛ

]
, fz(ω) =

[ −δTω

2ζΛδTω

]
. (9)

• Secondly, we eliminate η̈ in (1b). By submitting (1c) into
(1b), we have

J ω̇ = −ω×(Jω + δη̇) + δ(2ζΛη̇ + Λ2η + δTω̇)
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+ u + d

= −ω×(Jω + δη̇) + δ(2ζΛη̇ + Λ2η) + δδTω̇

+ u + d.

By merging terms J ω̇ and δδTω̇, we have

(J − δδT)ω̇ = −ω×(Jω + δη̇) + δ(2ζΛη̇ + Λ2η)

+ u + d. (10)

Denote a new constant matrix Jδ by

Jδ = J − δδT. (11)

Substituting (11) into (10) gives

Jδω̇ = −ω×(Jδ + δδT)ω − ω×δη̇

+ δ(2ζΛη̇ + Λ2η) + u + d

= −ω× Jδω − ω×δz2 + δ[2ζΛ(z2 − δTω)

+ Λ2z1] + u + d

= −ω× Jδω − 2δζΛδTω − ω×δz2 + 2δζΛz2

+ δΛ2z1 + u + d, (12)

where we have used the new coordinate (z1, z2) defined
in (7).

Based on (1a) and (12), the attitude dynamics of rigid hub
can be formulated in Lagrangian form

H(x)ẍ + C(x, ẋ)ẋ + g(x, ẋ, z) = G−T(x)(u + d), (13)

where x = σ , and

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H(x) = G−T(x)JδG−1(x),
C(x, ẋ) = −G−T(x)JδG−1(x)Ġ(x)G−1(x)

−G−T(x)[JδG−1(x)ẋ]×G−1(x),
g(x, ẋ, z)
= 2G−T(x)δζΛz2 − 2G−T(x)δζΛδTG−1(x)ẋ

−G−T(x)[G(x)ẋ]×δz2 + G−T(x)δΛ2z1.

(14)

By combining (8) and (13), and further choosing

(x1, x2) := (x, ẋ) (15)

as the state, system (6) can be obtained with f0(x1, x2) =
fz(G−1(x1)x2), and functions H(x1) and C(x1, x2) are
defined by replacing the arguments x, ẋ in (14) with x1, x2,
respectively. Thus, in view of (7) and (15), the change of
coordinates from system (1) to (6) is given by

(z1, z2, x1, x2) := T (η, η̇, x, ω)

= (
η, η̇ + δTω, σ,G(σ )ω

)
.

Finally, under the condition that Jδ is nonsingular, the
properties P1 and P2 can be verified directly from (14). ��
Remark 2 The following remarks concerning system (6) are
in order.

1. System (6) is strongly minimum-phase in the sense of
Definition 2, i.e., the inverse dynamics of (6) is ISS. It
can be checked by taking a Lyapunov function V0(z) =
zTP0z where P0 is a positive definite matrix satisfying
ATP0 + P0A = −I , whose time derivative, along the
trajectories of (6), satisfies V̇0 ≤ − 1

2‖z‖2 +γ01(‖x1‖)+
γ02(‖x2‖) for some K∞ functions γ01 and γ02.

2. System (6) has uniform vector relative degree {2, 2, 2}
in the sense of Definition 1. From Remark 1 and the
condition that Jδ is nonsingular, it follows that the high-
frequency gain matrix B(x1) := H−1(x1)G−T(x1) is
nonsingular at each x1 ∈ R

3.

With the obtained normal form representation (6), we
define the concerned disturbance rejection and attitude reg-
ulation problem as follows.

Problem 1 Consider system (6). Given any desired attitude
xd ∈ R

3, design a smooth controller of the form

u = hc(xc, x1, x2, xd), ẋc = fc(xc, x1, x2, xd), (16)

where xc ∈ R
nc for some positive integer nc, such that for

any initial conditions z(0) ∈ R
2n, x1(0) ∈ R

3, x2(0) ∈
R
3, xc(0) ∈ R

nc and any disturbance (3), the trajectory of
the closed-loop system (6) and (16) exists and is bounded
for all t ≥ 0, and

lim
t→∞(x1(t) − xd) = 0, lim

t→∞(x2(t), z(t)) = (0, 0).

3.2 Control of Lagrangian equation

Let us first consider the disturbance rejection control of rigid
hub. That is, we set g(x, ẋ, z) in (13) to zero. Then, the
Lagrangian equation (13) turns to

H(x)ẍ + C(x, ẋ)ẋ = G−T(x)(u + d), (17)

where functions H , C , and G are the same as that in (13),
and d is the external disturbance signal (3).

As in [28] for output regulation of nonlinear systems, the
external disturbance d in (3) can be modeled as the output of
a linear exosystems of the form

v̇ = S(σ d)v, d = Dv, v ∈ R
nv , (18)

where S(σ d) = blockdiag(0, S1(σ d
1 ), . . . , SN (σ d

N )), N =
n1 + n2 + n3, Si (σ d

i ) = [0, σ d
i ;−σ d

i , 0], and σ d
i is the
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i th component of the stacked vectorσ d=[σ d
11, . . . , σ

d
1n1

, σ d
21,

. . . , σ d
2n2

, σ d
31, . . . , σ

d
3n3

]T. The initial value v(0) contains
the information about the unknown amplitudes, phases, and
biases (Ai j , φi j , Ai0), i = 1, 2, 3, j = 1, . . . , ni . With no
loss of generality, we assume v(0) ∈ V where V ⊂ R

nv is a
known compact set and is invariant for (18).

Solving the associated regulator equations [28] for sys-
tems (17) and (18) gives the following zero-error constraint
input function [28, pp. 83]

u(v) = −Dv. (19)

For each component of the steady-state input u(v) =
[u1(v), u2(v), u3(v)]T, there exist an integer li , and real
numbers ai1, . . . , aili , i = 1, 2, 3, such that

dli ui (v)

dt li
= ai1(σ

d)ui (v) + ai2(σ
d)
dui (v)

dt
+ · · ·

+ aili (σ
d)
dli−1ui (v)

dt li−1

holds for all v ∈ V . Let

τi (v) =
[
ui (v)

dui (v)

dt
· · · d

li−1ui (v)

dt li−1

]T
, i = 1, 2, 3.

Let (Φi (σ
d), Ψi ), i = 1, 2, 3, be observable pairs in the

companion form

Φi (σ
d) =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
...

0 0 · · · 1
ai1(σ d) ai2(σ d) · · · aili (σ d)

⎤
⎥⎥⎥⎦ ,

Ψi = [
1 0 · · · 0] .

Then, for each i = 1, 2, 3, τi (v) satisfies

∂τi (v)

∂v
S(σ d)v = Φi (σ

d)τi (v), ui (v) = Ψiτi (v).

Let (Mi , Ni ) be any controllable pair with Mi ∈ R
li×li being

Hurwitz and Ni ∈ R
li . Since the eigenvalues of Mi and

Φi (σ
d) are distinct, by [29, Theorem 2], the Sylvester equa-

tion Ti (σ d)Φi (σ
d) = MiTi (σ d) + NiΨi has a unique solu-

tion Ti (σ d)which is invertible. Letϑi (σ
d , v) = Ti (σ d)τi (v).

Then, we have a steady-state input generator as follows:

⎧
⎨
⎩

∂ϑi

∂v
S(σ d)v = (

Mi + NiΨi T
−1
i (σ d)

)
ϑi (σ

d , v),

ui (v) = Γi (σ
d)ϑi (σ

d , v)
(20)

where Γi (σ
d) = Ψi T

−1
i (σ d).

It gives rise to a canonical linear internal model

ξ̇i = Miξi + Niui (21)

with output ui in the sense of [28, Definition 6.6]. Define

ξ = [ξT1 , ξT2 , ξT3 ]T,

ϑ(σ d , v) = [ϑT
1 (σ d , v), ϑT

2 (σ d , v), ϑT
3 (σ d , v)]T,

M = blockdiag(M1, M2, M3),

N = blockdiag(N1, N2, N3),

Ψ = blockdiag(Ψ1, Ψ2, Ψ3),

Φ(σ d) = blockdiag(Φ1(σ
d),Φ2(σ

d),Φ3(σ
d)),

T (σ d) = blockdiag(T1(σ
d), T2(σ

d), T3(σ
d)),

Γ (σ d) = blockdiag(Γ1(σ
d), Γ2(σ

d), Γ3(σ
d)).

Then, the steady-state generator (20) and internal model (21)
can be written in compact form as

∂ϑ(σ d , v)

∂v
S(σ d)v = (

M + NΨ T−1(σ d)
)
ϑ(σ d , v),

u(v) = Γ (σ d)ϑ(σ d , v),

and

ξ̇ = Mξ + Nu, (22)

respectively.
By attaching (22) to (17), and using the coordinates

defined in (15), we obtain an augmented system as follows:

⎧⎪⎨
⎪⎩

ẋ1 = x2,

ξ̇ = Mξ + Nu,

H(x1)ẋ2 = G−T(x1)(u + d) − C(x1, x2)x2.

(23)

Define the following coordinate and input transformations

⎧⎪⎨
⎪⎩

x̃1 = x1 − xd ,

ξ̄ = ξ − ϑ(σ d , v) − NGT(x1)H(x1)x2,

ū = u − Γ (σ d)ξ.

(24)

Then, we obtain a translated augmented system of the form

⎧⎪⎪⎨
⎪⎪⎩

˙̃x1 = x2,

˙̄ξ = M ξ̄ + ϕ1(x1, x2, μ),

ẋ2 = H−1(x1)G
−T(x1)ū + f1(x1, x2, ξ̄ , μ),

(25)
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where vector μ collects all the unknown parameters in
J , δ, ζ,Λ, σ d and is called the static uncertainty, and

ϕ1(x1, x2, μ) = MNGT(x1)H(x1)x2
−NĠT(x1, x2)H(x1)x2
+NGT(x1)C(x1, x2)x2
−NGT(x1)Ḣ(x1, x2)x2,

f1(x1, x2, ξ̄ , μ)

= H−1(x1)
[

− C(x1, x2)x2 + G−T(x1)Γ (σ d)
(
ξ̄

+NGT(x1)H(x1)x2
)]

,

Ḣ(x1, x2) =
3∑

i=1

∂H

∂x1i
x2i , Ġ(x1, x2) =

3∑
i=1

∂G

∂x1i
x2i ,

where x1=[x11, x12, x13]T and x2=[x21, x22, x23]T.
For the translated augmented system (25), we have the fol-

lowing two remarks. Firstly, the precise value of vector μ is
unknown due to parameter uncertainties. It is supposed thatμ
ranges in a known compact setD. Secondly, the stabilizabil-
ity of (25) at origin implies the solvability of the disturbance
rejection and attitude regulation problem for systems (17)
and (18).

Lemma 1 For the translated augmented system (25), there
exists a stabilization law in the form of

ū = −GT(x1)ρ(x̃2)x̃2, x̃2 = x2 + α x̃1, (26)

where constant α > 0 and ρ(·) is some smooth positive
function, such that for any initial state, the trajectory of the
closed-loop system (25) and (26) exists and is bounded for
all t ≥ 0, and limt→∞ x̃1(t) = 0.

Proof Firstly, consider the subsystem x̃1 of (25). Design a
Lyapunov function candidate V1(x̃1) = 1

2 x̃
T
1 x̃1, whose time

derivative, along the trajectories of (25) and (26), satisfies

V̇1 = −α‖x̃1‖2 + x̃T1 x̃2 ≤ −1

2
α‖x̃1‖2 + 1

2α
‖x̃2‖2.

Using [30, Theorem 2] on changing supply functions, for any
smooth function α1(·) > 0, there existK∞ functions ᾱ1, α1,
and Lyapunov function V̄1, such that along the trajectories of
(25) and (26),

{
α1(‖x̃1‖) ≤ V̄1(x̃1) ≤ ᾱ1(‖x̃1‖),
˙̄V1 ≤ −α1(x̃1)‖x̃1‖2 + γ1(x̃2)‖x̃2‖2

(27)

hold for some positive function γ1(·) > 0.
Next, consider the subsystem (ξ̄ , x2) of (25). Let P be

the unique solution to MTP + PM = −I which is positive
definite. Define

V2(x̃2, ξ̄ ) = ξ̄TP ξ̄ + 1

2
x̃T2 H(x1)x̃2, (28)

whose time derivative, along the trajectories of (25), satisfies

V̇2 = −‖ξ̄‖2 + 2ξ̄TPϕ(x1, x2, μ) + x̃T2 G
−T(x1)ū

+ x̃T2 G
−T(x1)Γ (σ d)[ξ̄

+ NGT(x1)H(x1)(x̃2 − α x̃1)]
= −‖ξ̄‖2 + 2ξ̄TPϕ̄1(x̃1, x̃2, μ) + x̃T2 G

−T(x1)ū

+ x̃T2 ϕ̄2(x̃1, x̃2, ξ̄ , μ), (29)

where

ϕ̄1(x̃1, x̃2, μ) = ϕ1(x̃1 + xd , x̃2 − α x̃1, μ),

ϕ̄2(x̃1, x̃2, ξ̄ , μ) = ϕ2(x̃1 + xd , x̃2 − α x̃1, ξ̄ , μ),

ϕ2(x1, x2, ξ̄ , μ)

= G−T(x1)Γ (σ d)[ξ̄ + NGT(x1)H(x1)x2].

It can be verified that functions ϕ̄1 and ϕ̄2 are smooth and
satisfy ϕ̄1(0, 0, μ) = 0 and ϕ̄2(0, 0, 0, μ) = 0 for all μ. By
[28, Lemma 7.8], there are functions ψi j (·) > 1, i = 1, 2,
j = 1, 2, such that

‖ϕ̄1(x̃1, x̃2, μ)‖2 ≤ ψ11(x̃1)‖x̃1‖2 + ψ12(x̃2)‖x̃2‖2,
‖ϕ̄2(x̃1, x̃2, ξ̄ , μ)‖2 ≤ψ21(x̃1)‖x̃1‖2 + ψ22(x̃2)‖x̃2‖2

+ ‖ξ̄‖2
2

hold for all (x̃1, x̃2, ξ̄ , μ).
Using Young’s inequality, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ξ̄TPϕ̄1(x̃1, x̃2, μ)

≤ 1

4
‖ξ̄‖2 + ‖P‖2‖ϕ̄1(x̃1, x̃2, μ)‖2

≤ 1

4
‖ξ̄‖2 + ψ̄11(x̃1)‖x̃1‖2 + ψ̄12(x̃2)‖x̃2‖2,

x̃T2 ϕ̄2(x̃1, x̃2, ξ̄ , μ)

≤ 1

2
‖x̃2‖2 + 1

2
‖ϕ̄2(x̃1, x̃2, ξ̄ , μ)‖2

≤ 1

4
‖ξ̄‖2 + ψ̄21(x̃1)‖x̃1‖2 + ψ̄22(x̃2)‖x̃2‖2,

(30)

where ψ̄11(x̃1) = ‖P‖2ψ11(x̃1), ψ̄12(x̃2) = ‖P‖2ψ12(x̃2),
ψ̄21(x̃1) = 1

2ψ21(x̃1), and ψ̄22(x̃1) = 1
2ψ22(x̃2) + 1

2 .
Substituting (30) and (26) in (29), we have

V̇2 ≤ −1

2
‖ξ̄‖2 − [

ρ(x̃2) − ψ̄2(x̃2)
]‖x̃2‖2

+ ψ̄1(x̃1)‖x̃1‖2, (31)

where ψ̄1(x̃1) = ψ̄11(x̃1)+ψ̄12(x̃1) and ψ̄2(x̃2) = ψ̄21(x̃2)+
ψ̄22(x̃2).
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To sum up, let us define a Lyapunov function

V (x̃1, x̃2, ξ̄ ) = V̄1(x̃1) + V2(x̃2, ξ̄ ), (32)

where V̄1 and V2 are given in (27) and (28), respectively.
Using (27) and (31), the time derivative of V , along the tra-
jectories of the closed-loop system (25), (26), satisfies

V̇ ≤ −1

2
‖ξ̄‖2 − [

α1(x̃1) − ψ̄1(x̃1)
]‖x̃1‖2

− [
ρ(x̃2) − ψ̄2(x̃2) − γ1(x̃2)

]‖x̃2‖2. (33)

Further letting α1(x̃1) ≥ ψ̄1(x̃1) + 1
2 gives

V̇ ≤ −1

2
‖ξ̄‖2 − 1

2
‖x̃1‖2

− [
ρ(x̃2) − ψ̄2(x̃2) − γ1(x̃2)

]‖x̃2‖2. (34)

In (34), by choosing ρ(x̃2) such that

ρ(x̃2) − ψ̄2(x̃2) − γ1(x̃2) >
1

2
, (35)

we obtain

V̇ ≤ −1

2
‖ξ̄‖2 − 1

2
‖x̃1‖2 − 1

2
‖x̃2‖2.

Finally, since V is positive definite and radially
unbounded, and V̇ is negative definite, we can conclude that
(x̃1, x̃2, ξ̄ ) tends to (0, 0, 0) as t → ∞. ��

As a result, the disturbance rejection problem for system
(17) and (18) can be solved by a feedback controller com-
posed of (22) and (26).

3.3 Vibration suppression

Let us now investigate the effect of the controller proposed
in (22) and (26) on system (6), in the presence of vibrations
induced by flexible appendages.

This subsection aims to redesign the stabilization law
(26) to make it robust against the effect of the vibration.
We will design an additional control υ = −ρ̄(x̃2)x̃2 such
that the overall control ū = −GT(x1)

(
ρ(x̃2)x̃2 + υ

) =:
−GT(x1)�(x̃2)x̃2 stabilizes system (25) in the presence of
vibration induced by the flexible appendages.

Proposition 2 Consider system (6) and (18). Suppose σ d is
known. Then there exists a smooth function �(·) such that the
following controller

{
u = −GT(x1)�(x̃2)x̃2 + Γ (σ d)ξ,

ξ̇ = Mξ + Nu, x̃2 = x2 + α x̃1, x̃1 = x1 − xd ,
(36)

where constant α > 0, solves the disturbance rejection and
attitude regulation Problem 1.

Proof By substituting law (36) in (6), and using the coor-
dinate transformation in (24), we can write the closed-loop
system in a compact form as follows:

{
ż = Az + f̄0(x, μ),

ẋ = F(x, μ) + Δ(x, z, μ),
(37)

where

x = [x̃T1 , ξ̄T, x̃T2 ]T,

f̄0(x, μ) = f0(x̃1 + xd ,−α x̃1 + x̃2),

f̄1(x, μ) = f1(x̃1 + xd ,−α x̃1 + x̃2, ξ̄ , μ),

F(x, μ) =
⎡
⎣

−α x̃1 + x̃2
M ξ̄ + ϕ̄1(x̃1, x̃2, μ)

−H−1(x̃1 + xd)�(x̃2)x̃2 + f̄1(x, μ)

⎤
⎦ ,

Δ(x, z, μ) =
⎡
⎣

0
Δ1(x, z, μ)

−H−1(x̃1 + xd)Δ2(x, z, μ)

⎤
⎦ ,

Δ1(x, z, μ) = NGT(x̃1 + xd)Δ2(x̃1, x̃2, z, μ),

Δ2(x, z, μ) = g(x̃1 + xd ,−α x̃1 + x̃2, z)

with functions f̄0(x, μ) andΔ(x, z, μ) satisfying f̄0(0, μ) =
0 and Δ(0, 0, μ) = 0 for all μ ∈ D.

For system (37), we state the following three results.

• Consider z-subsystemof (37). By item1 ofRemark 2 and
the changing supply function technique [30, Theorem 2],
for any smooth function α3(·) > 0, there is a Lyapunov
function V3, such that, along the trajectories of (37),

⎧⎨
⎩

α3(‖z‖) ≤ V3(z) ≤ ᾱ3(‖z‖),
V̇3 ≤ −α3(z)‖z‖2 + γ31(x̃1)‖x̃1‖2

+γ32(x̃2)‖x̃2‖2,
(38)

where α3, ᾱ3 ∈ K∞, γ31(·) > 0, and γ32(·) > 0.
• Consider x-subsystem of (37). Following the derivation
from (32) to (33), the time derivative of V in (32) along
the trajectories of x-subsystem of (37), satisfies

V̇ ≤ −1

2
‖ξ̄‖2 − [

α1(x̃1) − ψ̄1(x̃1)
]‖x̃1‖2

− [
�(x̃2) − ψ̄2(x̃2) − γ1(x̃2)

]‖x̃2‖2
+ 2ξ̄TPΔ1 + x̃T2 Δ2. (39)

• By [28, Lemma 7.8], the functions Δ1(x, z, μ) and
Δ2(x, z, μ) satisfy the following growth condition:
There are functions φi j (·) > 1, i = 0, 1, 2, j = 1, 2, 3,
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such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖Δ1(x, z, μ)‖2 ≤φ11(x̃1)‖x̃1‖2 + φ12(x̃2)‖x̃2‖2
+ φ13(z)‖z‖2,

‖Δ2(x, z, μ)‖2 ≤φ21(x̃1)‖x̃1‖2 + φ22(x̃2)‖x̃2‖2
+ φ23(z)‖z‖2.

(40)

To sum up, let us define a Lyapunov function

V̄ (z, x) = V (x̃1, x̃2, ξ̄ ) + V3(z), (41)

where V and V3 are defined in (32) and (38), respectively.
Using (38) and (39), the time derivative of V̄ , along the

trajectories of (37), satisfies

˙̄V ≤ −α3(z)‖z‖2 − 1

2
‖ξ̄‖2

− [
α1(x̃1) − ψ̄1(x̃1) − γ31(x̃1)

]‖x̃1‖2
− [

�(x̃2) − ψ̄2(x̃2) − γ1(x̃2) − γ32(x̃2)
]‖x̃2‖2

+ 2ξ̄TPΔ1(x, z, μ) + x̃T2 Δ2(x, z, μ). (42)

By completing the squares, we have

2ξ̄TPΔ1(x, z, μ) ≤ 1

4
‖ξ̄‖2 + ‖P‖2‖Δ1(x, z, μ)‖2,

x̃T2 Δ2(x, z, μ) ≤ 1

2
‖x̃2‖2 + 1

2
‖Δ2(x, z, μ)‖2.

Further using (40) gives

2ξ̄TPΔ1(x, z, μ) + x̃T2 Δ2(x, z, μ)

≤ 1

4
‖ξ̄‖2 + φ1(x̃1)‖x̃1‖2 + φ2(x̃2)‖x̃2‖2

+ φ3(z)‖z‖2. (43)

where φ1(x̃1) = ‖P‖2φ11(x̃1) + 1
2φ21(x̃2), φ2(x̃2)

= ‖P‖2φ12(x̃2)+ 1
2φ22(x̃2)+ 1

2 , and φ3(z) = ‖P‖2φ13(z)+
1
2φ23(z).

Let α1(x̃1) ≥ ψ̄1(x̃1)+γ31(x̃1)+φ1(x̃1)+ 1
4 , and α3(z) ≥

φ3(z) + 1
4 . Then, substituting (43) in (42) yields

˙̄V ≤ −[
�(x̃2) − ψ̄2(x̃2) − γ1(x̃2) − γ32(x̃2) − φ2(x̃2)

]

×‖x̃2‖2 − 1

4
‖z‖2 − 1

4
‖ξ̄‖2 − 1

4
‖x̃1‖2. (44)

At this place, if we insist on applying gain ρ(x̃2) (defined
in (35)) in (44), the Lyapunov function V̄ may not be decreas-
ing. Thus, we redesign the gain function �(x̃2) as follows:

�(x̃2) = ρ(x̃2) + υ (45)

with υ = ρ̄(x̃2) ≥ γ32(x̃2) + φ2(x̃2),

where ρ(x̃2) is given in (35).
By substituting (45) to (44), we obtain

˙̄V ≤ −1

4
‖z‖2 − 1

4
‖ξ̄‖2 − 1

4
‖x̃1‖2 − 1

2
‖x̃2‖2. (46)

Therefore, since V̄ is positive definite and radially

unbounded, ˙̄V is negative definite, we can conclude that
if �(x̃2) satisfies (45), the closed-loop system (37) is glob-
ally asymptotically stable at the equilibrium point, that is,
limt→∞(z(t), ξ̄ (t), x̃1(t), x̃2(t)) = (0, 0, 0, 0). ��

The controller (36) proposed in Proposition 2 relies on a
prior knowledge of disturbance frequencies σ d . When σ d is
unknown, adaptive control technique can further be incorpo-
rated in our design to solve the problem. To this end, define

{
Ξ(ξ) = blockdiag(ξ1, ξ2, ξ3),

θ = [Γ1(σ
d), Γ2(σ

d), Γ3(σ
d)]T,

(47)

which satisfies

ΞT(ξ)θ = Γ (σ d)ξ. (48)

Now, we are ready to present the main result of this study.

Theorem 1 Thedisturbance rejection andattitude regulation
Problem 1 is solvable by a controller of the following form

⎧⎪⎪⎨
⎪⎪⎩

u = −GT(x1)�(x̃2)x̃2 + ΞT(ξ)θ̂ ,

ξ̇ = Mξ + Nu, x̃2 = x2 + α x̃1, x̃1 = x1 − xd ,

˙̂
θ = −λΞ(ξ)G−1(x1)x̃2,

(49)

where constant α > 0, λ is a symmetric positive definite
matrix,Ξ(ξ) is defined in (47), and �(x̃2) is the same as that
in Proposition 2.

Proof Define a Lyapunov function

U (z, x, θ̃ ) = V̄ (z, x) + 1

2
θ̃Tλ−1θ̃

= V̄1(x̃1) + V2(x̃2, ξ̄ ) + V3(z) + 1

2
θ̃Tλ−1θ̃ ,

(50)

where V̄1, V2, V3, and V̄ are given in (27), (28), (38), and (41),
respectively, and θ̃ = θ̂−θ . By (48), the input transformation
in (24) satisfies ū = u −Γ (σ d)ξ = u −ΞT(ξ)θ̂ +ΞT(ξ)θ̃ .

Following the derivation from (41) to (46), the time deriva-
tive ofU , along the trajectories of the closed-loop system (6)
and (49), satisfies

U̇ = ˙̄V + x̃T2 G
−T(x1)Ξ

T(ξ)θ̃ + θ̃Tλ−1 ˙̃
θ
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≤ −1

4
‖z‖2 − 1

4
‖ξ̄‖2 − 1

4
‖x̃1‖2 − 1

2
‖x̃2‖2. (51)

Since U is positive definite and U̇ is negative semi-
definite, U is bounded for t ≥ 0. Thus, (50) implies that
states z, x, θ̃ are all bounded for t ≥ 0. From (51), the time
derivative of U̇ , along the trajectories of (6) and (49), is
also a function of z, x, θ̃ , and thus is bounded. Therefore,
by applying Barbalat’s lemma [31, pp. 323], we can con-
clude that U̇ tends to 0 as time goes to infinity, which implies
limt→∞(z(t), ξ̄ (t), x̃1(t), x̃2(t)) = (0, 0, 0, 0). ��

In comparison with the current results derived directly
from the conventionalmathematicalmodel for flexible space-
crafts, e.g., [11, 16, 17], a distinguishing feature of the present
study is the transformation to the normal form with spe-
cific properties. To our knowledge, this is the first attempt
toward systematic normal form transformation for flexible
spacecrafts. The advantages of the transformation is that it
is potential to further apply the celebrated nonlinear control
methods, and moreover the theoretical stability analysis can
also be more easily carried out based on the normal form
representation.

Based on the normal form representation, we develop
internal model-based controllers that do not require prior
knowledge of system parameters (including inertia matrix,
coupling matrix, natural frequency matrix, and modal damp-
ing matrix) and disturbances frequencies. In contrast, most
of the aforementioned existing controllers require all or par-
tial system parameters. For example, the robust controller
recently proposed in [16], which also uses an internal model
to make compensation for external disturbances, requires the
exact knowledge of all system parameters and disturbances
frequencies. The sliding mode controller proposed in [11]
requires the knowledge of damping and coupling matrices
to actively suppress the vibration.The output feedback con-
troller proposed in [17] uses all system parameters, and it can
only guarantee practical stability when there are parameter
variations rather than asymptotic stability.

Remark 3 Note that the proposed adaptive controller (49)
belongs to the category of direct adaptive control [32],
because the estimated parameters are those of the controller.
The matrix G(x1) in θ̂ -subsystem is introduced for the pur-
pose of adaptively canceling the nonlinear term. It can be
shifted from the parameter estimation law to the compensa-
tion part in input, as stated in the following result.

Theorem 2 There exists a smooth function �′(·) such that
the disturbance rejection and attitude regulation Problem 1
is solvable by a controller of the following form

⎧⎪⎨
⎪⎩

u = −GT(x1)�′(x̃2)x̃2 + GT(x1)ΞT(ξ)θ̂ ,

ξ̇ = Mξ + Nu, x̃2 = x2 + α x̃1, x̃1 = x1 − xd ,˙̂
θ = −λΞ(ξ)x̃2,

(52)

where constant α > 0, λ is a symmetric positive definite
matrix, and Ξ(ξ) is defined in (47).

The proof of Theorem 2 is the same as the derivation in
the proof of Theorem 1, and thus is omitted here.

Remark 4 We observe that the effect of the modeled har-
monic disturbances (3) has been fully compensated by
controller (49), i.e., disturbance rejection is achieved. Note
that when there are disturbances to be unmodeled amounted
in (1b), this issue is of great interest in practice. In this direc-
tion, we further note that the proposed control law can be
further modified to cope this circumstance. It is not expanded
in the present study.

4 Simulation example

In this section, a numerical example is given to demonstrate
the effectiveness of the proposed control law (49). Adopted
from [17], we consider a flexible spacecraft (1), whose inertia
matrix is given as

J =
⎡
⎣
350 3 4
3 280 10
4 10 190

⎤
⎦ kg m2.

The coupling matrix δ (
√
kgm/s2) between the flexible

appendages and the hub is given by

δ =
⎡
⎣
6.45637 −1.25619 1.11687 1.23637
1.27814 0.91756 2.48901 −2.6581
2.15629 −1.67264 −0.83674 −1.12503

⎤
⎦ .

The natural frequencies in matrix Λ of the flexible
appendages are Λ1 = 0.7681, Λ2 = 1.1038, Λ3 = 1.8733,
Λ4 = 2.5496 rad/s. The damping factors in ζ are ζ1 =
0.0056, ζ2 = 0.0086, ζ3 = 0.013, ζ4 = 0.025. The external
disturbance is

d = 0.1[sin(0.01t), sin(0.02t), sin(0.03t)]T Nm.

The control task is to maneuver the spacecraft from ini-
tial attitude to desired attitude: yaw 30◦, pitch 0◦, roll 45◦.
This desired attitude corresponds to a modified Rodriguez
parameterization xd = [0.1953, 0.0523, 0.1264]T. The ini-
tial attitude and angular velocity of the spacecraft are all zero.

For simulation, we consider the case where all system
parameters are unknown and apply Theorem 1. The internal
model in (49) is constructed with matrices

Mi =
[
0 1

−1 −1.414

]
, Ni =

[
0
1

]
, i = 1, 2, 3,

M = blockdiag(M1, M2, M3),
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Fig. 1 Attitude σ = [σ1, σ2, σ3]T
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Fig. 2 Flexible modes η = [η1, η2, η3, η4]T

N = blockdiag(N1, N2, N3).

We set the other parameters in (49) to

α = 1, λ = 0.001I , �(x̃2) = 300 + 2‖x̃2‖2.

The initial states of internal model and estimated parameters
are all set to zero.

We run the simulation 300s until all states converge. Sim-
ulation results of the closed-loop system are presented in
Figs. 1, 2, 3, 4 and 5. Figure1 shows that the attitude asymp-
totically converges to the desired attitude over time, and
Fig. 2 shows that the states of the flexible dynamics vanishes
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asymptotically as time grows. Figure3 presents the angu-
lar velocity of the spacecraft over time, which also tends to
zero asymptotically. The evolution of estimated parameters
is given in Fig. 4. It can be seen that the values of the esti-
mated parameters do not necessarily converge to their real
values. Figure5 is the plot of control input. Thus, precision
attitude regulation is achieved despite the presence of param-
eter uncertainties and external disturbances, and meanwhile
the vibration of the flexible appendages is suppressed.

5 Conclusion

Wehavepresented an internalmodel based approach for solv-
ing the disturbance rejection and attitude regulation problem
of flexible spacecraft. The proposed controller does not rely
on the knowledge of system parameters and disturbances
frequencies. Both attitude error and vibration of flexible
appendages vanish asymptotically as time grows.
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