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Abstract
Treating plant dynamics as an ideal integrator chain disturbed by the total disturbance is the hallmark of active disturbance
rejection control (ADRC). To interpret its effectiveness and success, to explain why so many vastly different dynamic systems
can be treated in this manner, and to answer why a detailed, accurate, and global mathematical model is unnecessary, is the
target of this paper. Driven by a motivating example, the notions of normality and locality are introduced. Normality shows
that, in ADRC, the plant is normalized to an integrator chain, which is called local nominal model and locally describes the
plant’s frequency response in the neighborhood of the expected gain crossover frequency. Locality interprets why ADRC can
design the controller only with the local information of the plant. With normality and locality, ADRC can be effective and
robust, and obtain operational stability discussed by T. S. Tsien. Then viewing proportional-integral-derivative (PID) control
as a low-frequency approximation of second-order linear ADRC, the above results are extended to PID control. A controller
design framework is proposed to obtain the controller in three steps: (1) choose an integrator chain as the local nominal model
of the plant; (2) select a controller family corresponding to the local nominal model; and (3) tune the controller to guarantee
the gain crossover frequency specification. The second-order linear ADRC and the PID control are two special cases of the
framework.

Keywords Active disturbance rejection control · Normality · Locality · Local nominal model · Bode plot · Operational
stability · Design framework

1 Introduction

Active disturbance rejection control (ADRC), conceived by
Han [1–3] as a general purpose control technology and an
alternative to the industry-dominant proportional-integral-
derivative (PID) control, has developed rapidly in recent
years, in both engineering practice (see, for example, [4–6])
and theoretical studies (see, for example, [7,8]).
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The idea of ADRC can be traced to T. S. Tsien. In Chap.
15 of his epic book titled “Engineering Cybernetics” [9],
Tsien flatly said that the mathematical model of a physical
plant can never be known exactly in practice and should not
be the basis on which to design the controller. Furthermore,
with the example of airplane under icing conditions, Tsien
emphasizes that the control system design must face large,
unpredictable variations of the plant and maintain its oper-
ational stability. Unfortunately, his advice has been largely
ignored in academic studies, where rigor was attained at the
expense of shifting the object of study. The object shifted
from the real physical processes, with all their uncertainties
and imperfections, to a set of mathematical equations that are
assumed to accurately described the dynamics of the plant to
be controlled. The result has been the ever-widening divide
between theory and practicewitnessed by all. The later devel-
opments, such as those in the area of adaptive control [10],
attempt to mediate the discrepancies between the model and
the actual dynamics but offer few tangible improvements.

In China, however, Tsien’s penetrating insight was not
entirely lost. In a survey paper titled “Certain issues in mod-
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ern control theory” and published in 1980 [11], Guan points
out the issue of model dependency in modern control theory
and the problem of disturbance it mostly ignored. He asserts
that the frequency response method favored by engineers is
based on the fundamental principle that the closed-loop sys-
tem behavior largely depends on open-loop characteristics
near the crossover frequency. He further suggests that such
deep engineering insight must be somehow combined with
the theoretical studies of optimality and stability. In essence,
what Guan implies that, for the purpose of feedback design,
open loop dynamics needs to be known only locally, in the
neighborhood of the gain crossover frequency.

Tsien returned to China shortly after the publication of [9]
and never returned to the field of control theory. It was Han
who answered Tsien call in 1989 [12] and flatly called the
modern control theory a theory about model, not necessarily
control. He insists that a physical process should be con-
trolled based on its characteristics local in time and space,
not some mathematical model assumed to be detailed and
accurate the entire time, through all phases of operations. It
would take him the next twenty years to conceive and develop
an epic solution to this challenge, in the form of ADRC.

Key to ADRC, above all, is the proposition that the
physical plants are to be treated as an ideal integrator
chain disturbed by total disturbance. The total disturbance
includes external disturbance and internal disturbance,which
is Tsien’s notion and can be understood here as the lumped
result of the dynamics and uncertainties internal to the plant
and make the plant different from the integrator chain. In
other words, in ADRC, model is redefined as one that
describes the ideal dynamics of the integrator chain, instead
of actual dynamics of a particular physical process.

With an integrator chain and total disturbance, ADRCpro-
vides a framework to solve the control problem. It establishes
an extended state observer (ESO) to estimate the total distur-
bance in real time. Then, the estimation is canceled and the
plant is controlled as an integrator chain. With continuously
estimating and canceling, ADRC forces the plant to behave
like the ideal integrator chain, while the controller design
becomes straightforward.

Even though ADRC has found successful applications in
many fields of engineering practice, its universality has yet to
be established theoretically. To this end, it is shown in [13]
that any linear finite-dimensional controller can be imple-
mented via the linearADRC (LADRC) structure, but this still
left one wondering what makes such structure so prevalence.
What is hidden in ADRC that captured the hidden common-
alities among different fields of control engineering? This
question provides the main motivation for this paper.

To explain the mechanism of ADRC, this paper intro-
duces the notions of normality and locality. Normality refers
to the property of the design methods to normalize those
physical plants as an integrator chain. While locality, as dis-

cussed by Han and Guan, means for the purpose of control
design, the design methods such as ADRC and PID control
can obtain controller mainly with the plant’s local informa-
tion. That is, the dynamics of the physical plants only need
to be described as an integrator chain near the expected gain
crossover frequency. Furthermore, it illustrates with exam-
ples that operational stability discussed by Tsien is a result
of normality and locality.

The rest of this paper is organized as follows. Section2
revisits a motivating example and introduces the second-
order LADRC. The example is proposed by [14] and sparks
persistent interest in frequency response and robustness
research of ADRC [15–21]. Section3 proposes the concept
of local nominal model and discusses the notions of locality,
normality, and operational stability. Section4 illustrates the
locally shaping ability of the second-order LADRC and the
PID control. Section5 establish the locality of the second-
order LADRC and the PID control, and proposes a new
design framework. The paper ends with a few concluding
remarks in Sect. 6.

2 Themotivating example

In this section, we briefly revisit the example in [14,16],
which is typically used in robust control research of ADRC.
Using it as an motivating example, we introduce the second-
order LADRC and illustrate how it guarantees stability and
robustness for the plant with parametric uncertainty.

2.1 The plant

Consider the plant

{
ẋ1 = x2,

ẋ2 = −a2x1 − a1x2 + b(u + w),
(1)

y = x1, (2)

where x1, x2 are the state, u, y, and w are, respectively, the
input, output, and external disturbance. The parameter b =
206.25, while a1, a2 ≥ 0 but uncertain.

Obviously, the plant (1)–(2) has transfer function

P(s) = Y (s)

U (s) + W (s)
= b

s2 + a1s + a2
. (3)

2.2 Second-order LADRC and its transfer function

Nowwe introduce the second-order LADRCand control (1)–
(2) with it. The second-order ADRC views the plant as

ÿ = b0u + f , (4)

1 3



On the notions of normality, locality, and operational... 99

where b0 is a tuning parameter, while f is called as total
disturbance. For (1)–(2), we have

f = −a2x1 − a1x2 + (b − b0)u + bw.

Introducing extended state x3 = f , equation (4) is written
as

⎧⎪⎨
⎪⎩

ẋ1 = x2,

ẋ2 = x3 + b0u,

ẋ3 = ḟ ,

y = x1.

Then a linear ESO (LESO) is established as

⎧⎨
⎩

˙̂x1 = β1(y − x̂1) + x̂2,˙̂x2 = β2(y − x̂1) + x̂3 + b0u,
˙̂x3 = β3(y − x̂1),

(5)

where β1, β2, β3 are tuning parameters. And the controller
is

u = 1

b0
[l2(r − x̂1) − l1 x̂2 − x̂3], (6)

where l1, l2 are the tuning parameters. LESO (5) and con-
troller (6) are the second-order LADRC.

LADRC (5)–(6) has six tuning parameters. To sim-
plify, reference [14,16]suggest to generate the parameters
β1, β2, β3 and l1, l2 with

β1 = 3ωo, β2 = 3ω2
o, β3 = ω3

o, (7)

l1 = 2ωo, l2 = ω2
o, (8)

where ωo is a parameter called as ESO bandwidth. Thus, the
LADRC has only two parameters ωo and b0.

Substituting (6) into (5) and with (7)–(8), we have

⎧⎨
⎩

˙̂x1 = −3ωox̂1 + x̂2 + 3ωo y,
˙̂x2 = −4ω2

o x̂1 − 2ωox̂2 + 3ω2
o y + ω2

or ,
˙̂x3 = −ω3

o x̂1 + ω3
o y,

(9)

Viewing y and r as two inputs of (9), while u in (6) as the
output, we have the transfer functions

U (S)

Y (s)
= − ω3

o(10s2 + 5ωos + ω2
o)

b0s(s2 + 5ωos + 10ω2
o)

,

U (S)

R(s)
= ω2

o(s + ωo)
3

b0s(s2 + 5ωos + 10ω2
o)

,

Fig. 1 Block diagram of the second-order LADRC system

where U (s), Y (s), and R(s) are respectively the Laplace
transform of u, y, and r . Let

C(s) = ω3
o(10s2 + 5ωos + ω2

o)

b0s(s2 + 5ωos + 10ω2
o)

, (10)

C1(s) = (s + ωo)
3

ωo(10s2 + 5ωos + ω2
o)

, (11)

the second-order LADRC has equation

U (s) = C(s)[C1(s)R(s) − Y (s)]. (12)

Equation (12) describes how to generate u with r and y,
while (3) describes how the plant generates y with u and
w. With them, the second-order LADRC system has a block
diagram shown in Fig. 1.

Remark 1 Note here we say the second-order LADRC
“views” the plant as (4). It emphasizes in (4), the order two
and the parameter b0 are selected by the engineer. For the
second-order LADRC, the plant (1)–(2) is a special case
whose order and relative degree are both two. Such a plant is
suitable to introduce the second-order LADRC because the
total disturbance can be clearly described, while it is well
known that the second-order LADRC can be used for the
more complicated plants.

Remark 2 Fig. 1 illustrates an advantage of viewing the plant
as (4). Suppose we have a plant whose transfer function is
P(s). By viewing it as (4), we obtain LADRC (5)–(6) and
Fig. 1. Note in the procedure we do not use the plant’s infor-
mation such as order, relative degree, and time-delay. That
is, no matter what the plant’s order, relative degree, and time-
delay are, it can be controlled by the second-order LADRC,
while the stability and performance of the closed-loop system
can be analyzed with Fig. 1.

2.3 Stability and robustness

With Fig. 1, the stability and robustness of the LADRC sys-
tem depends on the closed-loop made of C(s) and P(s).
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Fig. 2 Bode plots of P(s)C(s) and P0(s)C(s)

In LADRC (5)–(8), let b0 = 206.25, ωo = 100. For the
following five typical pairs:

(a1, a2) ∈ {(3.085, 0), (3.085, 10), (3.085, 100),
(1, 0), (100, 0)}, (13)

the Bode plots of P(s)C(s) are drawn in Fig. 2. Let

P0(s) = b

s2
.

the Bode plot of P0(s)C(s) is also drawn. Obviously, all the
five pairs are stable. When

(a1, a2)

∈ {(3.085, 0), (3.085, 10), (3.085, 100), (1, 0)}, (14)

the gain crossover frequency is near 100 rad/s, the phasemar-
gins is near 31.9◦. For the pair (a1, a2) = (100, 0), the
gain crossover frequency is 53.2 rad/s, while phase margin
is 81.2◦.

Figure2 shows the second-order LADRC is robust subject
to the plant’s significant variation. Such robustness is also
reported by [15], where the plant may be unstable. In the rest
of this paper, we interpret the robustness with the frequency
response method.

3 Normality, locality, and operational
stability

In this section, we introduce the concept of the local nominal
model and show integrator chain can be widely used as a
local nominal model. Then we discuss normality, locality,
and operational stability of LADRC.

3.1 Local nominal model

Definition 1 (Local nominalmodel) Supposewe have a plant
P(s) while P0(s) is another transfer function. P0(s) is said a
local nominal model of P(s) at frequency ωγ ≥ 0, if when
ω ≈ ωγ , we have P( jω) ≈ P0( jω).

The purpose of a local nominal model is to describe the
plant at ωγ with a simple model, where ωγ is usually the
expected gain crossover frequency of the loop transfer func-
tion to design. Thus, because of its simplicity, the integrator
chain

P0(s) = b

sn
(15)

is a suitable candidate for a local nominal model. In this
paper, we only use (15) as local nominal model.

When (15) is a local nominal model at ωγ , the plant’s
frequency response is similar to (15) in the band nearωγ . Or,
intuitively, the plant can be viewed as a distorted integrator
chain but the distortion is ignorable near ωγ . Thus, a simple
approach to check if (15) is a local nominal model is to draw
the plant’s Bode diagram. Note (15) has

|P0( jω)| = b

ωn
,

� P0( jω) = −n · 90◦.

If nearωγ , the slope of themagnitude-frequency plot approx-
imates −n while the phase approximates −n ·90◦, then (15)
is a local nominal model at ωγ .

In ADRC, local nominal model (15) corresponds to Han
canonical form

dn

dtn
y = b0u + f , (16)

where f is total disturbance. That is, when the plant is written
as (16), the local nominal model (15) is implicitly used.

The following are two special cases of n = 2, where
integrator chain (15) becomes double integrator

P0(s) = b

s2
. (17)
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Fig. 3 Bode plots of P(s) and P0(s) in Example 1

In this paper, we mainly focus on and illustrate the special
case of n = 2, while the results can be generalized to the
integrator chains with other orders.

Example 1 Consider the plant in Sect. 2.1. With (3), it has
frequency response

P(jω) = b

(jω)2 + a1(jω) + a2
.

When ω → +∞, the term (jω)2 is dominant in the denomi-
nator so that

P(jω) ≈ b

(jω)2
= P0(jω).

Thus, when ω is large enough, the frequency response of (3)
approximates that of double integrator (17). For the five pairs
in (13), the Bode plots of (3) are drawn in Fig. 3. With (17)
and b = 206.25, Bode plot of P0(s) is also drawn with black
line. Obviously, all six plots are close in high-frequency.
At frequency ωγ = 100, the plants with the four pairs in
(14) have (17) as a local nominal model. Even for the pair
(a1, a2) = (100, 0), double integrator (17) can be viewed as
a local nominal model.

Example 2 Consider the plant

P1(s) = 1

(s + 1)3
, (18)

Fig. 4 Bode plots of P(s) and P0(s) in Example 2

P2(s) = 0.40

(s + 0.1)(s + 0.3)
e−0.18s, (19)

P3(s) = 0.36

s(s − 0.2)
, (20)

P4(s) = 0.0191(20 − s)

s(s + 0.5)
, (21)

and let

P0(s) = 0.38

s2
. (22)

The Bode plots of (18)–(22) are shown in Fig. 4. It is
shown that the plant (22) is a local nominal model of plant
(18)–(21) respectively at ω1 = 1.7, ω2 = 2.0, ω2 = 6.0,
and ω4 = 3.0. It means if we control P1(s), P2(s), P3(s),
and P4(s) and specify their loop transfer functions’ gain
crossover frequency respectively at ω1 = 1.7, ω2 = 2.0,
ω2 = 6.0, and ω4 = 3.0, we can use (22) as their local
nominal model.

Remark 3 Definition 1 uses “≈” instead of inequality con-
straint. The reasons are the following two. First, for engi-
neering practice, “≈” is clear enough and used in classic
textbooks such as [22]; second, we have not found a suit-
able strict inequality constraint. Empirically and with Bode
plot, we suggest that at ωγ , if the slope of the magnitude-
frequency plot is in (−n − 0.5,−n + 0.5) and the phase is
in (−n · 90◦ − 15◦,−n · 90◦ + 45◦], then (15) can be used
as a local nominal model.

Remark 4 When (15) is a local nominal model, its parameter
b is not unique. For example, in Example 1, if we let b = 200,
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the plants with pairs of (13) all have the local nominal model
(17) at frequency ωγ = 100.

Remark 5 Example 1 can be generalized to that for all sta-
ble minimum-phase plants with relative degree n, integrator
chain (15) is a local nominal model at a large enough fre-
quency. This property is why ADRC usually chooses the
plant’s relative degree as its order.

Remark 6 Note (18)–(21) are four typical plants. The plant
(18) is a stable and minimal-phase plant whose order and
relative degree are not two. The plant (19) has time-delay.
The plant (20) has an unstable zero, while (21) is unstable.
Example 2 shows that the local nominal model provides a
unified approach to deal with them.

3.2 Normality

Now we discuss normality. Suppose we have a method to
design controller. We say the method has normality if it first
normalizes the plant to a local nominal model. For example,
with Example 1 and Sect. 2, we conclude the second-order
LADRC has normality because it normalizes the plant to
double integrator (17) first. PID control also has normality
and we illustrate it later.

Normality partly explains why so many vastly different
plants in various fields of engineering can be treated as Han
canonical form (4). The reason is, these plants can have local
nominalmodel (17) at the expected gain crossover frequency.
Thus, the second-order LADRC normalize them to (17) and
control them.

Normality has two advantages. First, it simplifies the con-
troller design to obtain a controller for integrator chain (15),
which is relatively easy to control. Second, it guarantees the
robustness of the method. It means several plants, maybe
quite different, can share a common local nominal model
and a common controller. That is, the method can obtain a
controller with perfect robustness.

3.3 Locality

Locality is also a property of the design method. We say the
method has locality if it is mainly based on local information
to design and can guarantee stability when used for the plant.
Both the second-order LADRC and the PID control have
locality. They design the controller with the local nominal
model (17), which contains the local information of the plant
around the expected gain cross-over frequency.

Normality and locality are the reason why the second-
order LADRC and the PID control can be widely used. As
shown in Example 1 and Example 2, double integrator (17)
can be a local nominal model for a huge class of plants,
including the plants with time-delay, unstable poles, and
unstable zeros. with normality and locality, the second-order

LADRC and the PID control are widely applicable for these
plants.

Locality is a property to be proven. In Sects. 4 and 5, we
prove the locality of the second-order LADRC and the PID
control.

3.4 Operation stability

Operational stability is a concept Tsien proposes in Chapter
15 of [9]. It means the control system can stably work when
the plant has large unpredictable variations. It implies perfect
robustness and seems difficult.

Normality and locality can guarantee operational stability.
With normality, the method may normalize two significantly
different plants to the same local nominal model. With local-
ity, the two plants obtain the same controller. If the two plants
are respectively the plant before and after variation, opera-
tional stability is realized.

Example 3 Consider the plant (1)–(2) controlled by (5)–(8).
Suppose at beginning, (a1, a2) = (1, 0). Then at t = 0.3s,
the plant suddenly changes and (a1, a2) = (3.085, 100). It
is a large variation because the plant loses its integrator. But
with Fig. 2, we conclude the stability of the LADRC system
is maintained, even the gain crossover frequency and phase
margin vary little.

The time-domain simulation is shown in Figs. 5 and 6. The
effect of the suddenly change on the state and control signals
is indeed slight. That is, the system is operationally stable.

Fig. 5 The state and control signals of Example 3

1 3



On the notions of normality, locality, and operational... 103

Fig. 6 The state and control signals of Example 3, around the variation
moment t = 0.3

4 Locally loop shaping

This section analyzes the locally loop-shaping ability of the
second-order LADRCand the PID control, which is the foun-
dation of the locality of the two approaches. Here locally
loop shaping means to shape the loop transfer function’s fre-
quency response mainly with local information. We analyze
the second-order LADRC first, then extend the results to the
PID control.

4.1 Second-order LADRC

For the second-order LADRC (5)–(8), its controller (10) can
be re-written as

C(s) = ω3
o(10s2 + 5ωos + ω2

o)

b0s(s2 + 5ωos + 10ω2
o)

= ω2
o

b0
·

10 s2

ω2
o

+ 5 s
ωo

+ 1

s
ωo

(
s2

ω2
o

+ 5 s
ωo

+ 10
) .

It has two terms. The first term ω2
o/b0 is the gain, while the

second term is a function of s/ωo and can compensate phase.
The Bode plot of b0C(s)/ω2

o is drawn in Fig. 7, where
the red line is the approximation of the magnitude plot. It has
twobreak frequencies,ωo/

√
10 and

√
10ωo,whichdivide the

Bode plot of C(s) into three parts. The first is low frequency
ω < ωo/

√
10, where the magnitude descends with a slope

approximating−1, while the phase approximates−90◦. The
second is middle frequency ωo/

√
10 < ω <

√
10ωo, where

the magnitude increases with a slope approximating +1,
while the phase increases then descends with a peak up to

Fig. 7 Bode plot of b0C(s)/ω2
o

31.9◦. The third is high frequency ω >
√
10ωo, where the

magnitude descends with a slope approximating −1, while
the phase approximates −90◦.

Note that in low and high frequency, the phase of C(s)
is almost fixed. Only in middle frequency, the phase can be
adjusted in a wide range. Or, only in middle frequency, by
tuning ωo and b0, C(s) can provide phase and gain compen-
sation freely.

Because of its frequency response, C(s) has a wonderful
ability of locally loop shaping. Suppose P(s) is the plant and
consider the loop transfer function

L(s) = P(s)C(s).

With Fig. 7, we conclude that in low frequency |L(jω)| is
enlarged, while large |L(jω)| is helpful to guarantee stability
and reject the low-frequency external disturbance; Inmiddle-
frequency, the slope of |L(jω)| and � L(jω) are both adjusted
to guarantee enough stability margin; In high frequency,
|L(jω)| decreases quickly enough to be robust subject to
unmodeled dynamics and filter measurement noise.

Furthermore, we have the following theorem.

Theorem 1 If double integrator (17) is controlled by LADRC
(5)–(8) with b0 = b, then the system is stable. And the loop
transfer function P0(s)C(s) has gain crossover frequency ωo

and phase margin 31.9◦, while the magnitude plot has slope
−1 at ωo.

Proof Let double integrator (17) be the plant in Fig. 1. The
LADRC system’s stability depends on the loop transfer func-
tion

P0(s)C(s) = ω3
o(10s2 + 5ωos + ω2

o)

s3(s2 + 5ωos + 10ω2
o)
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Fig. 8 Bode diagram of (23)

=
10

(
s

ωo

)2

+ 5
s

ωo
+ 1

(
s

ωo
)3

[(
s

ωo

)2

+ 5
s

ωo
+ 10

] , (23)

which is a function of
s

ωo
and has |P0(jωo)C(jωo)| = 1.

Furthermore,

� P0(jωo)C(jωo)

= −180◦ + arctan

(
9

5

)
− arctan

(
5

9

)
= −148.1◦.

Drawing the Bode diagram of P0(s)C(s) in Fig. 8, we con-
clude that the system is stable and P0(s)C(s) has unique gain
crossover frequency. Thus, the gain crossover frequency is
ωo, while the phase margin is 31.9◦. And it is easy to verify
that the magnitude plot has slope −1 at ωo. 
�

Theorem 1 and Fig. 8 establish a connection between dou-
ble integrator (17) and LADRC (5)–(8). When b0 = b, the
controller (10) and the double integrator (17) make an ideal
controller-plant pair. The transfer function P0(jωo)C(jωo)

has an ideal shape. Especially, its gain crossover frequency
is exactly the second tuning parameterωo, which can be arbi-
trarily tuned.

4.2 From second-order LADRC to PID control

Now we re-write (10) as

C(s) = ω2
o

b0
·

10 s2

ω2
o

+ 5 s
ωo

+ 1

s
ωo

(
s2

ω2
o

+ 5 s
ωo

+ 10
)

= ω2
o

10b0

(
5 + 1

s
ωo

+ 10
s

ωo

)
· 10

s2

ω2
o

+ 5 s
ωo

+ 10
.

Ignoring the term

10
s2

ω2
o

+ 5 s
ωo

+ 10
(24)

and defining

K P = ω2
o

2b0
, TI = 5

ωo
, TD = 2

ωo
,

C(s) can be simplified as a PID controller

CPID(s) = ω2
o

10b0

(
5 + ωo

s
+ 10

s

ωo

)

= K P

(
1 + 1

TI s
+ TDs

)
.

(25)

Similarly, writing the pre-filter C1(s) as

C1(s) = ω2
o

10s2 + 5ωos + ω2
o

· (s + ωo)
3

ω3
o

.

and ignoring the term

(s + ωo)
3

ω3
o

, (26)

C1(s) can be simplified as

Fr (s) = ω2
o

10s2 + 5ωos + ω2
o
. (27)

Replacing C(s) and C1(s) respectively with CPID(s) and
Fr (s), we obtain the block diagram shown in Fig. 9.

Remark 7 If further ignoring the term ω2
o

10 s2+5ωos+ω2
o
of Fr (s),

i. e., Fr (s) = 1, the PID control in Fig. 9 becomes a classical
unity feedback PID control.

4.3 PID control

Note both (25) and (27) have two tuning parameters b0 and
ωo, which are the two tuning parameters of the second-order
LADRC. The Bode plots of b0C(s)/ω2

o and b0CPID(s)/ω2
o

Fig. 9 Block diagram of the PID control
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Fig. 10 Bode plots of b0C(s)/ω2
o and b0CPID(s)/ω2

o

Fig. 11 Bode plots of C1(s) and Fr (s)

are draw in Fig. 10, while the Bode plots of C1(s) and Fr (s)
are drawn in Fig. 11. Since (24) and (26) have unity gain
in low frequency, the two pairs are indeed close in low fre-
quency. Note the phase plot of b0CPID(s)/ω2

o illustrates the
phase compensation is mainly in middle frequency around
ωo. In low and high frequency, CPID(s) has phase respec-
tively approximating −90◦ and 90◦.

Similar to the second-order LADRC, PID control has the
following theorems.

Theorem 2 Suppose double integrator (17) is controlled in
Fig 9 as the plant. Then, with

b0 =
√
106

10
b, (28)

Fig. 12 Bode plot of P0(s)CPID(s)

the system is stable, while the loop transfer function P0(s)CPID(s)
has gain crossover frequency ωo and phase margin 60.9◦,
and the magnitude plot’s slope approximates −1 at ωo.

Proof When (17) is controlled by CPID(s), the loop transfer
function is

P0(s)CPID(s) = b

s2
· ω2

o

10
√
106
10 b

(
5 + ωo

s
+ 10

s

ωo

)

= ω2
o√

106s2

(
5 + ωo

s
+ 10

s

ωo

)
. (29)

It is a function of
s

ωo
and has |P0(jωo)CPID(jωo)| = 1,

� P0(jωo)CPID(jωo) = −119.1◦. Drawing the Bode diagram
of P0(s)CPID(s) in Fig. 12,we conclude that the system is sta-
ble and P0(s)CPID(s) has unique gain crossover frequency.
Thus, the gain crossover frequency is ωo, while the phase
margin is 60.9◦. And it is easy to verify that the magnitude
plot’s slope approximates −1 at ωo. 
�

5 The ADRC inspired design framework

In this section, we establish the locality of the second-order
LADRC and the PID control. Then a design framework
inspired by ADRC is proposed by generalization.

5.1 Locality as shown in second-order ADRC

Now we consider to control a plant P(s) with the second-
order LADRC. We assume

A1 the plant P(s) has a local nominal model (17) at fre-
quency ωγ > 0 and has no differentiator.
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Theorem 3 Suppose A1 holds. If P(s) is controlled by
LADRC (5)–(8) with

b0 = b, ωo = ωγ , (30)

then there exists ωcut ≈ ωγ such that

|P(jωcut)C(jωcut)| = 1, (31)
� (P(jωcut)C(jωcut)) ≈ −148.1◦. (32)

Proof Consider the loop transfer function P(s)C(s). Since
P(s) has no differentiator, it does not take place unstable
pole-zero cancelation betweenC(s) and P(s). Because P(s)
has a local nominal model (17) at ωγ , we conclude near ωγ ,
P(jω) is continuous and has similar value and slope with
P0(jω). Then we have

P(jω)C(jω) ≈ P0(jω)C(jω), ω ≈ ωγ . (33)

Because of Theorem 1,

|P(jωγ )C(jωγ )| ≈ 1, (34)
� P(jωγ )C(jωγ ) ≈ −148.1◦, (35)

and |P(jωγ )C(jωγ )| has slope about −1. Thus, we conclude
that |P(jω)C(jω)| passes downstairs 0dB once near ωγ . Let
the passing frequency be ωcut, we have (31) and (32). 
�

Theorem 3 establishes the locality of the second-order
LADRC,whichmeans the second-order LADRC (5)–(8) can
be tuned based on local nominal model (17) and be used to
control the plant P(s). Suppose P(s) is a typical engineer-
ing plant controlled by (5)–(8). The Bode plots of P(s)C(s)
and P0(s)C(s) are drawn in Fig. 13. Theorem 3 guarantees
in the band near the expected gain crossover frequency ωγ ,
P(s)C(s) is close to P0(s)C(s). There exists ωcut satisfy-
ing (31) and (32). Recalling Fig. 7, in low frequency we
have |P(jω)C(jω)| > 1, while in high frequency we have
|P(jω)C(jω)| < 1. Thus, |P(jω)C(jω)| only passes 0dB
once at ωcut, the LADRC system is stable and has phase
margin about 31.9◦.

Theorem 3 should be used as a condition to try the second-
order LADRC.When the plant satisfies A1, it is worth trying
the second-order LADRC and has a great possibility to suc-
ceed.

Example 4 Consider the plant (18) in Example 2. Controlling
it with LADRC (5)–(8), where b0 = 0.38, ωo = 1.7, the
Bode plots of P(s)C(s) and P0(s)C(s) are what drawn in
Fig. 13. It is easy to conclude that the LADRC stabilizes
P(s), although the Bode plots of P(s) and P0(s) are quite
different in low and high frequency.

Fig. 13 Typical Bode plots of P(s)C(s) and P0(s)C(s)

Example 5 Re-consider the plant in Sect. 2.1. With Exam-
ple 1 and Theorem 3, we conclude when (a1, a2) satisfying
(14), the gain crossover frequency is near 100rad/s, while
the phase margin is near 31.9◦. For the pair of (a1, a2) =
(100, 0), the phasemargin is significantly larger. That is what
illustrated in Fig. 2.

Remark 8 Theorem 3 enlarges the scope to use the second-
order LADRC. For example, the plants in Example 2 all can
be controlled by the second-order LADRC.

Remark 9 With Theorem 3, ESO is an unnecessary high-gain
in LADRC. High-gain means in ESO (5), the parameters
β1, β2, β3 are large enough. Or, when the three parameters
are generated with (7), ωo is large enough. In the existing
ADRC literature, ESO is usually high-gain to guarantee the
stability. But high-gain ESO is difficult to realize in practice.
Theorem 3 proves that ωo = ωγ is enough to guarantee
stability, thus ESO is unnecessary high-gain.

5.2 Locality of PID control

Similar with Theorem 3, we have the following theorem,
which establishes the locality for and is a trying condition of
PID control.

Theorem 4 Suppose the plant P(s) satisfies A1 and is con-
trolled in Fig 9 as the plant. Then, with

b0 =
√
106

10
b, ωo = ωγ , (36)
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then there exists ωcut ≈ ωγ such that

|P(jωcut)C(jωcut)| = 1, (37)
� (P(jωcut)C(jωcut)) ≈ −119.1◦. (38)

Proof The proof is similar to the proof of Theorem 3. We
consider the loop transfer function P(s)CPID(s). Since P(s)
has no differentiator, it does not take place unstable pole-zero
cancelation between CPID(s) and P(s). And we have

P(jω)CPID(jω) ≈ P0(jω)CPID(jω), ω ≈ ωγ . (39)

That is, in Bode diagram, the plot of P(s)CPID(s) is close to
that of P0(s)CPID(s). Thus,

|P(jωγ )CPID(jωγ )| ≈ 1, (40)
� P(jωγ )CPID(jωγ ) ≈ −119.1◦, (41)

and |P(jωγ )CPID(jωγ )| has slope about −1. Because the
Bode plot is continuous, we conclude that |P(jω)CPID(jω)|
passes downstairs 0dB once near ωγ . Let the passing fre-
quency be ωcut, we have (37) and (38). 
�
Example 6 Consider the plant in Example 1. Let b = 206.25,
ωγ = 100, and generate PID control with (36). The Bode
plots of P(s)CPID(s) for the five typical pairs are drawn in
Fig. 14, while that of P0(s)CPID(s) is also drawn. All five
pairs are stable. For the four pairs of (14), the gain crossover
frequency approximateωγ and phasemargins are near 60.9◦.
While the pair (a1, a2) = (100, 0) has a phasemargin greater
than 90◦.

Remark 10 Theorem 4 clarifies when the differentiator (D)
term is necessary.When the plant has the local nominalmodel
(17) at the expected gain crossover frequency ωγ , its phase
approximates −180◦ there. In this situation, proportional-
integral (PI) control can not obtain enough phase margin and
D-term is necessary.

Remark 11 Theorem 4 implies the normality of PID control.
With A1, PID control can be viewed as to normalize the plant
to double integrator (17) first.

Remark 12 Theorem 4 can be used as a new tuning approach
for PID control. It has only two tuning parameters and is
similar with self-coupling PID in [24].

5.3 The design framework

The design framework is a generalization of the results of
the second-order LADRC and the PID control. It obtains the
controller in three steps.

Step 1 To establish a local nominal model (15) at the
expected a gain crossover frequency ωγ . In practice, such a

Fig. 14 Bode plots of P(s)CPID(s) and P0(s)CPID(s) in Example 6

ωγ is usually given in the specification and by experienced
engineers. Thus, complicated dynamics such as resonant
peak are carefully avoid so that (15) can be a local nomi-
nal model and well describe the plant near ωγ .

Step 2 To choose the corresponding controller based on
local nominal model (15). For example, when n = 1 in (15),
the first-order LADRC and the PI control are candidates;
When n = 2, the second-order LADRC and the PID control
are candidates; When n = 3, the third-order LADRC and the
PIDD2 control are candidates.

Step 3 To generate the controller’s parameters. With
these parameters, the controller provide gain and phase com-
pensation at ωγ exactly to local nominal model (15), and
approximately to the plant. For LADRC, if ωc = ωo = ωγ

can not meet the phase margin specification, let α > 1 be a
tuning parameter and let

ωc = ωγ

α
, ωo = αωγ , (42)

then generate the parameters. For example, for the second-
order LADRC, the parameters can be tuned with

β1 = 3ωo, β2 = 3ω2
o, β3 = ω3

o,

l1 = 2ωc, l2 = ω2
c .

By increasing α, the controller C(s) can provide enough
phase margin compensation at ωγ . Then to tune b0 to guar-
antee ωγ is exactly the gain crossover frequency of the
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Fig. 15 Bode plots of P2(s)C(s) in Example 7

closed-loop. The details of tuning can be found in [25]. In
this way, the controller can guarantee enough phase margin.

With the three steps, most plants can be controlled with
enough phasemargin, while to check stability and robustness
is necessary in practice.

The following is an example to illustrate the design frame-
work.

Example 7 Suppose to control the plant P2(s) in (19) with
LADRC, the gain crossover frequency is specified as 2rad/s
with phase margin 45◦. Step 1, with Example 2, the local
nominal model is (22). Step 2, the second-order LADRC is
selected. Step 3, since 45◦ is obviously larger than 31.9◦,
we use α = 4 in (42) and tune b0 to 0.4479. The Bode
diagram of P2(s)C(s) is drawn in Fig. 15. It indeed has gain
crossover frequency 2rad/s and phase margin 45◦. And the
step response of the LADRC system is drawn in Fig. 16.

Remark 13 The controllers in Step 2 all have an integrator.
If the integrator is not allowed because of the plant’s differ-
entiator or the type number specification, how to choose the
candidate controllers is an open problem. Some preliminary
work can be found in [26].

6 Conclusions

This paper showcases an ADRC-inspired design framework,
combining insights from Tsien, Guan, and Han to justify
and explain its inner workings. This framework rests on the
notion of normality and locality as summarized below:

1. Normality. A large class of physical plants can be nor-
malized in the form of an integrator chain, on which the
controller is to be designed with ease and effectiveness. In

Fig. 16 Step response of Example 7

ADRC design, once the order of the plant is determined, the
plant is implicitly normalized as an integrator chain with the
same order.

2. Locality. It is shown that the second-order LADRC
and the PID control operate with locality. That is, these two
approaches can obtain their controllers mainly with the local
nominal model of the plant, while these controllers simulta-
neously compensate for the gain and phase freely only in the
middle frequency, the neighborhood of the crossover.

3. A three-step design procedure is established: 1) estab-
lish the plant’s local nominal model; 2) choose the corre-
sponding controller, and 3) loop-shaping gain and phase in
middle-frequency range. The second-order LADRC and the
PID control are interpreted as two special examples in the
new framework based on the same local nominal model of
(17), leading to insight as to why the two control approaches
have been used widely in practice.

4. Operational stability. Because the control design is not
premised on the detailed and global model, the resulting
closed-loop system proves to be robust in the presence of
large variations in plant dynamics, as long as they do not
alter the plant dynamics in the middle-frequency range. It is
in this sense that the operational stability as defined by Tsien
is attained.
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