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Abstract
This work studies the trajectory tracking control for unmanned aerial helicopter (UAH) system under both matched dis-
turbance and mismatched ones. Initially, to tackle the strong coupling, an input–output feedback linearization method is
utilized to simplify the nonlinear UAH system. Secondly, a set of finite-time disturbance observers (FTDOs) are proposed to
estimate mismatched disturbances with their successive derivatives, which are utilized to design the feedforward controller
via backstepping. Thirdly, as for matched disturbance, by defining the disturbance characterization index (DCI) to determine
whether the disturbance is harmful or not for the UAH system, a feedback controller is proposed and a sufficient condition is
established to ensure the convergence of the tracking error. Finally, some numerical simulations and comparisons illustrate
the validity and advantages of our control scheme.

Keywords Unmanned aerial helicopter (UAH) · Trajectory tracking control · Finite-time disturbance observer (FTDO) ·
Backstepping control · Disturbance characterization index (DCI)

1 Introduction

In comparison with fixed-wing unmanned aircrafts, the
UAHs have many advantages such as hovering, vertical take-
off and landing, ultra-low-speed flight, ultra-low-altitude
flight, etc., which can perform many flying missions in com-
plex environments or narrow spaces. Then, in recent years,
different scales of UAHs have been applied to practical fields
including military attacks, photography, and investigation,
which leads to the increasing demands for the UAHs. Yet, it
is worth noting that owing to the characteristics of the UAHs,
they are always sensitive to outside disturbances, which may
lead to poor control performance or even aircraft crash.
Therefore, it is significant to improve the anti-disturbance
capability for the UAHs.
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Currently, as for different UAHs, most existent control
schemes were mainly established based on linear UAH sys-
tems or nonlinear ones. As for linear UAH systems, these
proposed techniques include PID control [1,2], LQR con-
trol [3], and H∞ control [4,5], in which the controllers were
mainly designed based on the approximate linearization of
nonlinear UAH systems. Yet, when the system state deviates
from the set operating point, the linearized model cannot
describe the accurate form and the control algorithms in
[1–5] are not available, which might degrade control perfor-
mance or even induce instability. Recently, some methods
have been proposed to design the controllers for nonlinear
UAH systems [6–13]. For instance, in [6–10], some pre-
scribed performance-based robust adaptive nonlinear control
schemes were developed for the UAH systems subject to out-
put constraints. In [11–13], some sliding mode controllers
were presented to tackle the position control for nonlinear
UAH systems, in which parameter uncertainties and external
disturbances were involved. Then, in this work, the nonlin-
ear UAH system will be utilized to accomplish the controller
design, which may exhibit theoretic and practical meanings.

In recent years, the feedback linearization method has
been utilized to simplify the nonlinear systems [14–17].
Especially, owing to the coupling effects between transla-
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tional dynamics and rotational dynamics, the UAH system
always produces the unstable zero-dynamic subsystems.
Then, it is always required to transform the UAH dynamic
model into a minimum phase system by ignoring the body
force. In [16,17], by selecting the positions and yaw angle
as system outputs, an approximate feedback linearization
was utilized to simplify the UAH system. In [18], the feed-
back linearization of small-scale UAH systemwas proposed,
and a tracking controller for position and yaw angle was
designed. By comparing with traditional control, the feed-
back linearization does not depend on the solution or stability
of the addressed system. On the other hand, in 1990s, the
backstepping control was proposed to tackle the nonlinear
control systems [19]. Then, as for theUAH systems, in [20], a
backstepping controller based nonlinearmodelwas proposed
to complete the automatic hovering and maneuvering flight.
In [21], a flight controller based an integral backstepping
control was designed for the small-scale UAH. Especially,
in [22–25], the combinations of the backstepping technique
and performance function-based error transformation were
employed to achieve the bounded transience and steady-state
tracking errors. Yet, based on the above-mentioned literature,
it worth noting that although the combination of the feedback
linearization and backstepping control can facilitate the con-
troller design, it still has not been utilized to investigate the
tracking control for nonlinear UAH system, which consti-
tutes the focus of this presented work.

Meanwhile, the UAHs might be unavoidably affected by
outside disturbances such as the winds and modelling error.
In recent years, the anti-disturbance control has become a
heated topic in the control community and a large number
of results have been reported [26–28]. Based on these exist-
ingmethods, the disturbanceobserver-based control (DOBC)
has been verified to be effective in tackling the disturbed
UAH systems [29–34]. Normally, according to channel and
mechanism, the disturbances are divided into matched dis-
turbance and mismatched one. For matched disturbance, its
estimation can be directly incorporated into the compound
control strategy, that is to say, the controller design includes
both feedback control and feedforward one [28,29]. In [28],
by designing the disturbance observer, the anti-saturation
control for nonlinear systems was studied and the matched
disturbance could be compensated directly. Yet, the model
perturbation and unmodeled dynamics in a UMH system
can be regarded as mismatched disturbance since they are
difficult to be completely suppressed via a control channel.
For instance, [30,31] utilized an improved DOBC method to
suppress mismatched disturbances, and [32,33] exploited the
fixed-time slidingmodeDOBC to tackle the hover operations
of the UAHs. It is worth noting that most DOBC methods
rejected the disturbances thorugh output channels using the
compensation, which means that the disturbances need to
be eliminated by the input signal. Yet, in some cases, the

disturbances can possess somepositive effects on control per-
formance [34]. Then, the influence of the disturbance needs
to be redefined by using the disturbance characterization
index (DCI), which can decide whether to retain the distur-
bances or not in controller design.Yet, to our best knowledge,
few works have utilized the DCI concept to study the anti-
disturbance control for the UAH systems, which remains
important and challenging.

Motivated by the above discussions, this work will study
the tracking control for the UAH system and a DCI-based
anti-disturbance backstepping controller will be proposed,
in which both matched disturbance and mismatched one are
involved. The contributions of this work can be expressed as
follows:

1. Based on the approximated feedback linearization and
dynamic expansion technology, the nonlinear UAH sys-
tem is simplified as an integral chain one. By combining
the FTDOs and backstepping control, the virtual interme-
diate variables and control input are derived. Since the
disturbances with successive derivatives are estimated,
the repeated steps for calculating disturbance derivatives
in the backstepping controller can be avoided, which can
help reduce the complexity of controller design proce-
dure.

2. Different from some existent methods that wholly elim-
inated the disturbances, an effective disturbance DCI-
based backstepping controller scheme is developed for
the UAH system under both matched disturbance and
mismatched ones. For mismatched disturbance, it can
be directly compensated in the backstepping controller.
Yet, as for matched disturbances, a DCI definition is
introduced and can determine whether the disturbance
is harmful or not to the UAH system. Then, the harmful
part is eliminated while the beneficial one is retained in
the feedback controller, which can effectively improve
the control performance.

Notations R
n denotes the set of n-dimensional Euclidean

space, and R
m×n means the set of all real m × n matrices.

e3 = [0 0 1]T means a unitary vector. Cθ , Sθ , Tθ denote the
abbreviations of trigonometric functions cos θ , sin θ , tan θ ,
respectively, and others are similarly abbreviated. |x | stands
for the absolute value for each element of the vector x . The
symbol ⊗ represents the element-wise product.

1.1 Nonlinear dynamic model of unmanned aerial
helicopter (UAH)

This subsection presents a nonlinear dynamic model for
the UAH. The UAH system can be considered as a six-
degree-of-freedom rigid body model with the simplified
force andmoment generation process, which further includes

1 3



Trajectory tracking anti-disturbance control for unmanned aerial helicopter based… 235

the disturbances and parameter uncertainties as the lumped
disturbances. Then, this work focuses on the full-degree-of-
freedomUAH system and studies the tracking control for the
position and yaw angle under outside disturbances.

Based on [15], we consider the UAH attitude dynamic
system as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṗ(t) = V (t),

V̇ (t) = ge3 + R(t)e3[−g + Zωω(t) + Zcolδcol(t)]
+d1(t),

Θ̇(t) = H(Θ)W (t),

Ẇ (t) = −JW (t)× JW (t) + AW (t) + Bu(t)
+d2(t),

(1)

where P(t) = [x(t) y(t) z(t)]T ∈ R
3 and V (t) =

[u(t) v(t) w(t)]T ∈ R
3 are the position vector and velocity

vector in the inertial coordinate system, respectively;Θ(t) =
[φ(t) ϑ(t) ψ(t)]T ∈ R

3 and W (t) = [p(t) q(t) r(t)]T ∈ R
3

are the Euler angle vector and angular rate vector in the body-
fixed frame, respectively;φ(t),ϑ(t), andψ(t)denote the roll,
pitch, and yaw angles, respectively; p(t), q(t), and r(t)mean
the angular rates; u(t) = [δcol(t) δlon(t) δlat(t) δped(t)]T ∈
R
4 indicates the control input vector. The notations of

d1(t), d2(t) are the lumped disturbance vectors, which con-
tain the wind gusts, modeling error, and uncertainties.
Moreover, the notation of g denotes the gravitational acceler-
ation, and J = diag{Jxx , Jyy, Jzz} means the inertia matrix;
Zω and Zcol are the stability derivative and input derivative of
themain rotor thrust Tm(t) = m[−g+Zωω(t)+Zcolδcol(t)],
respectively; A ∈ R

3×3 and B ∈ R
3×4 are the stability

derivative matrix and input derivative matrix of the moment
vector τ(t) = AW (t) + Bu(t), respectively. The transfor-
mation matrix R(t) ∈ R

3 from the body coordinate system
to the inertial coordinate one can be described as follows:

R(t) =
⎡

⎣
CθCψ SθCψ Sφ−SψCφ SθCψCφ+Sψ Sφ

Cθ Sψ Sθ Sψ Sφ+CψCφ Sθ SψCφ−Cψ Sφ

−Sθ Cθ Sφ CθCφ

⎤

⎦ .

(2)

The attitudeKinematircmatrix H(Θ) in system (1) is defined
as

H(Θ) =

⎡

⎢
⎢
⎣

1 SφTθ CφTθ

0 Cφ −Sφ

0
Sφ

Cθ

Cφ

Cθ

⎤

⎥
⎥
⎦ , (3)

and the derivative of R(t) is presented as

Ṙ(t) = R(t)W×(t), (4)

where W×(t) =
⎡

⎣
0 −r q
r 0 −p

−q p 0

⎤

⎦.

1.2 Approximate feedback linearizationmodel of
UAH system

This subsection will utilize the input and output feedback
linearization to simplify the system (1) for facilitating the
controller design. Since the tracking target aims to make the
UAH track the desired position Pd(t) = [xd(t) yd(t) zd(t)]T
and yaw angle ψd(t), the control output can be selected
as Pd(t) and ψd(t). However, the exact input–output lin-
earization fails to linearize the complete system. Then in this
work, an approximate feedback linearization technique will
be developed for the UAH system [15].

It can be verified that the limped disturbances d1(t), d2(t)
are the inherent components of the UAH system, which
are independent of the control input. Then, to determine
the relative order, we consider the system (1) without the
disturbances, i.e., the lumped disturbances need to be set
as d1(t) = d2(t) = 0. Moreover, to complete the feed-
back linearization procedure succinctly, the term −m[−g +
Zωω(t) + Zcolδcol(t)] should be replaced by the main rotor
thrust Tm(t). For completing the linearization process of
UAH input and output feedback, we define two variables as
T1m(t) = Ṫm(t), T2m(t) = Ṫ1m(t). Then, according to [15],
the simplified model of the UAH system (1) can be rewritten
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṗ(t) = V (t),

V̇ (t) = ge3 − 1

m
R(t)e3Tm(t),

Θ̇(t) = H(Θ)W (t),

Ẇ (t) = −J−1W (t)× JW (t) + J−1τ(t),

Ṫm(t) = T1m(t),

Ṫ1m(t) = T2m(t).

(5)

Here, we define ũ(t) = [τ̃φ(t) τ̃θ (t) τ̃ψ(t) T̃m(t)]T as the new
control input, and Ẇ (t) = τ̃ (t) = [τ̃φ(t) τ̃θ (t) τ̃ψ (t)]T. The
transformation of the control signal is expressed as follows:

τ̃ (t) = −J−1W×(t)JW (t) + τ(t). (6)

To utilize the input–output feedback linearization, one can
differentiate the output variables P(t) andψ(t) in (5). More-
over, by defining ζ1(t) = P(t), ζ2(t) = Ṗ(t), ζ3(t) = P̈(t),
and ζ4(t) = P(3)(t), it follows from (5) that

ζ̇1(t) = V (t),

ζ̇2(t) = ge3 − 1

m
R(t)e3Tm(t),
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ζ̇3(t) = − 1

m
R(t)W×(t)e3Tm(t) − 1

m
R(t)e3Ṫm(t),

ζ̇4(t) = f p(t) − 1

m
R(t)K (Tm)τ1(t), (7)

where f p(t) = − 1
m R(t)W×(t)W×(t)e3Tm(t) − 2

m× R(t)

W×(t)e3Ṫm(t), τ1(t) = [τ̃φ(t) τ̃θ (t) T̃m(t)]T, and

K (Tm) =
⎡

⎣
0 Tm 0

−Tm 0 0
0 0 1

⎤

⎦ . (8)

Now, by defining ζ5(t) = ψ(t) and ζ6(t) = ψ̇(t), we further
obtain

⎧
⎨

⎩

ζ̇5(t) = ψ(t),

ζ̇6(t) = fψ(t) + Sφ(t)

Cθ (t)
τ̃θ (t) + Cφ(t)

Cθ (t)
τ̃ψ (t),

(9)

where fψ(t) = [Cφ(t)
Cθ (t) φ̇(t) + Sφ(t)Tθ (t)

Cθ (t) θ̇ (t)]q(t) − [ Sφ(t)
Cθ (t)

×φ̇(t) − Cφ(t)Tθ (t)
Cθ (t) θ̇ (t)]r(t).

Based on the above discussions, the dimension of theUAH
system (1) amounts to n = 12, and the total relative degree is
r = 8, which means that there must exist internal dynamics
characterized via 4-D zero dynamics. Especially, by combin-
ing (7) and (9), we can obtain the relative order as Rt = 14.
Since the dimensionality of the system (5) is Rn = 14, i.e.,
Rt = Rn , it can be concluded that there exists no internal
dynamics in the system (1). Then, as a conclusion, the sys-
tem (1) can be wholly feedback linearized.

Now, by considering the disturbances, we can obtain the
complete model of the UAH system as follows:

S1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζ̇1(t) = ζ2(t),
ζ̇2(t) = ζ3(t) + d1(t),
ζ̇3(t) = ζ4(t),

ζ̇4(t) = f p(t) − 1

m
R(t)K (Tm)τ1(t) + d2(t),

(10)

S2 :
⎧
⎨

⎩

ζ̇5(t) = ζ6(t),

ζ̇6(t) = fψ(t) + Sφ

Cθ

τ̃θ (t) + Cφ

Cθ

τ̃ψ (t) + d3(t),
(11)

where d1(t) = [d11(t) d12(t) d13(t)]T ∈ R
3, d2(t) =

[d21(t) d22(t) d23(t)]T ∈ R
3, and d3(t) ∈ R represent the

lumped disturbances. Especially, since d2(t) and d3(t) enter
the helicopter system via the same channels together with the
control inputs, they canbe treated as thematcheddisturbance.
However, d1(t) does not satisfy the matching condition, and
it can be called mismatched disturbance. Then, as for the
position and yaw angle, we define their tracking errors and

successive derivatives as

{
xn(t) = ζn(t) − P(n−1)

r (t), n = 1, 2, 3, 4,

xn(t) = ζn(t) − ψ
(n−5)
r (t), n = 5, 6,

(12)

where P(n−1)
r (t) andψ

(n−1)
r (t) denote the successive deriva-

tives. Then, the tracking error system satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = x3(t) + d1(t),

ẋ3(t) = x4(t),

ẋ4(t) = f p(t) − 1

m
R(t)K (Tm)u1(t)

− P(4)
r (t) + d2(t),

ẋ5(t) = x6(t),

ẋ6(t) = fψ(t) + Sφ

Cθ

τ̃θ (t) + Cψ

Cθ

τ̃ψ (t)

− ψ(2)
r (t) + d3(t).

(13)

Remark 1 It can be checked that the disturbances d1(t),
d2(t), d3(t) exist in x2(t), x4(t), and x6(t), respectively.
Then, we will combine the FTDO and backstepping con-
trol to tackle mismatched disturbance d1(t), and the matched
ones d2(t), d3(t) will be rejected via the DCI-based DOBC
method.

2 Finite-time disturbance observer (FTDO)

First of all, a set of FTDOs are presented to estimate the
disturbances with their successive derivatives in finite time.
In order to develop the subsequent FTDOs, an assumption
needs to be presented.

Assumption 1 The UAH model can be described as (13),
where the mismatched disturbance d1(t) satisfies at least
3-th order differentiability, and d(4)

1 (t) possesses the Lip-
schitz constant L1. The matched disturbances d2(t), d3(t)
have at least 1-st order differentiability and their first deriva-
tives ḋi (t) (i = 2, 3) have the Lipschitz constants L2, L3,
respectively.

Now, a third-order FTDO is developed to estimate the
disturbance d1(t) with its successive derivatives d(l)(t) (l =
1, 2, 3), which can be expressed as

ż10(t) = ε10(t) + x3(t), (14)

ε10(t) = −λ10L
1
4
1 |z10(t) − x2(t)| 34 sgn(z10(t) − x2(t))

+ z11(t),
(15)

ż11(t) = ε11(t), (16)
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ε11(t) = −λ11L
1
3
1 |z11(t) − ε10(t)|

2
3 sgn(z11(t) − ε10(t))

+ z12(t),
(17)

ż12(t) = ε12(t), (18)

ε12(t) = −λ12L
1
2
1 |z12(t) − ε11(t)|

1
2 sgn(z12(t) − ε11(t))

+ z13(t),
(19)

ż13(t) = ε13(t), (20)

ε13(t) = −λ13L1sgn(z
1
3(t) − ε12(t)), (21)

where z10(t) denotes the estimate of the state x2(t); z11(t),

z12(t), z
1
3(t) are the estimates of the disturbanced1(t), d

(1)
1 (t),

d(2)
1 (t), respectively. Here, L1 > 0 and λ1i > 0 (i =
0, 1, 2, 3) denote the coefficients of the FTDO. In what fol-
lows, two first-order FTDOs are respectively proposed to
estimate d2(t), d3(t)

ż20(t) = ε20(t) + f p(t) − 1

m
R(t)K (Tm)u1(t), (22)

ε20(t) = −λ20L
1
2
2 |z20(t) − x4(t)| 12 sgn(z20(t) − x4(t))

+ z21(t),
(23)

ż21(t) = ε21(t), (24)

ε21(t) = −λ21L2sgn(z
2
1(t) − ε20(t)), (25)

ż30(t) = ε30(t) + fψ(t) + Sφ

Cθ

τ̃θ (t) + Cψ

Cθ

τ̃ψ (t), (26)

ε30(t) = −λ30L
1
2
3 |z30(t) − x6(t)| 12 sgn(z30(t) − x6(t))

+ z31(t),
(27)

ż31(t) = ε31(t), (28)

ε31(t) = −λ31L3sgn(z
3
1(t) − ε30(t)), (29)

where zi0(t) (i = 2, 3) denote the estimates of the states
x j (t) ( j = 4, 6), and zi1(t) (i = 2, 3) mean the estimates of
the disturbances di (t) (i = 2, 3). Moreover, L j > 0 ( j =
2, 3) and λ

j
i > 0 (i = 0, 1; j = 2, 3) mean the coefficients

of the proposed FTDOs.
Considering the tracking error system (13), the error

dynamics of the FTDO (14) described in the Filippov sense
can be presented as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė10(t) = −λ10L
1
4
1 |e10(t)|

3
4 sgn(e01) + e11(t),

ė11(t) = −λ11L
1
3
1 |e11(t) − ė10(t)|

2
3 sgn(e11(t) − ė01(t))

+ e12(t),

ė12(t) = −λ12L
1
2
1 |e12(t) − ė11(t)|

1
2 sgn(e12(t) − ė11(t))

+ e13(t),

ė13(t) = −λ13L1sgn(e
1
3(t) − ė12(t)) + [−L1, L1],

(30)

where the FTDO estimate errors are defined as e10(t) =
z10(t)− x2(t), e11(t) = z11(t)−d1(t), e12(t) = z12(t)−d(1)

1 (t),

and e13(t) = z13(t) − d(2)
1 (t). It follows from [15] that the

estimate errors e1i (t) (i = 0, 1, 2, 3)will converge to be con-
vergent in finite time, which implies that there must exist a
time second t f such that e1i (t) = 0 for any t > t f . That is
to say, z1i (t) = ε1i−1(t) (i = 1, 2, 3) hold for any t > t f .
Similarly, we can derive the error dynamics of the FTDOs
for (22) and (26) as follows:

⎧
⎨

⎩

ė20(t) = −λ20L
1
2
2 |e20(t)|

1
2 sgn(e20) + e21(t),

ė21(t) = −λ21L2sgn(e
2
1(t) − ė21(t)) + [−L2, L2],

(31)

⎧
⎨

⎩

ė30(t) = −λ30L
1
2
3 |e30(t)|

1
2 sgn(e30) + e31(t),

ė31(t) = −λ31L3sgn(e
3
1(t) − ė31(t)) + [−L3, L3].

(32)

Based on [15], the stability of the error systems (31)–(32)
can be guaranteed in finite time, which also implies that there
must exist a time second t f such that e

j
i (t) = 0 (i = 2, 3; j =

0, 1) for any t > t f .

3 Tracking controller design

In this section, a DCI-based DOBC and backstepping control
method will be presented to tackle the tracking control for
the UAH system under external disturbances.

3.1 Backstepping controller

Defining the tracking variables η1(t) and η2(t) as

η1(t) = x1(t) − x1d(t), η2(t) = x2(t) − x2d(t), (33)

where x1d(t), x2d(t) are the virtual control variables, they
can be further designed as follows:

x1d(t) = 0, x2d(t) = −k1η1(t). (34)

Then, the Lyapunov function of η1(t) with its derivative can
be derived as
⎧
⎨

⎩

V1(t) = 1

2
ηT1 (t)η1(t),

V̇1(t) = ηT1 (t)[−k1η1(t) + η2(t)],
(35)

where k1 denotes the controller parameter. Moreover, the
Lyapunov function ofη2(t)with its derivative can be deduced
as
⎧
⎨

⎩

V2(t) = 1

2
ηT2 (t)η2(t),

V̇2(t) = ηT2 (t)[x3(t) + d1(t) − ẋ2d(t)].
(36)
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Define η3(t) = x3(t) − x3d(t) with x3d(t) being expressed
as

x3d(t) = −k2η2(t) + ẋ2d(t) − z11(t). (37)

Here, x3d(t) can compensate for the disturbance d1(t), and
k2 denotes the controller parameter. Moreover, V̇2(t) can be
rewritten as

V̇2(t) = ηT2 (t)[−k2η2(t) + η3(t)]. (38)

Then, the Lyapunov function of η3(t) and its derivative can
be obtained as

⎧
⎨

⎩

V3(t) = 1

2
ηT3 (t)η3(t),

V̇3(t) = ηT3 (t)η̇3(t) = ηT3 (t)[x4(t) − ẋ3d(t)].
(39)

Now, we define η4(t) = x4(t) − x4d(t), and x4d(t) is
expressed as

x4d(t) = −k3η3(t) + ẋ3d(t), (40)

where k3 means the controller parameter. Then, V̇3(t) can be
written as

V̇3(t) = ηT3 (t)[η4(t) + x4d(t) − ẋ3d(t)]
= ηT3 (t)[−k3η3(t) + η4(t)].

(41)

The Lyapunov function of η4(t) with its derivative can be
obtained as V4(t) = 1

2η
T
4 (t)η4(t), and

V̇4(t) = ηT4 (t)[ f p(t) − 1

m
R(t)K (Tm)u1(t)

− P(4)
r (t) + d2(t) − ẋ4d(t)].

(42)

Now, the control law u1(t) can be designed as

u1(t) = mK−1(Tm)RT(t)[ f p(t) − P(4)
r (t)

+ ẋ4d(t) + k4η4(t)].
(43)

Therefore, it follows from (42) and (43) that

V̇4(t) = −k4η
T
4 (t)η4(t) + ηT4 (t)d2(t), (44)

where k4 denotes the controller parameter.
On the other hand, by defining the tracking variable

η5(t) = x5(t)−x5d(t), then the virtual control variable x5d (t)
can be designed as

x5d(t) = 0. (45)

The Lyapunov function of η5(t) with its derivative can be
obtained as follows:

V5(t) = 1

2
ηT5 (t)η5(t), V̇5(t) = ηT5 (t)x6(t). (46)

Defining η6(t) = x6(t)−x6d(t), then x6d(t) can be designed
as

x6d(t) = −k5η5(t), (47)

where k5 is the controller parameter. Therefore, V̇5(t) can be
further written as

V̇5(t) = ηT5 (t)[x6d(t) + η6(t)]
= ηT5 (t)[−k5η5(t) + η6(t)].

(48)

The Lyapunov function of η6(t) and its derivative can be
obtained as

V6(t) = 1

2
ηT6 (t)η6(t),

V̇6(t) = ηT6 (t)[ fψ(t) + Sφ

Cθ

τ̃θ (t) + Cφ

Cθ

τ̃ψ (t)

− ψ(2)
r (t) + d3(t) − ẋ6d(t)].

(49)

Thus, the control law τ̃ψ (t) can be designed as

τ̃ψ (t) = −Cθ

Cφ

[k6η6(t) + fψ(t) + Sφ

Cθ

τ̃θ (t)

− ψ(2)
r (t) − ẋ6d(t)],

(50)

where k6 means the controller parameter. Therefore, it fol-
lows from (50) that

V̇6(t) = ηT6 (t)[−k6η6(t) + d3(t)]. (51)

Since d1(t) is the mismatched disturbance, it can be com-
pensated during the design of the backstepping controller.
Yet, as for the matched ones di (t) (i = 2, 3), a new method
based disturbance characterization index (DCI) is proposed
to improve the tracking control performance, which can uti-
lize the positive effects of the disturbances. Now, under the
conventional backstepping control laws in the last section,
we can select the Lyapunov function for the system (13) and
compute out its time derivative as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t),

V̇ (t) = −k1η
T
1 (t)η1(t) + ηT1 (t)η2(t) − k2η

T
2 (t)η2(t)

+ ηT2 (t)η3(t) − k3η
T
3 (t)η3(t) + ηT3 (t)η4(t)

− k4η
T
4 (t)η4(t) + ηT4 (t)d2(t) − k5η

T
5 (t)η5(t)

≤ +ηT5 (t)η6(t) − k6η
T
6 (t)η6(t) + ηT6 (t)d3(t)

−
(

k1 − 1

2

)

ηT1 (t)η1(t) − (k2 − 1)ηT2 (t)η2(t)

− (k3 − 1)ηT3 (t)η3(t) −
(

k4 − 1

2

)

ηT4 (t)η4(t)

− (k5 − 1

2
)ηT5 (t)η5(t) −

(

k6 − 1

2

)

ηT6 (t)η6(t)

+ ηT4 (t)d2(t) + ηT6 (t)d3(t).

(52)

Based on the term (52), by choosing the suitable scalars
ki (i = 1, 2, . . . , 6), we can acquire that−(k1− 1

2 )η
T
1 (t)η1(t)

−(k2−1)ηT2 (t)η2(t)−(k3−1)ηT3 (t)η3(t)−
(
k4 − 1

2

)
ηT4 (t)η4

(t) − (k5 − 1
2 )η

T
5 (t)η5(t) − (

k6 − 1
2

)
ηT6 (t)η6(t) < 0 holds.

Then, the derivative of V (t) satisfies V̇ (t) < ηT4 (t)d2(t) +
ηT6 (t)d3(t). Thus, it is worth noting whether V̇ (t) to be neg-
ative or not depends on the term ηT4 (t)d2(t) + ηT6 (t)d3(t).
Especially, when ηT4 (t)d2(t) < 0 and ηT6 (t)d3(t) < 0 hold,
then V̇ (t) < 0 holds and the stability of error system can be
guaranteed, which shows that the disturbances d2(t), d3(t)
are beneficial for the UAH system. Yet, if ηT4 (t)d2(t) ≥ 0 and
ηT6 (t)d3(t) ≥ 0 hold, then V̇ (t) < 0 cannot be true, which
means that the disturbances di (t) (i = 2, 3) are detrimen-
tal to the UAH system. Motivated by the above discussions,
we introduce a DCI definition, which indicates the benefi-
cial or harmful effects of the disturbances acting on the UAH
system. Meanwhile, since the disturbances di (t) (i = 2, 3)
cannot be directly measured, the definition of the DCI will be
presented by utilizing the estimations based on the FTDOs
(14)–(26).

Definition 1 [34] Considering the Lyapunov functions (44)
and (51), the DCI can be defined as

{
Jd2 = sgn(η4) ⊗ sgn(z21),

Jd3 = sgn(η6) ⊗ sgn(z31).
(53)

Remark 2 As illustrated in Definition 1, Jd2 = [Jd21 Jd22
Jd23 ]T denotes the 3× 1 vector owing to that both η4 and z21
(estimation of d2) are 3 × 1 vectors, and Jd3 is a variable.
Then, Jd2 and Jd3 can be rewritten as

{
Jd2 = [Jd21 Jd22 Jd23 ]T,

Jd3 = sgn(η6)sgn(z
3
1)

(54)

with Jd2i = sgn(η4i )sgn(z21i ) (i = 1, 2, 3).

3.2 Disturbance charaterization-based
backstepping controller (DCBBC)

In this part, we will propose the design method for the
disturbance charaterization-based backstepping controller
(DCBBC). Based on the DCI definition, a switching control
strategy will be developed for the control target of the UAH
system, and the details will be described in the following
theorem.

Theorem 1 Given the scalars ki > 1
2 (i = 1, 4, 5, 6), k j >

1 ( j = 2, 3) in (38), the tracking errors ηi (t) (i =
1, 2, 3, 4, 5, 6) can asymptotically converge to zero, if the
DCBBC for the UAH system (13) is designed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1(t) = mK−1(Tm)RT(t)[ f p(t) − P(4)
r (t)

+ ẋ4d(t) + k4η4(t) − Ξ(Jd2)z
2
1(t)],

τ̃ψ (t) = −Cθ

Cφ

[k6η6(t) + fψ(t) + Sφ

Cθ

τ̃θ (t)

− ψ(2)
r (t) − ẋ6d(t) − Ξ(Jd3)z

3
1(t)],

(55)

where the DCIs, Jd2 , Jd3 are given in (54), the function
Ξ(Jd2) is expressed as Ξ(Jd2) = diag{ρ(γ1) ρ(γ2) ρ(γ3)},
Ξ(Jd3) is given as Ξ(Jd3) = ρ(γ4), and the function ρ(·) is
selected as

ρ(γi ) =
{
1, γi ≤ 0,

0, γi < 0.
(56)

Proof By substituting the control law (55) into the UAH sys-
tem (13), we choose the Lyapunov function as the one in
(52), i.e.,

V (t) =
6∑

i=1
Vi (t), (57)

where the terms Vi (t) (i = 1, 2, 3, 4, 5, 6) are separately
expressed in (35), (38), (41), (44), (48), and (51). Then, we
compute out and estimate its derivative as

V̇ (t)≤ −
(

k1 − 1

2

)

ηT1 (t)η1(t) − (k2 − 1)ηT2 (t)η2(t)

− (k3 − 1)ηT3 (t)η3(t) −
(

k4 − 1

2

)

ηT4 (t)η4(t)

− (k5 − 1

2
)ηT5 (t)η5(t) −

(

k6 − 1

2

)

ηT6 (t)η6(t)

+ ηT4 (t)[d2(t) − Ξ(Jd2)z
2
1(t)] + ηT6 (t)[d3(t)

− Ξ(Jd3)z
3
1(t)].

(58)
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Moreover, since ki > 1
2 (i = 1, 4, 5, 6) and k j > 1 ( j =

2, 3) hold, we can further deduce

V̇ (t) ≤ ηT4 (t)[d2(t) − Ξ(Jd2)z
2
1(t)]

+ ηT6 (t)[d3(t) − Ξ(Jd3)z
3
1(t)].

(59)

Meanwhile, since the function Ξ(·) is symmetric, then
Ξ(Jd2),Ξ(Jd3) have the following expressions:

{
Ξ(Jd2) = diag{ρ(η41z

2
11), ρ(η42z

2
12), ρ(η43z

2
13)},

Ξ(Jd3) = ρ(η6z
3
1).

(60)

Then, the item ηT4 (t)[d2(t) − Ξ(Jd2)z
2
1(t)] can be rewritten

as

ηT4 (t)[d2(t) − Ξ(Jd2)z
2
1(t)]

= ηT4 (t){[d2(t) − z21(t)] + [z21(t) − Ξ(Jd2)z
2
1(t)]}

= ηT4 (t)[d2(t)−z21(t)]+ηT4 (t)[z21(t)−Ξ(Jd2)z
2
1(t)]

= ηT4 (t)[d2(t) − z21(t)]

+
3∑

i=1
[1 − ρ(η4i z21i )]η4i (t)z21i (t).

(61)

Similarly, the term ηT6 (t)[d3(t) − Ξ(Jd3)z
3
1(t)] can be also

written as

ηT6 (t)[d3(t) − Ξ(Jd3)z
3
1(t)]

= η6(t)[d3(t) − z31(t)] + [1 − ρ(η6z
3
1)]η6(t)z31(t).

(62)

Now, by considering [1 − ρ(η4i z21i )]η4i (t)z21i (t) < 0 and
[1 − ρ(η6z31)]η6(t)z31(t) < 0, it follows from (59)–(62) that
V̇ (t) satisfies the following condition:

V̇ (t) ≤ ηT4 (t)[d2(t) − z21(t)] + ηT6 (t)[d3(t) − z31(t)]
= ηT4 (t)e21(t) + ηT6 (t)e31(t)

≤ 1

2
ηT4 (t)η4(t) + 1

2
ηT6 (t)η6(t)

+ 1

2
(e21(t))

Te21(t) + 1

2
(e31(t))

Te31(t)

≤ V (t) + 1

2
(e21(t))

Te21(t) + 1

2
(e31(t))

Te31(t).

(63)

Therefore, V (t) and ηi (t) (i = 1, 2, . . . , 6) will not escape
to infinity in the finite time.

Next, we will show that the tracking errors ηi (t) (i =
1, 2, . . . , 6) will converge to zero in an asymptotic way.
Based on the FTDOs in (14)–(26), we can obtain that the
disturbance estimations z11(t), z

2
1(t), z

3
1(t) will converge to

real disturbances di (t) (i = 1, 2, 3) in the finite time, which
illustrates that there must exist a time moment t f > 0 ensur-
ing zi1(t) = di (t) (i = 1, 2, 3) for t > f f . Therefore, as for

t > t f , since ηT4 (t)e21(t) + ηT6 (t)e31(t) is converted to zero,
then it follows from (58) that

V̇ (t) ≤ −
(

k1 − 1

2

)

ηT1 (t)η1(t) − (k2 − 1)ηT2 (t)η2(t)

− (k3 − 1)ηT3 (t)η3(t)

−
(

k4 − 1

2

)

ηT4 (t)η4(t) − (k5 − 1

2
)ηT5 (t)η5(t)

−
(

k6 − 1

2

)

ηT6 (t)η6(t).

(64)

Moreover, by recalling ki > 1
2 (i = 1, 4, 5, 6) and k j >

1 ( j = 2, 3), we can further deduce

V̇ (t) <0, ∀ ηi (t) �= 0 (i = 1, 2, . . . , 6). (65)

In summary, the tracking errors converge to zero asymptoti-
cally, and the proof is completed. 	

Remark 3 In this work, the UAH system includes both
matched disturbance andmismatch one, which are separately
tackled in the procedures of controller design. As for themis-
matched disturbance, it is directly compensated by using the
backstepping control steps (37). Yet, as for the matched one,
different from these existent works [35–38], we introduce the
DCI concept to decide whether the disturbances are harm-
ful or beneficial to the UAH system. Then, by applying the
DCI to estimate the derivative of Lyapunov functional, our
proposed methods keep the beneficial parts but remove the
harmful ones, which can help improve the control perfor-
mance in an effective way.

4 Simulated example

Based on [35], we assume that the disturbances di (t) (i =
1, 2, 3) are generated by the following exogenous systems:

{
ζ̇i (t) = Wiζi (t),

di (t) = Viζi (t),
(66)

where ζi (t) ∈ R
nζi (i = 1, 2, 3) denote the states of the

systems (66), and Wi , Vi are expressed as follows:

W1 =

⎡

⎢
⎢
⎣

0 1.5 0 0
−1.5 0 0 0
0 0 0 −1
0 0 1 0

⎤

⎥
⎥
⎦ , W2 =

⎡

⎢
⎢
⎣

0 −2 0 0
2 0 0 0
0 0 0 −1
0 0 1 0

⎤

⎥
⎥
⎦ ,

W3 =

⎡

⎢
⎢
⎣

0 1.5 0 0
−1.5 0 0 0
0 0 0 −2
0 0 2 0

⎤

⎥
⎥
⎦ , V1=

⎡

⎣
1 1 0.5 −0.7
0.5 1 0 1
1 0 1 0.5

⎤

⎦ ,
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Fig. 1 The disturbances d1(t) and its estimations

V2 =
⎡

⎣
1 0.2 0 1

−0.6 1 1 0
1 0 1 0.5

⎤

⎦ , V3 = [
1 0.2 0 1

]
.

In what follows, firstly, some numerical simulations are pro-
vided to demonstrate the effectiveness of our FTDO-based
DCBBCmethods. Secondly, some comparisonswith existent
DOBCmethods are presented to evaluate the superiorities of
our control scheme.

Basedon [15], the parameters of theUAHsystemare given
as m = 8.2 kg, g = 9.81m s−2, Zw = −0.76 s−1, Zcol =
−131.41m rad−1 s−2, J = diag{0.18, 0.34, 0.28}kg m2,
A = diag{−48.1757, −25.5048,−0.9080} s−1, and

B =
⎡

⎣
0 0 1689.5 0
0 894.5 0 0

−0.3705 0 0 135.8

⎤

⎦ s−2. (67)

Moreover, the coefficients of the FTDOs in (14)–(26) are
selected as λ10 = 4, λ11 = 3, λ12 = 3, λ13 = 4, L1 = 10,
λ20 = 4, λ21 = 4, L2 = 15, λ30 = 3, λ31 = 3, L3 = 10.

The control gains of the DCBBC in (55) are expressed as
k1 = 15, k2 = 18, k3 = 16, k4 = 18, k5 = 18, k6 = 10. The
desired reference trajectories of the position and yaw angle
are set as follows:

⎡

⎣
ud
vd
wd

⎤

⎦ =
⎡

⎣
0
0
1.5

⎤

⎦ +
⎡

⎣
0.8 cos t
0.6 sin t

2 cos(0.8t)

⎤

⎦ , ψd = 2 sin(0.5t).

The simulation results are shown from Figs. 1, 2, 3, 4, 5, 6,
7, 8, 9, 10 and 11. Figures 1, 2 and 3 depict the disturbance
estimations by using the proposed FTDOs. It can be observed
that the FTDOs can estimate the disturbances efficiently.
Figures 4, 5, 6 and 7 illustrate the response curves of the
position and yaw angle, respectively, which means that the
reference trajectories can be tracked accurately under our

Fig. 2 The disturbances d2(t) and its estimations

Fig. 3 The disturbances d3(t) and its estimations

Fig. 4 The response curves of the position x(t)
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Fig. 5 The response curves of the position y(t)

Fig. 6 The response curves of the position z(t)

Fig. 7 The response curves of the yaw angle ψ(t)

Fig. 8 The response curves of the position tracking error

Fig. 9 The response curves of the yaw angle ψ(t) tracking error

Fig. 10 The response curves of the control under the proposed FTDO-
DCBBC method
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Fig. 11 The response curves of the control under the DOBC method

Table 1 The RMS values of the tracking errors

Methods FTDO-DCBBC DOBC

(ex )RMS 0.0002155 0.01332

(ey)RMS 0.00007969 0.006545

(ez)RMS 0.00005112 0.005398

(eψ)RMS 0.003278 0.005713

proposed FTDO-DCBBC methods. Especially, the FTDO-
DCBBC method in this work can be superior over some
traditional DOBC ones. From Figs. 4, 5, 6 and 7, it can be
seen that the overshoots by our FTDO-DCBBC method are
smaller than the one by the DOBC method in some degree.
Figures 8 and 9 show the tracking errors of the position and
yaw angle, from which the tracking errors can converge to
zero in a finite time.

Now, based on the tradition backstepping controller, we
choose the similar parameters and further present some com-
parisons [35], which can be checked in Figs. 10 and 11. Then,
based on the response curves of the control laws in Figs. 10
and 11, we can check that the control performance by our
method is better than the one by the DOBC method since
the trajectories fluctuates is much smaller in the early time
interval. Moreover, to highlight the merits of our method,
the root-mean-square (RMS) values of the tracking errors
under the FTDO-DCBBC method and the DOBC are sum-
marized in Table 1. As illustrated in Table 1, the proposed
FTDO-DCBBC method achieves lower RMS values than
the traditional DOBC, which reveals that our method can
be superior over the existent ones.

5 Conclusions

In this work, the trajectory tracking control for the UAH
system under both matched disturbance and mismatched

ones has been investigated. First, the input–output feedback
linearization method was utilized to simplify the nonlinear
UAH system, which could avoid the strong coupling. Then,
some effective FTDOs were presented to estimate the dis-
turbances with their successive derivatives. Thirdly, based
on the backstepping control and proposed FTDOs, a track-
ing control scheme was offered and it could compensate for
the mismatched disturbance directly. Moreover, by utilizing
theDCI concept, an anti-disturbance backstepping controller
was presented, and it could contain the beneficial effects of
the matched disturbances, which might lead to better con-
trol performance. Finally, some simulations and comparisons
have been exploited to demonstrate the effectiveness of the
proposed control methods.
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