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Abstract
This paper is concerned with the optimal linear quadratic Gaussian (LQG) control problem for discrete time-varying system 
with multiplicative noise and multiple state delays. The main contributions are twofolds. First, in virtue of Pontryagin’s 
maximum principle, we solve the forward and backward stochastic difference equations (FBSDEs) and show the relationship 
between the state and the costate. Second, based on the solution to the FBSDEs and the coupled difference Riccati equations, 
the necessary and sufficient condition for the optimal problem is obtained. Meanwhile, an explicit analytical expression is 
given for the optimal LQG controller. Numerical examples are shown to illustrate the effectiveness of the proposed algorithm.
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1  Introduction

The control problem for time-delay systems have received 
extensively attention since 1950s because of its wide appli-
cations in networked control system, intelligent cruise con-
trol system, finance, cable-driven manipulators and so on 
[1–6]. There have been a lot of researches on the optimal 
control and stabilization problem of time-delay systems in 
recent years, and many results have been surveyed, which 
concern with single input/state delay or multiple input/state 
delays [7–10]. For example, Yue et al. [7] proposed a Lya-
punov–Krasovskii functional approach to design the delayed 
feedback controller of uncertain systems with time-varying 
input delay, by introducing some relaxation matrices and 
turning parameters. Lee et al. [9] studied the robust H∞ con-
trol problem for uncertain linear systems with a state-delay. 
Based on the obtained delay-dependent bounded real lemma, 
the delay-dependent condition for the existence of a robust 
controller was presented. Due to the existence of multiple 

delays, the optimal controller is related to the past variables, 
which makes the control problem more challenging.

On the other hand, stochastic uncertainties exist in many 
control processes, and some results have been shown in 
[11–14]. Qi et al. [12] presented the optimal estimation and 
the optimal output feedback controller of the discrete-time 
multiplicative noise system with intermittent observations by 
virtue of coupled Riccati equations. The stabilization condi-
tion for this system was developed in the mean square sense. 
Rami et al. [13] considered the discrete-time stochastic LQ 
problem subject to state and control-dependent noises. A 
necessary and sufficient condition for the existence of the 
optimal control was identified in terms of the solution to the 
proposed difference Riccati equation. As to meet the actual 
demand in different areas, the control systems with both sto-
chastic uncertainties and time delay(s) have been thoroughly 
studied [15–19]. Zhang et al. [15] obtained the optimal lin-
ear quadratic regulation (LQR) controller for discrete-time 
system with input delay and multiplicative noise via the Ric-
cati-ZXL difference equation, while the additive noise was 
not considered in this reference. In [16], Liang et al. took 
the state- and control-dependent noise, additive noise and 
input delay into account, and the optimal controller and the 
suboptimal linear state estimate feedback controller for the 
linear quadratic Gaussian (LQG) system were both derived, 
with only single time delay in the input. Besides, when there 
are multiplicative noise and multiple delays in the input, Li 
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et al. [19] presented the optimal controller and the optimal 
cost under the necessary and sufficient condition. However, 
additive noise was not considered. It is obviously shown that 
the system models described in the above literatures are all 
discrete time-invariant and input-delay(s) systems. Moreo-
ver, the optimal problem involving simultaneously multipli-
cative noise, additive noise and multiple state delays are not 
mentioned. In addition, when the additive noise is related to 
the multiplicative noise, the analysis and synthesis for the 
control problem remain challenging.

Different from the existing research systems, the system 
considered in this paper contains simultaneously multiplica-
tive noise, multiple state delays and additive noise, which 
is more complex than before. It should be emphasized that 
the additive noise and the multiplicative noise are depend-
ent, and the coefficients in this paper are time-varying. The 
LQG control for our paper is much more sophisticated and 
unsolved. The main contributions of this paper are as fol-
lows: (1) The relations between the state and the costate in 
terms of the discrete time-varying LQG problem is given 
by lots of inductive calculations, which is also the solution 
to the forward and backward stochastic difference equations 
(FBSDEs). (2) If and only if a sequence of matrices are all 
positive definite, the optimal controller and the associated 
cost function will be obtained via the coupled difference 
Riccati equations, and the explicit expression of the unique 
controller is presented, which is obviously more complicated 
than LQR controller in [19]. Our approach is based on the 
stochastic maximum principle, and the key technique is the 
solution to the FBSDEs.

The rest of this paper is organized as follows. In Sect. 2, 
the discrete time-varying stochastic LQG control problem 
is described. In Sect. 3, the key tool to the solution is pre-
sented, and the necessary and sufficient condition for the 
optimal LQG control problem is shown. The solutions to 
the general LQG problem are derived. Numerical examples 
are shown in Sect. 4. Conclusions are provided in Sect. 5. 
Proofs of the Lemma and the Theorem are described in 
Appendixes.

Notation ℝn denotes the n-dimensional real Euclidean 
space. I presents the unit matrix of appropriate dimen-
sion. The superscript  ′ denotes the transpose of the matrix. 
{�,F, P, {Fk}k⩾0} denotes a complete probability space 
on which random variable �k and �k are defined such that 
{Fk}k⩾0 is the natural filtration generated by �k and �k , i.e., 
Fk = �{�0,… , �k,�0,… , �k} , augmented by all the P-null 
sets in F  . A symmetric A > 0 (⩾ 0) means that it is a posi-
tive definite (positive semi-definite) matrix. �a, b is the usual 
Kronecker function, i.e., �a, b = 0 if a ≠ b , and �a, b = 1 if 
a = b . Tr(P) represents the trace of matrix P.

2 � Problem formulation

Consider the discrete time-varying stochastic LQG system 
with state delays and multiplicative scalar noise:

where xk ∈ ℝn is the state, uk ∈ ℝm is the input control, the 
positive integer d is the state delay, �k is the scalar noise with 
zero mean and variance � , �k ∈ ℝn is random variable sat-
isfying E[𝜇k|Fk−1] = 𝜇̄k and E[�k�

�
k
|Fk−1] = Q�k

 . The coef-
ficient matrices with compatible dimensions Ci(k), C̄i(k),D(k) 
and D̄(k) with i = 0,… , d are time-varying. �k and �k are 
correlated, satisfying E[�k��

k
|Fk−1] = � , E[�k��

l
|Fk−1] = 0, 

k ≠ l . The initial states xi for i = −d,… , 0 are deterministic 
and known.

Consider the associated cost function for system (1):

where Qk , Rk and P0

N+1
 are positive semi-definite matri-

ces with appropriate dimensions, and N is the horizon 
length. In view of the fact  that xk depends on �k−1, �k−2 , 
… ,�k−1,�k−2,… , and the controller obeys the causality 
constraint, uk must be Fk−1-measurable (see [13]). Then, the 
problem to be addressed is stated as follows.

Problem 1  Find the unique Fk−1-measurable state feedback 
controller uk , k = 0,… ,N , for system (1) such that the cost 
function (2) is minimized.

3 � Main results

For simplicity, we make the system (1) to be

where

Following the similar approach in [19], we apply stochastic 
Pontryagin’s maximum principle [20] to system (3) with the 
cost function (2) to yield the costate equations:

(1)

xk+1 =

d∑
i=0

[
(Ci(k) + 𝜈kC̄i(k))xk−i

]
+ (D(k) + 𝜈kD̄(k))uk + 𝜇k,

(2)JN = E

{
N∑
k=0

[
x�
k
Qkxk + u�

k
Rkuk

]
+ x�

N+1
P
0

N+1
xN+1

}
,

(3)xk+1 =

d∑
i=0

C
i
k
(k)xk−i +Dk(k)uk + �k,

C
i
k
(k) = Ci(k) + 𝜈kC̄i(k), i = 0,… , d,

Dk(k) = D(k) + 𝜈kD̄(k).

(4)�N = P
0

N+1
xN+1,
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where �k is the costate variable with �k = 0 for k > N.
For further study, we define the following Riccati cou-

pled equations and make the backwards recursion for 
k = N,N − 1,… , 0:

The terminal values of the above matrix sequences Pj

k
 , �k 

and Nj

k
 , j = 0,… , d are given by

It should be emphasized that the recursion will stop unless 
assuming that �k is invertible. To give the main results of 
Problem 1, we need to obtain the solution to the FBSDEs 
(3) and (4)–(6), and then the following lemma is proposed.

Lemma 1  Assuming that �k are positive definite, i.e., 
𝛺k > 0 , for k = 0,… ,N , then the following equation

is the solution to FBSDEs (3) and (4)–(6), where

(5)�k−1 = E
[ d∑
m=0

(Cm
k+m

)�(k + m)�k+m|Fk−1

]
+ Qkxk,

(6)0 = E
[
D

�

k
(k)�k|Fk−1

]
+ Rkuk, k = 0,… ,N,

(7)

P
j

k
=

d−j∑
i=0

[
C
�

i
(i + k)P0

i+k+1
Ci+j(i + k)

+ 𝛾 C̄
�

i
(i + k)P0

i+k+1
× C̄i+j(i + k)

+ C
�

i
(i + k)P

j+i+1

i+k+1
+ (Pi+1

i+k+1
)�Ci+j(i + k)

− (Ni
i+k

)�𝛺−1
i+k

N
j+i

i+k

]
+ 𝜃j,0Qk,

(8)𝛺k = Rk +D
�(k)P0

k+1
D(k) + 𝛾D̄

�
(k)P0

k+1
D̄(k),

(9)N
j

k
= D

�(k)P
j+1

k+1
+D

�(k)P0

k+1
Cj(k) + 𝛾D̄

�
(k)P0

k+1
C̄j(k).

(10)

⎧⎪⎨⎪⎩

P
j

N+1
= 0, j = 1,… , d + 1,

P
j

N+i
= 0, i = 2,… , d + 1, j = 0,… , d + 1,

�N+i = I, N
j

N+i
= 0, i = 1,… , d, j = 0,… , d.

(11)�k−1 =

d∑
j=0

P
j

k
xk−j +�k

(12)

𝛷k =

d∑
i=0

[(
C
�

i
(k + i) − (Ni

k+i
)�𝛺−1

k+i
D

�(k + i)
)

× (𝛷k+i+1 + P
0

k+i+1
𝜇̄k+i) +

(
C̄
�

i
(k + i)

− (Ni
k+i

)�𝛺−1
k+i

D̄
�
(k + i)

)
P
0

k+i+1
𝜏

+ (Pi+1
k+i+1

)�𝜇̄k+i

]

with the terminal value �N+1 = 0 , and Pj

k
 , Nj

k
 , �k satisfy the 

coupled equations (7)–(10).

Proof  The proof of Lemma 1 is in Appendix A.	�  ◻

Remark 1  It is noted that the system model in this paper 
is discrete time-varying, and contains simultaneously mul-
tiplicative noise, additive noise and multiple state delays. 
Meanwhile, the multiplicative noise is related with the addi-
tive noise. Thus, the problem of optimal LQG control is 
particularly difficult.

Remark 2  We have defined Pj

k
 , Nj

k
 with j ∈ [0, d] by the 

equation (10). As using the notations Pj

k
 , Nj

k
 for j > d , we 

extend the definition Pj

k
= 0 , Nj

k
= 0 for j > d . Besides, the 

coefficient matrices Cj(k) , C̄j(k) are set to be 0 for j > d.

Now, we are in the position to present the solution to 
Problem 1. The results are stated in the following theorem.

Theorem 1  Problem 1 has a unique Fk−1-measurable uk if 
and only if �k , for k = 0,… ,N , are positive definite. In this 
context, the optimal controller uk is calculated by

The minimum performance index is as

where

while Pj

k
 , Nj

k
 , �k satisfy the coupled equations (7)–(10).

Proof  The proof of Theorem 1 is in Appendix B.	�  ◻

Remark 3  Different from the existing work [19], the diffi-
culties caused by the additive noise are mainly as follows. 

(13)uk = −�−1
k

d∑
j=0

N
j

k
xk−j −�−1

k
�k.

(14)

J∗
N
= x�

0
P
0

0
x0 + 2x�

0

d∑
j=1

P
j

0
x−j +

d∑
j=1

d∑
i=1

d−1∑
l=0

x�
−j

[
C
�

j+l
(l)

× P
0

l+1
Ci+l(l) + 𝛾 C̄

�

j+l
(l)P0

l+1
C̄i+l(l) + (P

j+l+1

l+1
)�

× Ci+l(l) + C
�

j+l
(l)Pi+l+1

l+1
− (N

j+l

l
)�𝛺−1

l
Ni+l
l

]
x−i

+ 2x�
0
𝛷0 −

N∑
k=0

𝛴�
k
𝛺−1

k
𝛴k + 2

N∑
k=0

𝜇̄�
k
𝛷k+1

+

N∑
k=0

Tr[P0

k+1
Q𝜇k

],

(15)𝛴k = D
�(k)(𝛷k+1 + P

0

k+1
𝜇̄k) + D̄

�
(k)P0

k+1
𝜏,
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First, this paper considers the optimal LQG control problem 
with both multiplicative noise and correlated additive noise, 
which is more challenging than [19]. Second, due to the 
existence of the additive noise, the key technique to this opti-
mal control problem, i.e., the solution to the FBSDEs (11) 
is quite more difficult than that of [19]. Besides, the optimal 
controller uk satisfying (13) and the associated optimal cost 
(14) are more difficult to obtain, and the expression of uk and 
J∗
N

 are more complicated than [19].

Remark 4  For a stochastic discrete-time system with no state 
delays, i.e., d = 0 in system (3), it is obviously obtained that 
the coupled Riccati difference equations:

where

The optimal controller reduces to

where �k as (15). In this context, the solution to the FBSDEs 
is as

with

Remark 5  From Theorem 1, when the disturbance term �k 
and the multiplicative noise �k are independent, i.e., � = 0 , 
and when the additive noise is Gaussian white noise, i.e., 
𝜇̄k = 0 , the Riccati difference equations are as (7)–(10), and 
the matrices can be rewritten as

As the terminal value �N+1 = 0 , it is obviously obtained 
that �k and �k in (16), (17) always equal to be zero for 
k = 0,… ,N . Then, the optimal controller reduces to

P
0

k
= C

�

0
(k)P0

k+1
C0(k) + 𝛾 C̄

�

0
(k)P0

k+1
C̄0(k)

− (N0
k
)�𝛺−1

k
N0
k
+ Qk,

𝛺k = Rk +D
�(k)P0

k+1
D(k) + 𝛾D̄

�
(k)P0

k+1
D̄(k),

N0
k
= D

�(k)P0

k+1
C0(k) + 𝛾D̄

�
(k)P0

k+1
C̄0(k).

uk = −�−1
k
N0
k
xk −�−1

k
�k,

�k−1 = P
0

k
xk +�k

𝛷k =
(
C
�

0
(k) − (N0

k
)�𝛺−1

k
D

�(k)
)
(𝛷k+1 + P

0

k+1
𝜇̄k)

+
(
C̄
�

0
(k) − (N0

k
)�𝛺−1

k
D̄

�
(k)

)
P
0

k+1
𝜌 + (P1

k+1
)�𝜇̄k.

(16)�k =

d∑
i=0

(
C
�

i
(k + i) − (Ni

k+i
)��−1

k+i
D

�(k + i)
)
�k+i+1,

(17)�k = D
�(k)�k+1.

uk = −�−1
k

d∑
j=0

N
j

k
xk−j,

and the solution to the FBSDEs is as

In this case, the associated optimal cost is given by

In view of obtaining the scalar case of optimal LQG 
control system (3), we derive the results to the general 
system with multiple delays and multiplicative noise.

Consider the following case of discrete time-varying 
system:

where Vk = (�k(1)… �k(f ))
� is a f-dimensional white noise 

defined on a complete probability {�,P,F} . Vk satisfies the 
variance � , i.e.,

Here Fk is the natural filtration generated by Vk and �k , i.e., 
Fk is the �-algebra generated by {V0,… ,Vk,�0, … ,�k} . 
Then, the general case of discrete time-varying LQG control 
problem is stated as follows.

Problem 2  Find the unique Fk−1-measurable state feedback 
controller uk , k = 0,… ,N , for system (18) such that the cost 
function (2) is minimized.

To solve Problem 2, we derive the definition as

�k−1 =

d∑
j=0

P
j

k
xk−j.

J∗
N
=x�

0
P
0

0
x0 + 2x�

0

d∑
j=1

P
j

0
x−j +

d∑
j=1

d∑
i=1

d−1∑
l=0

x�
−j

[
C
�

j+l
(l)

× P
0

l+1
Ci+l(l) + 𝛾 C̄

�

j+l
(l)P0

l+1
C̄i+l(l) + (P

j+l+1

l+1
)�

× Ci+l(l) + C
�

j+l
(l)Pi+l+1

l+1
− (N

j+l

l
)�𝛺−1

l
Ni+l
l

]
x−i

+

N∑
k=0

Tr[P0

k+1
Q𝜇k

].

(18)

xk+1 =

d∑
i=0

[
Ci(k) +

f∑
m=1

𝜈k(m)C̄i,m(k)
]
xk−i

+

[
D(k) +

f∑
m=1

𝜈k(m)D̄m(k)
]
uk + 𝜇k,

E[VkV
�

k
] = � =

⎡⎢⎢⎣

�11 ⋯ �1f
⋮ ⋮

�f1 ⋯ �ff

⎤⎥⎥⎦
∈ ℝ

f×f , � ⩾ 0.

C
i
k
(k) = Ci(k) +

f∑
m=1

𝜈k(m)C̄i,m(k),

Dk(k) = D(k) +

f∑
m=1

𝜈k(m)D̄m(k),
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and the coupled difference Riccati equations (7)–(9) extend 
to

Based on the above definitions, the solution to Problem 2 is 
derived in the following theorem.

Theorem 2  Problem 2 has a unique Fk−1 - measurable uk if 
and only if �k , for k = 0,… ,N , are positive definite. In this 
case, the optimal controller uk is given by

and the associated optimal cost function is as

where Pj

k
 , Nj

k
 , �k satisfy the coupled equations (19)–(21).

Remark 6  It is obviously that the multiplicative noise Vk in 
the general LQG control system (18) is expanded by mul-
tiple dimensions of white noises. The existence of multi-
dimensional white noise has no essential influence on the 
optimal control problem, and we can treat it as a whole. 
Then, the approach of Theorem 1 is also applied to the 

(19)

P
j

k
=

d−j∑
i=0

[
C
�

i
(i + k)P0

i+k+1
Ci+j(i + k) +

f∑
a=1

f∑
b=1

𝛾ab

× C̄
�

i,a
(i + k)P0

i+k+1
C̄i+j,b(i + k) + C

�

i
(i + k)

× P
j+i+1

i+k+1
+ (Pi+1

i+k+1
)�Ci+j(i + k) − (Ni

i+k
)�

×𝛺−1
i+k

N
j+i

i+k

]
+ 𝜃j,0Qk,

(20)

𝛺k = Rk +D
�(k)P0

k+1
D(k) +

f∑
a=1

f∑
b=1

𝛾abD̄
�

a
(k)P0

k+1
D̄b(k),

(21)
N

j

k
= D

�(k)P
j+1

k+1
+D

�(k)P0

k+1
Cj(k) +

l∑
a=1

l∑
b=1

𝛾ab

× D̄a(k)
�
P
0

k+1
C̄j,b(k), k = 0,… ,N.

uk = −�−1
k

d∑
j=0

N
j

k
xk−j −�−1

k
�k,

J∗
N
= x�

0
P
0

0
x0 + 2x�

0

d∑
j=1

P
j

0
x−j +

d∑
j=1

d∑
i=1

d−1∑
l=0

x�
−j

[
C
�

j+l
(l)

× P
0

l+1
Ci+l(l) +

f∑
a=1

f∑
b=1

𝛾abC̄
�

j+l,a
(l)P0

l+1
C̄i+l,b(l)

+ (P
j+l+1

l+1
)�Ci+l(l) + C

�

j+l
(l)Pi+l+1

l+1
− (N

j+l

l
)�

×𝛺−1
l
Ni+l
l

]
x−i + 2x�

0
𝛷0 −

N∑
k=0

𝛴�
k
𝛺−1

k
𝛴k

+ 2

N∑
k=0

𝜇̄�
k
𝛷k+1 +

N∑
k=0

Tr[P0

k+1
Q𝜇k

],

general situation. Thus, combining the mathematical char-
acteristics of Vk , Theorem 2 is derived as the above.

4 � Numerical examples

Example 1  Consider the scalar case of time-varying LQG 
control system (3) in Theorem 1, as the additive noise �k 
correlated with �k . Let the associated parameters be as

and the cost function (2) with

By direct calculation , it yields

It is obviously known that �k is positive definite for k = 0, 1 . 
Thus, from Theorem 1, there exists a unique uk , which is 
given by

Second, we shall illustrate that u∗
k
 can minimize the cost 

function (2). Let the controller be arbitrary. For example,

Compare the cost function under u∗
k
 and ûk with different 

initial values as follows:

Hence, u∗
k
 and J∗ are optimal. This demonstrates the correct-

ness of our results.

C0(0) = 1, C1(0) = −1, C2(0) = 1,

C̄0(0) = −4, C̄1(0) = 3, C̄2(0) = 2,

C0(1) = 2, C1(1) = 3, C2(1) = −2,

C̄0(1) = 2, C̄1(1) = −2, C̄2(1) = 1,

D(0) = 4, D̄(0) = 1, D(1) = −1, D̄(1) = −1,

𝛾 = 1, 𝜏 = 1, Q𝜈k
= 1, Q𝜇k

= 1, 𝜇̄k = 0.2,

d = 2, N = 1, P
0

N+1
= 1, Qk = 1, Rk = 1.

P
0

0
= 64.55, P

0

1
= −48.73, P

0

2
= −25.93,

N0
0
= 2.67, N0

1
= −6.33, N0

2
= 22,

P
1

0
= 3.67, P

1

1
= 0.67, P

1

2
= −0.67,

N1
0
= −4, N1

1
= −1, N1

2
= 1

�0 = 6.6, �1 = −1.2, �0 = 63.33, �1 = 3.

u∗
0
= −0.0421 × x0 + 0.1 × x−1 − 0.3474 × x−2 − 0.1042;

u∗
1
= 0.0632 × x1 + 0.0158 × x0 − 0.0158 × x−1 + 0.0189.

û0 = 0.34 × x0 + 2 × x−1 + 0.8 × x−2 − 0.2;

û1 = 2 × x1 + 1 × x0 − 0.2 × x−1 − 1.

1) x0 = 1, x−1 = 1, x−2 = 2, J∗ = 3.56, Ĵ = 21.88;

2) x0 = −1, x−1 = 2, x−2 = 2, J∗ = 61.65, Ĵ = 141.16;

3) x0 = 0, x−1 = −1, x−2 = −3, J∗ = 22.99, Ĵ = 36.79;

4) x0 = 2, x−1 = 1, x−2 = −2, J∗ = 23.16, Ĵ = 42.09.
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Example 2  Consider LQG control system (3) with xk ∈ ℝ2 , 
uk ∈ ℝ2 , d = 1 , � = 1 , � = [1, 1]� , and the coefficient 
matrixes are time-invariant with

and the cost function (2) with

Then by direct calculation, the solution to coupled difference 
Riccati equations is yielded as

Obviously, 𝛺k > 0 for k = 0,… ,N  , therefore, there exist 
a optimal controller for Problem 1. In addition, when the 
initial values are

C0 =

[
−1 1.2

0.8 1

]
, C̄0 =

[
−0.2 0

1 − 0.5

]
, C1 =

[
−1 2

0 1

]
,

C̄1 =

[
0.2 − 2

1 1

]
, C2 =

[
−1 2

−2 − 0.4

]
, C̄2 =

[
0.6 − 2

1 0

]
,

C3 =

[
0 1.5

−0.7 1

]
, C̄3 =

[
0.8 − 1.3

1 0.4

]
, D =

[
0.3 0

−1 0.2

]
,

D̄ =

[
1 1.2

0.3 − 1

]
, Q𝜈 = I, Q𝜇 = I,

N = 3, Q = I, R = I, P
0

N+1
= 0.

P
0

0
=

[
−6.28 − 11.33

−0.41 − 37.19

]
, P

0

1
=

[
1.43 − 1.29

1.73 − 2.84

]
,

P
0

2
=

[
2.46 − 0.02

−0.72 2.78

]
, P

0

3
=

[
1 0

0 1

]
,

P
1

0
=

[
−2.11 5.09

4.08 − 6.45

]
, P

1

1
=

[
1.72 − 5.66

0.15 − 3.70

]
,

P
1

2
=

[
0.81 − 1.77

−0.84 0.29

]
, P

1

3
=

[
0 0

0 0

]
,

N0
0
=

[
1.10 3.96

0.52 − 1.53

]
, N0

1
=

[
−2.24 − 2.27

−3.12 1.85

]
,

N0
2
=

[
−1 − 0.79

−1.08 0.7

]
, N0

3
=

[
0 0

0 0

]
,

N1
0
=

[
−0.45 − 6.19

0.94 1.46

]
, N1

1
=

[
−0.19 − 3.54

−1.93 − 9.9

]
,

N1
2
=

[
0.2 − 2.1

−0.76 − 3.2

]
, N1

3
=

[
0 0

0 0

]
,

�0 =

[
4.11 0.99

0.99 4.53

]
, �1 =

[
6.71 1.32

2.23 8.33

]
,

�2 =

[
3.18 0.7

0.7 3.48

]
, �3 =

[
1 0

0 1

]
.

the optimal controller can be calculated as

Accordingly, the associated cost function is J∗ = 148.8.

5 � Conclusions

In this paper, the discrete time-varying LQG control problem 
with both multiplicative noise and multiple state delays has 
been studied. We obtain the solution to the FBSDEs for the 
discrete time-varying systems. A necessary and sufficient con-
dition for the existence of a unique optimal controller is pro-
posed. The basis of this approach is the stochastic maximum 
principle and the key is the relationship between the state and 
costate. In the future works, we expect that the results in this 
paper shall pave new ways for networked control system with 
both state delays and packet dropout.

Appendix A

With the stochastic maximum principle (4)–(6) to LQG con-
trol system (3) involving multiple state delays and multipli-
cative noise, we can obtain for k = N,

Using Eqs. (8) and (9), the optimal controller uN is as

where 𝛴N = D
�(N)P0

N+1
𝜇̄N + D̄

�
(N)P0

N+1
𝜏 . From (4) and (5), 

we also have

x0 =

[
−0.5

0.8

]
, x−1 =

[
0.3

−0.7

]
,

u∗
0
=

[
2.52

−1.36

]
, u∗

1
=

[
−3.68

1.58

]
, u∗

2
=

[
−3.89

−4.6

]
, u∗

3
=

[
0

0

]
.

0 =

d∑
i=0

(
D

�(N)P0

N+1
Ci(N) + 𝛾D̄

�
(N)P0

N+1
C̄i(N)

)
xN−i

+
(
D

�(N)P0

N+1
D(N) + 𝛾D̄

�
(N)P0

N+1
D̄(N) + RN

)

× uN +D
�(N)P0

N+1
𝜇̄N + D̄

�
(N)P0

N+1
𝜏.

uN = −�−1
N

d∑
i=0

Ni
N
xN−i −�−1

N
�N ,
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Substituting (7), �N−1 yields

where �N satisfied (12) with the terminal values being zero.
Now, we have verified (11) for k = N . Supposing that �k−1 

are as (11) for all k ⩾ n + 1 , we will show that (11) also holds 
for k = n . For k = n + 1 , with (3) and (11), �n can be calcu-
lated as

Inserting �n to (6), (6) will become

Thus, the optimal controller is given by

In virtue of equations (3), (5) and (23), �n−1 yields that

�N−1 = E

[
(C0

N
)�(N)P0

N+1
xN+1|FN−1

]
+ QNxN

= E

[( d∑
i=0

(C0
N
)�(N)P0

N+1
C
i
N
(N) − (N0

N
)��−1

N
Ni
N

)

× xN−i − (N0
N
)��−1

N
D

�

N
(N)P0

N+1
�N + (C0

N
)�(N)

× P
0

N+1
�N|FN−1

]
+ QNxN .

𝜁N−1 =

d∑
i=1

P
i
N
xN−i + P

0

N
xN + (C�

0
(N)P0

N+1
𝜇̄N

+ C̄
�

0
(N)P0

N+1
𝜏 − (N0

N
)�𝛺−1

N
D

�(N)P0

N+1

× 𝜇̄N − (N0
N
)�𝛺−1

N
D̄

�
(N)P0

N+1
𝜏)

=

d∑
j=0

P
j

N
xN−j +𝛷N ,

(22)

�n =

d∑
j=0

P
j

n+1
xn+1−j +�n+1

=

d∑
j=1

P
j

n+1
xn+1−j + P

0

n+1

d∑
i=0

(
C
i
n
(n)xn−i +D(n)un

+ �n

)
+�n+1.

0 = E

[ d∑
j=0

(
D

�

n
(n)P

j+1

n+1
+D

�

n
(n)P0

n+1
C
j
n
(n)

)
xn−j +D

�

n
(n)

×P0

n+1
Dn(n)un+D

�

n
(n)P0

n+1
𝜇n+D

�

n
(n)𝛷n+1|Fn−1

]
+Rnun

=

d∑
j=0

Nj
n
xn−j +𝛺nun +D

�(n)
(
P
0

n+1
𝜇̄n +𝛷n+1

)

+ D̄
�
(n)P0

n+1
𝜏.

(23)un = −�−1
n

d∑
j=0

Nj
n
xn−j −�−1

n
�n.

�n−1

= E

[ d−1∑
m=0

(Cm
n+m

)�(n + m)�n+m + (Cd
n+d

)�(n + d)

×

( d∑
j=1

P
j

n+d+1
xn+d+1−j + P

0

n+d+1

( d∑
i=0

C
i
n+d

(n + d)xn+d−i

+ �n+d +Dn+d(n + d)un+d

)
+�n+d+1

)
|Fn−1

]
+ Qnxn

= E

[ d−1∑
m=0

(Cm
n+m

)�(n + m)�n+m +

d∑
j=0

(
(Cd

n+d
)�(n + d)P

j+1

n+d+1

+ (Cd
n+d

)�(n + d)P0

n+d+1
C
j

n+d
(n + d) − (Nd

n+d
)��−1

n+d

× N
j

n+d

)
xn+d−j − (Nd

n+d
)��−1

n+d
�n+d + (Cd

n+d
)�(n + d)

× (P0

n+d+1
�n+d +�n+d+1)|Fn−1

]
+ Qnxn

= E

[ d−2∑
m=0

(Cm
n+m

)�(n + m)�n+m +

d∑
j=0

(
(Cd−1

n+d−1
)�(n + d − 1)

× P
j+1

n+d
+ (Cd−1

n+d−1
)�(n + d − 1)P0

n+d
C
j

n+d−1
(n + d − 1)

+ (Cd
n+d

)�(n + d)P
j+2

n+d+1
+ (Cd

n+d
)�(n + d)P0

n+d+1

× C
j+1

n+d
(n + d) − (Nd

n+d
)��n+dN

j+1

n+d
+ (Pd

n+d
)�

× C
j

n+d−1
(n + d − 1)

)
xn+d−1−j + (Nd−1

n+d−1
)�un+d−1

− (Nd
n+d

)��−1
n+d

�n+d + (Cd
n+d

)�(n + d)(P0

n+d+1
�n+d

+�n+d+1) + (Cd−1
n+d−1

)�(n + d − 1)(P0

n+d
gn+d−1 +�n+d)

+ (Pd
n+d

)��n+d−1|Fn−1

]
+ Qnxn

= E

[ d−3∑
m=0

(Cm
n+m

)�(n + m)�n+m +

d∑
j=0

d∑
i=d−2

(
(Ci

n+i
)�(n + i)

× P
0

n+i+1
C
i+j−d+2

n+i
(n + i) + (Ci

n+i
)�(n + i)P

i+j−d+3

n+i+1

+ (Pi+1
n+i+1

)�C
j+1

n+i
(n + i) − (Ni

n+i
)��−1

n+i
N

i+j−d+2

n+i

)

× xn+d−2−j −

d∑
i=d−1

(
(Ni

n+i
)��−1

n+i
�n+i + (Ci

n+i
)�(n + i)

× (P0

n+i+1
�n+i +�n+i+1) + (Pi+1

n+i+1
)��n+i

)|Fn−1

]

+ Qnxn.

Plugging (3) and (23) into the above equation for times d, 
we can calculate �n−1 as follows:
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where Pi+j

n+i+1
= 0 for i + j > d from Remark 1, and then

After inserting (7), we can summarize that

This completes the proof of the lemma.

Appendix B

(Necessity)   Suppose that there exists the unique Fk−1-meas-
urable uk to make the cost function (2) minimized. We will 
show that �k, k = 0,… ,N are positive definite by induction 
and the optimal controller can be designed as (13). Define

When k = N , J(N) is presented as

where xN = 0 and xN−j = 0 for j = 0,… , d as the uniqueness 
of the optimal controller is unrelated with xk.

As J(N) can be expressed as a quadratic function of uN , and 
the performance index must be positive, it can be obviously 

�n−1

= E

[ d∑
j=0

d∑
i=0

(
(Ci

n+i
)�(n + i)P0

n+i+1
C
i+j

n+i
(n + i)

+ (Ci
n+i

)�(n + i)P
i+j

n+i+1
+ (Pi+1

n+i+1
)�C

j+1

n+i
(n + i)

− (Ni
n+i

)��−1
n+i

N
i+j

n+i

)
xn+1−j +

d∑
i=0

(
(−Ni

n+i
)��−1

n+i
�n+i

+ (Ci
n+i

)�(n + i)(P0

n+i+1
�n+i +�n+i+1)

+ (Pi+1
n+i+1

)��n+i

)
|Fn−1

]
+ Qnxn,

𝜁n−1

=

d∑
j=0

d−j∑
i=0

(
C
�

i
(n + i)P0

n+i+1
Ci+j(n + i)

+ 𝛾 C̄
�

i
(n + i)P0

n+i+1
C̄i+j(n + i) + C

�

i
(n + i)P

i+j+1

n+i+1

+ (Pi+1
n+i+1

)�Ci+j(n + i) − (Ni
n+i

)�𝛺−1
n+i

N
i+j

n+i

)
xn−j

+

d∑
i=0

(
(−Ni

n+i
)�𝛺−1

n+i
𝛴n+i + C

�

i
(n + i)(P0

n+i+1
𝜇̄n+i

+𝛷n+i+1) + C̄
�

i
(n + i)(P0

n+i+1
𝜏 + (Pi+1

n+i+1
)�𝜇̄n+i

)
+ Qnxn.

�n−1 =

d∑
j=0

P
j
n
xn−j +�n.

J(k) = E

[ N∑
i=k

x�
i
Qixi + u�

i
Riui + x�

N+1
P
0

N+1
xN+1

]
.

J(N) = u�
N
𝛺NuN + 2uN(D(N)P0

N+1
𝜇̄N + D̄(N)P0

N+1
𝜏)

+ Tr[P0

N+1
Q𝜇N

],

know that 𝛺N > 0 , i.e., �k is positive definite for k = N . 
Assuming 𝛺k > 0 for all k ⩾ n + 1 , we will prove that 𝛺n > 0 . 
With (3), (5) and (6), for k ⩾ n + 1 , we construct that

To obtain the form of J(N), we add both sides of (24) from 
k = n + 1 to k = N , we have

Then,

Compared with (2), it yields that

Setting xn = 0 and xn−i = 0 , for i = 0,… , d as the same as 
the condition k = N , and plugging (11) into (25), we obtain

Similarly to the case 𝛺N > 0 above, we obviously get 𝛺n > 0 
for all k = 0,… ,N . This completes the proof of necessity.

(24)

E

[
x�
k
�k−1 − x�

k+1
�k

]

= E

[
x�
k
E[

d∑
m=0

C
m
k+m

(k + m)�k+m|Fk−1] + x�
k
Qkxk

−

( d∑
i=0

C
i
k
(k)xk−i +Dk(k)uk + �k

)�

�k

]

= E

[
x�
k
Qkxk − u�

k
E[D�(k)�k|Fk−1] − ��

k
�k

]

= E

[
x�
k
Qkxk + u�

k
Rkuk − ��

k
�k

]
.

E[x�
n+1

�n − x�
N+1

�N] =

N∑
k=n+1

E
[
x�
k
Qkxk + u�

k
Rkuk − ��

k
�k
]
.

E

[ N∑
k=n+1

(
x�
k
Qkxk + u�

k
Rkuk

)
+ x�

N+1
P
0

N+1
xN+1

]

= E
[
x�
n+1

�n −

N∑
k=n

��
k
�k
]
.

(25)J(n) =
[
x�
n
Qnxn + u�

n
Rnun

]
+ E

[
x�
n+1

�n +

N∑
k=n+1

��
k
�k

]
.

J(n) = E

[
u�
n
Rnun + u�

n
D�

n
(n)𝜁n +

N∑
k=n

𝜇�
k
𝜁k

]

= E
[
u�
n
Rnun + u�

n
D

�

n
(n)(P0

n+1
Dn(n)un + 𝜇n)

+ u�
n
D

�

n
(n)𝛷n+1 +

N∑
k=n

𝜇�
k
𝜁k
]

= u�
n
𝛺nun + u�

n

(
D

�(n)(P0

n+1
𝜇̄n +𝛷n+1)

+ D̄
�
(n)P0

n+1
𝜏
)
+

N∑
k=n+1

𝜇�
k
𝜁k.
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(Sufficiency)   Suppose that 𝛺k > 0 for k = 0,… ,N is ture, 
we will show the existence of the unique Fk−1-measurable uk 
to minimize (2). Make the definition:

First, as k = k + 1 , using the equivalent substitution l = l + 1 , 
j = j − 1 , and i = i − 1 in turn, the V(xk+1) can be calculated 
as

Constructing the form V(xk) − V(xk+1) , we have

V(xk)

= E

[
x�
k
P
0

k
xk + 2x�

k

d∑
j=1

P
j

k
xk−j

+

d∑
j=1

d∑
i=1

d−1∑
l=0

x�
k−j

[
C
�

j+l
(k + l)P0

k+l+1
Ci+l(k + l)

+ 𝛾 C̄
�

j+l
(k + l)P0

k+l+1
C̄i+l(k + l) + C

�

j+l
(k + l)Pi+l+1

k+l+1

+ (P
j+l+1

k+l+1
)�Ci+l(k + l) − (N

j+l

k+l
)�𝛺−1

k+l
Ni+l
k+l

]
xk−i

+ 2x�
k
𝛷k

]
.

V(xk+1)

= E

[
x�
k

(
(C0

k
)�(k)P0

k+1
C
0

k
(k) + (C0

k
)�(k)P1

k+1

+ (P1

k+1
)�C0

k
(k)

)
xk + 2x�

k

d∑
j=1

(
(C0

k
)�(k)P0

k+1
C
j

k
(k)

+ (C0
k
)�(k)P

j+1

k+1
+ (P1

k+1
)�C

j

k
(k)

)
xk−j

+

d∑
j=1

d∑
i=1

x�
k−i

(
(Ci

k
)�(k)P0

k+1
C
j

k
(k) + (Ci

k
)�(k)P

j+1

k+1

+ (P
j+1

k+1
)�Ci

k
(k)

)
xk−j + 2u�

k

d∑
j=0

N
j

k
xk−j + u�

k
(𝛺k − R)uk

+

d−1∑
j=0

d−1∑
i=0

d∑
l=1

x�
k−j

[C�
j+l
(k + l)P0

k+l+1
Ci+l(k + l)

+ 𝛾 C̄
�

j+l
(k + l)P0

k+l+1
C̄i+l(k + l) + C

�

j+l
(k + l)Pi+l+1

k+l+1

+ (P
j+l+1

k+l+1
)�Ci+l(k + l) − (N

j+l

k+l
)�𝛺−1

k+l
Ni+l
k+l

]xk−i

+ 2𝜇�
k

d∑
j=0

P
0

k+1
C
j

k
(k)xk−j + 2𝜇�

k
P
0

k+1
Dk(k)uk + 𝜇�

k
P
0

k+1
𝜇k

+

d∑
j=0

𝜇�
k
P
j+1

k+1
xk−j + 2x�

k+1
𝛷k+1

]
.

Denote

We can obviously know that �k =
d∑
i=0

�i
k+i

 . Then,

By virtue of (26), the following equation becomes

V(xk) − V(xk+1)

= E

[
x�
k
Qkxk + u�

k
Rkuk −

(
uk +�−1

k

d∑
j=0

N
j

k
xk−j

)�
�k

(
uk

+�−1
k

d∑
j=0

N
j

k
xk−j

)
− 2u�

k
�k − 2

d∑
j=0

x�
k−j

(N
j

k
)��−1

k
�k

− 2��
k
�k+1 − ��

k
P
0

k+1
�k

]

= E
[
x�
k
Qkxk + u�

k
Rkuk −

(
uk +�−1

k

d∑
j=0

N
j

k
xk−j

)�
�k

(
uk

+�−1
k

d∑
j=0

N
j

k
xk−j

)
− 2u�

k
�k − 2

d∑
j=0

x�
k−j

(N
j

k
)��−1

k
�k

− ��
k
�−1

k
�k + ��

k
�−1

k
�k − 2��

k
�k+1 − ��

k
P
0

k+1
�k

]

= x�
k
Qkxk + u�

k
Rkuk −

(
uk +�−1

k

d∑
j=0

N
j

k
xk−j +�−1

k
�k

)�

.

V(xk) − V(xk+1)

= E

[
x�
k
Qkxk + u�

k
Rkuk −

(
uk +�−1

k

d∑
j=0

N
j

k
xk−j

)�

�k

(
uk

+�−1
k

d∑
j=0

N
j

k
xk−j

)
− 2u�

k
�k + 2xk�k − 2
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j=0

x�
k−j

×

(
(C

j

k
)�(k)

(
P
0
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)
+ P
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k+1
�k

)
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k
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− ��
k
P
0
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�k

]
.

𝜙i
k
=
(
C
�

i
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k
)�𝛺−1

k
D

�(k)
)
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(
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i
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k
)�𝛺−1

k
D̄

�
(k)

)
P
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(26)

E

[
2xk�k − 2

d∑
j=0

x�
k−j

(
(C

j

k
)�(k)(P0

k+1
�k +�k+1) + P

j+1

k+1
�k

]

= 2
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j=0

x�
k−j

�
j

k
− 2
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(
�
j
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j

k
)��−1

k
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(N
j
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×𝛺k

(
uk +𝛺−1

k

d∑
j=0

N
j

k
xk−j +𝛺−1

k
𝛴k

)
+ 𝛴�

k
𝛺−1

k
𝛴k

− 2𝜇̄�
k
𝛷k+1 − Tr[P0

k+1
Q𝜇k

].

Adding from k = 0 to k = N  , the following equation is 
obtained:

Then, the cost function (2) becomes

As 𝛺k > 0 , the unique optimal controller is

which minimized the cost function (2), and the optimal cost 
is

Now, the proof of Theorem 1 is completed.
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