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Abstract
This paper provides stability analysis results for discretised time delay control (TDC) as implemented in a sampled data

system with the standard form of zero-order hold. We first substantiate stability issues in discrete-time TDC using an example
and propose sufficient stability criteria in the sense of Lyapunov. Important parameters significantly affecting the overall system
stability are the sampling period, the desired trajectory and the selection of the reference model dynamics.
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1 Introduction
Time-delay control (TDC) was first introduced in [1–4]

and recognized as a promising technique in the ro-
bust control area. TDC exploits time-delayed informa-
tion to estimate and cancel out unknown dynamics, un-
expected disturbances and rendering the desired closed-
loop dynamics into the plant. Owing to the simplicity of
its structure, model-independence, and numerical effi-
ciency, it has been successfully demonstrated to provide
robust performance in diverse nonlinear control system

applications [5–14].
A compact sufficient stability criterion regarding the

gain of TDC was proven in [15, 16] based on the as-
sumption of the continuous-time TDC and infinitesimal
time delay. However, TDC is generally implemented in
digital devices and the time delay is set to the sampling
period of the control hardware, which is a constant dur-
ing the control process. Henceforth, the aforementioned
assumption fails to represent the actual sampled-data
system stability behavior by ignoring the time delay be-
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ing equal to the sampling time interval.
A more realistic stability analysis was performed in

[17, 18], which considers the sampled data system in-
cluding the time delay, i.e., discrete-time version of TDC
and nonlinear continuous system. However, the authors
introduced a modified form of a zero order hold (ZOH)
in their analysis and this is quite different from the stan-
dard ZOH implementation.

In this paper, we propose sufficient criteria based on
Lyapunov stability theory, taking into account the actual
impact on selecting the gain and sampling period under
discrete-time TDC implemented with a standard ZOH.
The paper contributions are presenting a formulation
based on the standard zero order hold and carrying out
a comparison between the stability results when using
the standard zero order hold and a modified zero order
hold considered in [17,18].

In the rest of the paper, Section 2 briefly reviews TDC
and substantiates the stability issue with examples. Sec-
tion 3 proposes stability criteria, and the results are nu-
merically verified in Section 4. The conclusion is finally
drawn in Section 5.

2 Time delay control and its stability issues

2.1 TDC in continuous domain

Consider a nonlinear system of the form

ẋ = f (x) + g(x)u, (1)

where x = [x1 · · · xn]T ∈ Rn denotes the state vector,
and u = [u1 · · · up]T ∈ Rp denotes the control input.
Throughout the paper, we assume that f (x) and g(x) are
smooth functions of the state vector x and consider the
physical systems can be represented in phase variable
form as follows [15]:

x =

⎡⎢⎢⎢⎢⎢⎣xq

xp

⎤⎥⎥⎥⎥⎥⎦ , f (x) =

⎡⎢⎢⎢⎢⎢⎣ xs

f p(x)

⎤⎥⎥⎥⎥⎥⎦ , g(x) =

⎡⎢⎢⎢⎢⎢⎣ 0s

gp(x)

⎤⎥⎥⎥⎥⎥⎦ , (2)

where xq = [x1 · · · xn−p]T, xs = [xp+1 · · · xn]T ∈ Rn−p;
xp, f p(x) ∈ Rp; 0s ∈ R(n−p)×p denotes a zero matrix and
gp ∈ Rp×p is a non-singular matrix.

Remark 1 A large class of mechanical systems aris-
ing in robotics can be naturally expressed in phase vari-
able form. More complex nonlinear systems, such as
a multiple-link manipulator and robotic devices utiliz-
ing series elastic actuators, can be transformed into the
phase variable form by successive differentiation with

respect to time and expressing the results in terms of
a single nonlinear differential equation. This is akin to
input/output linearization procedures, where the output
is differentiated with respect to time several times until
at least one of the control inputs appears in the high
order differential equation. Such systems are described
in [16,17] and [19, Chapter 13].

The desired closed-loop performance is specified by
a stable reference model given by

ẋm = Amxm + BmR, (3)

where xm ∈ Rn denotes the reference model state vec-
tor, R ∈ Rp denotes the input vector of the reference
model, Am ∈ Rn×n denotes the system matrix which is
constant and stable, and Bm ∈ Rn×p denotes the input
distribution matrix.

The TDC law given in [15] is then written as follows:

u(t) = u(t−λ) + ḡ+[−ẋ(t−λ) + Amx(t) + BmR(t)], (4)

where λ denotes the time delay, ḡ+ denotes a pseudo-
inverse of ḡ defined by ḡ+ � (ḡT ḡ)−1 ḡT in which ḡ is a
constant matrix representing the known range of g(x).

2.2 Problem statement of TDC stability in discrete
domain

In [16], the well-known stability criteria of the closed-
loop system using TDC (4) is derived based on input-
output linearisation of (1) as the following sufficient con-
dition:

||Ip − gp(x)ḡ−1
p || < 1, (5)

where Ip ∈ Rp×p denotes the identity matrix, and ḡp is a
constant matrix.

The above stability condition is based on the assump-
tion: the time delay λ → 0 in continuous time domain.
However, the TDC is originally intended for digital con-
trol and the time delay λ is set to be equal to the sam-
pling period T in the implemented digital device. As
a result, the closed-loop system forms a sampled-data
system. Although the stability condition (5) is compact
in form and practical with sufficiently fast sampling pe-
riod, it is the fact that the time-delay λ is a crucial factor
affecting the closed-loop system stability [17,18].

In this light, the authors in [17, 18] proposed a more
accurate stability criterion including not only g but also
λ of the realistic sampled-data system, i.e., discrete-time
TDC and a nonlinear continuous-time system. However,
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the nonlinear continuous-time closed-loop system is ap-
proximated by a discrete-time model with a particular
form of ZOH in a way such that

x(k+1) = h(x(k),u(k+1)) or x(k) = h(x(k−1),u(k)), (6)

and in [17,18], a modified discrete-time TDC controller
is also introduced as follows:

u(k) = u(k−1) + ḡ+[−ẋ(k−1) + Amx(k−1) + BmR(k−1)︸�������������������︷︷�������������������︸
Additional delay

using the modified ZOH

], (7)

where k denotes the kth sample and h denotes a nonlin-
ear function with the state x and the input u. For brevity
of expression, (6) is hereinafter referred to as the mod-
ified ZOH. This simplifies the stability analysis for the
modified discrete-time TDC.

In contrast, the standard ZOH discretisation of (4)
gives

x(k+1) = h(x(k),u(k)) or x(k) = h(x(k−1),u(k−1)), (8)

and the corresponding TDC implementation [5–14] is

u(k) = u(k−1) + ḡ+[−ẋ(k−1) + Amx(k) + BmR(k)︸�������������︷︷�������������︸
No additional delay

using the standard ZOH

(9)

One can observe that the discrete-time TDC with the
modified ZOH, (7), introduces an additional delay com-
pared with the standard form (9).

Note that in some computing software, particularly
Simulink® in this paper, the zero order hold discretisa-
tion of a continuous time generates a continuous input
signal u(t) by holding each sample value u(k) constant
over one sampling time interval T, i.e., u(t) = u(k) for
kT � t < (k+1)T. Therefore, if the nonlinear continuous
time is represented in Simulink® integrated with Matlab®

and then sampled with the ZOH block in Simulink®, the
corresponding sampled nonlinear model is of the form
in (8) rather than (6).

Hence, the stability criterion for modified TDC and
ZOH in [17,18] indeed is not applicable to standard im-
plementation of TDC and ZOH (See the example in the
following Section 2.3), and there is still a need to per-
form the stability analysis in the sense of the standard
discrete-time TDC (8) and (9).

2.3 Examples on the problem of discrete TDC sta-
bility

To illustrate the basic ideas on how the discretisa-
tion methods impact on the stability analysis, a lin-
earized model of the simple nonlinear system ẋ(t) =

x3
(t) + sin x(t) + 5u(t) around zero is used as follows:

ẋ(t) = x(t) + 5u(t). (10)

Here we consider three different implementations of
the discrete-time TDC. In this case, gp(x) is a constant
value, but unknown to the control designer. Therefore
TDC controller gain has to be properly chosen as sug-
gested by (5) [16]. Since this is the same example used
in [17], one can easily analyse the impact of the discreti-
sation methods comparing with the stability criterion
proposed in [17].

Case 1 The standard discrete-time TDC (9) is ap-
plied to the system discretised by the standard ZOH
(8).

Case 2 The modified discrete-time TDC (7) is ap-
plied to the system discretised by the modified ZOH
[17].

Case 3 The modified discrete-time TDC is applied
to the system discretised by the standard ZOH (6).

For the first case, a discrete-time system is sampled
every T seconds with the standard form of ZOH, (8), as
follows:

x(k) = ax(k−1) + bu(k−1), (11)

where a and b are parameters determined by the sam-
pling period. The standard discrete-time TDC is given
with a reference model Am = −40 and a zero reference
signal as

u(k) =u(k−1) + ḡ−1[−40x(k) − ẋ(k−1)]
=u(k−1) + ḡ−1[−40x(k) − 5u(k−1) − x(k−1)], (12)

where ḡ is a suitably chosen scalar gain. The state space
form of (11) and (12) is written as

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0

40
ḡ

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣x(k)

u(k)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

a b

−1
ḡ

1 − 5
ḡ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣x(k−1)

u(k−1)

⎤⎥⎥⎥⎥⎥⎦ . (13)

The closed-loop poles are therefore the eigenvalues of
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0

−40
ḡ

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

a b

−1
ḡ

1 − 5
ḡ

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (14)
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For the second case, a delay is introduced in the con-
troller (12). It is then expressed as the following modified
discrete-time TDC:

u(k) =u(k−1) + ḡ−1[−40x(k−1) − ẋ(k−1)]
=u(k−1) + ḡ−1[−40x(k−1) − 5u(k−1) − x(k−1)]. (15)

In this case, the state-space form of (11) and (15) is
given as

⎡⎢⎢⎢⎢⎢⎣x(k)

u(k)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

a b

−40 + 1
ḡ

1 − 5
ḡ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣x(k−1)

u(k−1)

⎤⎥⎥⎥⎥⎥⎦ , (16)

and the closed-loop poles are the eigenvalues of the
followings:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a b

− (40 + 1)
ḡ

1 − 5
ḡ

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (17)

The last case is that one uses the convention in [17];
the system is then discretised by the standard ZOH as

x(k) = ax(k−1) + bu(k), (18)

while the discrete-time TDC is given by the modified
form as (15). Writing this in state space form yields

⎡⎢⎢⎢⎢⎢⎣1 −b

0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣x(k)

u(k)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

a 0

− (40 + 1)
ḡ

1 − 5
ḡ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣x(k−1)

u(k−1)

⎤⎥⎥⎥⎥⎥⎦ . (19)

The closed-loop poles are the eigenvalues of

⎡⎢⎢⎢⎢⎢⎣1 b

0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

a b

−40 + 1
ḡ

1 − 5
ḡ

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (20)

Let T = 0.01 s. The parameters in the discrete-time
system are then given as a = 1.0101 and b = 0.0503.
Computing the eigenvalues for the three cases (14), (17),
and (20), we can find the range of gains for which the
closed-loop eigenvalues are inside the unit circle:
� for Case 1, (14), 2.9875 < ḡ < 497.1;
� for Case 2, (17), 1.9876 < ḡ < 296.3; and
� for Case 3, (20), 3.0125 < ḡ < 502.3.
This example shows that the stability regions can be

quite different using the standard or the modified ZOH
analysis, even though the system is very simple as g(x)

is constant. The differences may become more signif-
icant in systems with increasing complexity. Also note
that in (6), there is a direct connection between the in-
put and the state (i.e., the transfer function is not strictly
proper) and this cannot happen when sampling with the
ZOHs. Therefore, it can be deduced that the stability
analysis of the standard implementation of TDC—the
case 1 with (8) and (9)—is still needed which has not
been considered in previous publications.

3 Stability of standard discrete-time TDC

In this section, the closed-loop system stability is anal-
ysed for the standard form of the discrete-time TDC (9).
The nonlinear continuous system is first discretised to
obtain an approximate discrete-time model in a similar
manner to [17], while the standard ZOH (8) is employed
in this paper; the approximate discrete-time model of
the closed-loop system is then derived under the stan-
dard discrete-time TDC, and sufficient conditions for the
closed-loop system stability and tracking error perfor-
mance are derived. Note that we strive to have consis-
tent notation as introduced in [17] facilitating compari-
son between our work and previous results in [17,18].

3.1 Approximate discrete-time model

3.1.1 Nonlinear continuous time system discretiza-
tion

Here we consider the standard ZOH (8) to discre-
tise the nonlinear continuous-time system (1). In this
sampled-data system, the control input will be a piece-
wise constant signal, u(t) = u(k−1)T = u(k−1) for all t in the
interval [(k − 1)T, kT), where T > 0 is a sampling time
interval. However, the state x(k) keeps on varying during
its sampling interval between (k − 1) and k.

Suppose the sampling time interval T is divided into
� subintervals. The Euler approximation then gives the
following difference equation:

χi+1 = χi +
T
�

[ f (χi) + g(χi)u(k−1)], (21)

where i = 0, . . . , (� − 1) denote the intermediate steps
between the sampling intervals (k− 1) and k, χ0 = x(k−1)

and χ� = x(k). After applying Taylor series expansion [20]
to the terms f (χi) and g(χi)u(k−1), we can write

χi+1 =(In +
T
�

H(k−1))χi − T
�

H(k−1)χ0
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+
T
�

[ f (χ0) + g(χ0)u(k−1)], (22)

where H(k−1) = F(χ0)+G(χ0,u(k−1)). See Appendix A for
the detailed derivation using the Taylor series expansion.

From (22), we can write

χ� = χ0 +
T
�

�−1∑
i=0

(In +
T
�

H(k−1))i[ f (χ0) + g(χ0)u(k−1)].

(23)

Taking limits as �→∞, equation (23) yields

x(k) =χ0 +
� T

0
lim
i→∞(In +

t
i
H(k−1))idt

× [ f (χ0) + g(χ0)u(k−1)], (24)

Using the fact [21],

et×H(k−1) = lim
i→∞[In +

t
i
×H(k−1)]i,

the approximate discrete-time model of the nonlinear
continuous system is then obtained as follows:

x(k) = x(k−1) + C(k−1)[ f (x(k−1)) + g(x(k−1))u(k−1)], (25)

where C(k−1) �
� T

0
et×H(k−1) dt. Note that if H(k−1) is invert-

ible,

C(k−1) = (eT×H(k−1) − In)H−1
(k−1). (26)

Remark 2 C(k−1) can be computed in Matlab® with
reasonable accuracy. Another alternative is using a fi-
nite Taylor series expansion of the matrix exponential
and then if needed carry out the integration numerically
or using (26) when H(k−1) is invertible.

3.1.2 Closed-loop system under standard TDC

This section derives difference equations for the
closed-loop errors. Such equations are the basis for the
stability analysis. The closed-loop errors are defined as

e1(k) � x(k) − xm(k) and e2(k) �
u(k) − um(k)

ks
, (27)

where ks > 0 denotes a scaling factor which adjusts the
size of u(k) − um(k) letting the tracking error e1(k) become
significant in the overall stability analysis.

Consider the differential equation (1) evaluated at
(k − 1)T as ẋ(k−1) = f (k−1) + g(k−1)u(k−1), where f (k−1) �

f (x(k−1)) and g(k−1) � g(x(k−1)) are used to simplify nota-
tion. The standard discrete-time TDC (9) is rewritten as
follows:

u(k) = ḡ+[(ḡ − g(k−1))u(k−1) − f (k−1) + Amx(k) + BmR(k)].
(28)

Applying (28) to (25) forms the closed-loop system as

x(k+1) =x(k) + Ck[ f k + gk ḡ+(ḡ − g(k−1))u(k−1)]

+ Ckgk ḡ+[− f (k−1) + Amx(k) + BmR(k)]. (29)

In (29), f k can be expressed in the following form by
Taylor series expansion around xm(k) [20]:

f k = f (xm(k)) + F(xm(k))[x(k) − xm(k)] +O1(x(k), xm(k)),
(30)

where F ∈ Rn×n is defined in Appendix A and O1(x(k),
xm(k)) ∈ Rn denotes the residual term of the first order
Taylor series expansion detailed in Appendix B. Here-
inafter, for brevity, O1(x(k), xm(k)) is written as O1(k).

An input vector of the reference model is defined as

um(k) �ḡ+{[ḡ − g(xm(k−1))]um(k−1) − f (xm(k−1))
+ Amxm(k) + BmR(k)}. (31)

Note that um(k) may not be unique; in this paper, it is de-
fined to be in a consistent format as that for u(k) in (28),
which is different from the one defined in [17,18]. Then,
discretising the reference model (3) using the standard
ZOH gives

xm(k+1) = D1xm(k) + (D1 − I)A−1
m BmR(k), (32)

where D1 = eTAm .

In phase variable form, we can write the following
identity [15]:

(I − ḡ ḡ+)[− f k + Amx(k) + BmR(k)] = 0. (33)

From (28), one can obtain

ḡ+[Amx(k) + BmR(k)]
= u(k) + ḡ+(g(k−1) − ḡ)u(k−1) + ḡ+ f (k−1). (34)

Using (33) and (34),

BmR(k) =(I − ḡ ḡ+) f k + ḡ ḡ+ f (k−1) + ḡu(k)

+ ḡ ḡ+(g(k−1) − ḡ)u(k−1) − Amx(k). (35)

Note that (33)–(35) hold for xm(k) in place of x(k).
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Finally, using (28)–(35), we can express the closed-
loop errors as follows:

e1(k+1) =S1e1(k) + S2e1(k−1) + S3e2(k−1)

+Q1O1(k) +Q2O1(k−1)

+Q3 f (xm(k)) +Q4 f (xm(k−1))
+Q5um(k) +Q6um(k−1), (36)

e2(k+1) = − E1e1(k+1) + S4e1(k) + S5e2(k)

+Q7O1(k) +Q8um(k). (37)

The detailed expression for the matrices S1,...,5, Q1,...,8,
and E1 are provided in Appendix C. From (36) and (37),
we have⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In 0n×p 0n 0n×p

E1 Ip 0p×n 0p

0n 0n×p In 0n×p

0p×n 0p 0p×n Ip

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸�������������������︷︷�������������������︸

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1(k+1)

e2(k+1)

e1(k)

e2(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1 0n×p S2 S3

S4 S5 0p×n 0p

In 0n×p 0n 0n×p

0p×n Ip 0p×n 0p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸�������������������︷︷�������������������︸

Sk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1(k)

e2(k)

e1(k−1)

e2(k−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1k

Q2k

0n×1

0p×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸︷︷︸

Qk

, (38)

where⎡⎢⎢⎢⎢⎢⎣Q1k

Q2k

⎤⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎣Q1

Q7

⎤⎥⎥⎥⎥⎥⎦O1(k) +

⎡⎢⎢⎢⎢⎢⎣Q2

0p×1

⎤⎥⎥⎥⎥⎥⎦O1(k−1)

+

⎡⎢⎢⎢⎢⎢⎣Q3

0p×1

⎤⎥⎥⎥⎥⎥⎦F(xm(k)) +

⎡⎢⎢⎢⎢⎢⎣Q4

0p×1

⎤⎥⎥⎥⎥⎥⎦ F(xm(k−1))

+

⎡⎢⎢⎢⎢⎢⎣Q5

Q8

⎤⎥⎥⎥⎥⎥⎦ um(k) +

⎡⎢⎢⎢⎢⎢⎣Q6

0p×1

⎤⎥⎥⎥⎥⎥⎦ um(k−1).

Hence, from (38) and the following state vector

e(k) � [eT
1(k) eT

2(k) eT
1(k−1) eT

2(k−1)]
T
,

the approximate discrete-time closed-loop error under
the standard discrete-time TDC satisfies the difference
equation

e(k+1) = E−1Ske(k) + E−1Qk, (39)

or equivalently,

e(k+1) =Mke(k) +Nk � Ea
CL(e(k)), (40)

where Mk � (E−1Sk) and Nk � (E−1Qk).
Note that the implementation of the controller does

not require knowledge of the nonlinear functions (see
equations (4), (7) and (9)). This is why TDC is an ap-
pealing strategy. However the stability analysis requires
some knowledge about the nonlinear functions f (x) and
g(x), for example using nominal or estimated models.
Uncertainty can be incorporated in the stability analysis
by introducing perturbations as described in [15].

Remark 3 The use of the approximate discrete-time
model for the entire stability analysis is confirmed to
be valid by the consistency property of the approxi-
mate and exact closed-loop discrete-time model proven
in [17,22].

3.2 Stability analysis and sufficient conditions

This section aims at deriving sufficient conditions for
the closed-loop system stability of the standard discrete-
time TDC. For the analysis, we first consider the time
varying homogeneous difference equation of (40) given
as

e(k+1) =Mke(k). (41)

Lemma 1 Define the largest singular value of all
Mk’s as

ξ � max
k
‖Mk‖. (42)

If ξ satisfies

0 < ξ < 1, (43)

then the nominal close-loop model (41) is asymptoti-
cally stable and there exist positive definite real sym-
metric matrices P = αI, where α is any positive scalar,
such that V(e(k)) = eT

(k)Pe(k) is a positive scalar function
satisfying

b1‖e(k)‖2 � V(e(k)) � b2‖e(k)‖2, (44)
ΔV(e(k)) = V(e(k+1)) − V(e(k)) � −b3‖e(k)‖2, (45)

where b1, b2, and b3 are positive constants for all k. For
P = αI, b1 = b2 = α and b3 = α(1 − ξ2).

Proof Asymptotic stability follows from (41) and
(43), since Mk is a contraction mapping ‖e(k)‖ �
ξ(k−k0)‖e(k0)‖. Given that P is a positive definite real sym-
metric matrix, we have

λmin(P)‖e(k)‖2 � V(e(k)) � λmax(P)‖e(k)‖2,
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where λmin(P) and λmax(P) denote, respectively, the
minimum and maximum eigenvalues of the constant
positive definite real symmetric matrix, P, and there-
fore these are positive constants, b1 = λmin(P) and
b2 = λmax(P); and (44) is established.

Now let us prove that V(e(k)) satisfies (45) for ξ < 1.
Using (41), we obtain ΔV(e(k)) as follows:

ΔV(e(k)) =V(e(k+1)) − V(e(k)) = eT
(k)(M

T
k PMk − P)e(k)

= − eT
(k)(P −MT

k PMk)e(k),

ΔV(e(k)) � − λmin(P −MT
k PMk)‖e(k)‖2 � −b3‖e(k)‖2,

where 0 < b3 � min
k

[λmin(P −MT
k PMk)].

Finally for P = αI, λmin(P) = λmax(P) = α and we
have

λmin(P −MT
k PMk) = αλmin(I −MT

k Mk)
� α(1 − λmax(MT

k Mk))
� α(1 − ξ2).

Here we have used two facts: the eigenvalues of (I −
MT

k Mk) are given by (1−λ(MT
k Mk)) and λmax(MT

k Mk) =
σ2

max(Mk) = ‖Mk‖2, where σmax(Mk) denotes the largest
singular value of Mk. Hence when P = αI, we have
b1 = b2 = α and b3 = α(1 − ξ2).

This completes the proof of Lemma 1. �

We point out the proof of Lemma 1 is evaluated us-
ing the states of the approximate model. Also note that
suitable positive matrices P exist besides P = αI, yet
P is not an arbitrary symmetric positive definite ma-
trix. To determine such matrices a set of linear matrix
inequalities (LMIs), (P −MT

k PMk) > 0, can be solved.
However solving LMIs becomes computationally expen-
sive, particularly as both k and the size of Mk increase.
Nevertheless we have given equations (44)–(45) in the
most general terms so that in future developments we
can visualise the effects of the positive scalars b1, b2 and
b3.

Lemma 2 [17] Consider the approximate closed-
loop discrete-time model (40) as Ea

CL(e(k)) and the exact
closed-loop discrete-time model of (1) under discrete-
time TDC as Ee

CL(e(k)). Let e ∈ U for each compact set
U ⊂ Rn+p and supposed that there exists a constant φ1.
Then, there exists a sampling time interval T∗ such that
∀T ∈ (0,T∗)

‖Ee
CL(e(k)) − Ea

CL(e(k))‖ � T × ρ(T) � φ1, (46)

where ρ(T) belongs to class K∞.

Theorem 1 Suppose Ee
CL(e(k)) is the exact closed-

loop discrete-time model and define Dδ = {e | ‖e‖ � δ},
where δ is a bound on the error norm. Let V(e(k)) be a
Lyapunov function for the nominal system (41) satisfy-
ing (44) and (45) in Lemma 1. Taking a sufficiently large
δ such that for all e ∈ Dδ, Nk in (40) and φ1 of (46) in
Lemma 2, then

max
k
‖Nk‖ + φ1 < (b3/b5)

√
(b1/b2)νδ, (47)

ω � max
k
‖Nk‖ + φ1 − (b3/b5)

√
(b1/b2)νδ < 0, (48)

where b5 = λmax(P)ξ +
√
λ2

max(P)ξ2 + λmax(P)νb3 and
0 < ν < 1, then for all

‖e(k0)‖ �
√

(b1/b2)δ, (49)

the solution to Ee
CL(e(k)) satisfies

‖e(k)‖ � C2e−ϕ(k−k0)‖e(k0)‖, k0 � ∀k < k1, (50)

and

‖e(k)‖ � B, ∀k � k1, (51)

for k1 < ∞, where C2 =

√
b2

b1
, ϕ = (1 − ν) b3

2b2
, and

B =
b5

b3
C2

max
k
‖Nk‖ + φ1

ν
.

Proof The difference ΔV(e(k)) = V(e(k+1)) − V(e(k))
along the trajectory of Ee

CL(e(k)) satisfies ΔV(e(k)) =
EeT

CL(e(k))PEe
CL(e(k)) − eT

(k)Pe(k) and writing

Ee
CL(e(k)) = Ea

CL(e(k)) + Ee
CL(e(k)) − Ea

CL(e(k))
= (Mke(k) +Nk) + Ee

CL(e(k)) − Ea
CL(e(k)),

we then have

ΔV(e(k)) =eT
(k)(M

T
k PMk − P)e(k) + 2eT

(k)M
T
k PNk

+NT
k PNk + 2NT

k P[Ee
CL(e(k)) − Ea

CL(e(k))]
+[Ee

CL(e(k))−Ea
CL(e(k))]TP[Ee

CL(e(k))−Ea
CL(e(k))]

+2eT
(k)M

T
k P[Ee

CL(e(k)) − Ea
CL(e(k))],

ΔV(e(k)) � − b3‖e(k)‖2 + λmax(P)[‖Nk‖ + φ1]2

+2λmax(P)‖Mk‖‖e(k)‖[‖Nk‖ + φ1].

Let 0 < ν < 1, then

ΔV(e(k)) � − (1 − ν)b3‖e(k)‖2 − νb3‖e(k)‖2
+ 2λmax(P)ξ[‖Nk‖ + φ1]‖e(k)‖
+ λmax(P)[‖Nk‖ + φ1]2.
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Solving the following inequality for a positive solution

νb3‖e(k)‖2 − 2λmax(P)ξ[‖Nk‖ + φ1]‖e(k)‖
− λmax(P)[‖Nk‖ + φ1]2 � 0,

and defining

b5 = λmax(P)ξ +
√
λ2

max(P)ξ2 + λmax(P)νb3

and μ �
b5(‖Nk‖ + φ1)

νb3
yield

‖e(k)‖ � μ.

Then,

ΔV(e(k)) � −(1 − ν)b3‖e(k)‖2, ∀‖e(k)‖ � μ.

From (47), we obtain b2μ2 < b1δ2 and since b1 � b2 this
in turn implies μ < δ. The remainder of the proof follows
similar arguments as in the proof of [19, Theorem 4.18].
Define Dμ = {e | ‖e‖ � μ}, Dδ = {e | ‖e‖ � δ}, Γμ = {e ∈
Dδ |V(e) � b2μ2}, and Γδ = {e ∈ Dδ |V(e) � b1δ2}, then

Dμ ⊂ Γμ ⊂ Γδ ⊂ Dδ.

A solution starting either in Γδ or Γμ cannot leave the set,
because ΔV(e(k)) is negative for all ‖ek‖ � μ and δ > μ.
Indeed, from (49), b2‖e(k0)‖2 � b1δ2, then e(k0) ∈ Γδ and
e(k) ∈ Γδ, ∀k � k0. Similarly, taking into account that
Γμ ⊂ {e ∈ Dδ | b1‖e‖2 � b2μ2}, for a solution starting in
Γμ we have e(k) ∈ Γμ,∀k � k0, and (51) is satisfied.

It remains to establish that a solution starting in Γδ
must enter Γμ in finite time. In the set {Γδ − Γμ},

ΔV(e(k)) � −(1 − ν)b3‖e(k)‖2 � − (1 − ν)b3

b2
V(e(k)).

By [19, Lemmas 3.4 and 4.4] and [23, Theorem 8],
V(e(k)) satisfies

V(e(k)) � V(e(k0))e
−(1−ν) b3

b2
(k−k0)

� b2‖e(k)‖2e−(1−ν) b3
b2

(k−k0).

From (44),

‖e(k)‖2 � V(e(k))
b1

�
b2

b1
‖e(k)‖2e−(1−ν) b3

b2
(k−k0).

Hence there is a finite time step k1 after which e(k) ∈
Γμ,∀k � k1, and so (50) and (51) are established. �

We point out that in the proof of this theorem, all
the relevant matrices are evaluated using the state of
the exact model. This is a standard approach presented
in [19, Chapter 9].

Remark 4 For P = αI, we have b1 = b2 = α,
b3 = α(1 − ξ2), b5 = α(ξ +

√
ξ2 + ν(1 − ξ2)) and

ΔV(e(k)) � −(1 − ν)α(1 − ξ2)‖e(k)‖2 for ∀‖e(k)‖ �
(‖Nk‖ + φ1)(ξ +

√
ξ2 + ν(1 − ξ2))

ν(1 − ξ2)
. Equations (47)–(49),

and the expressions for C2, ϕ and B can be modified
accordingly. Note that to satisfy equations (47)–(49), δ
should be chosen sufficiently large. However increasing
δ leads to conservative bounds. Since the selection of
δ is affected by the ratios (b3/b5) and (b1/b2), to reduce
conservatism making b1 = b2, i.e., P = αI is a good
choice.

As a result, the stability of the exact closed-loop dis-
crete model, Ee

CL(e(k)), is determined by (42), (43), (47)
and (48).

Note that it is always difficult to get tight bounds using
Lyapunov functions to establish regions of stability. To
obtain less conservative results in practice, we propose
using Lyapunov transformation for the closed-loop error
equation (40) as follows:

Let L(k) denote a time varying square non-singular ma-
trix such that L(k) and its inverse are uniformly bounded.
We can write

ẽ(k+1) = L(k+1)e(k+1). (52)

The linear system (40) can then be written in an equiv-
alent representation using (52) noting that e(k) = L−1

(k) ẽ(k)

as

ẽ(k+1) = L(k+1)Mke(k) + L(k+1)Nk

= L(k+1)MkL−1
(k) ẽ(k) + L(k+1)Nk

= M̃kẽ(k) + Ñk. (53)

Since L(k) is a Lyapunov transformation, it preserves
the properties of stability, instability, and asymptotic sta-
bility; and in this sense, (40) and (53) are equivalent
representations. In addition, if Mk is periodic and has a
non-zero determinant for all k, then there is a Lyapunov
transformation such that M̃k is time invariant and hence
the stability properties are determined by the eigenval-
ues of M̃k. (For further results on time-varying Lyapunov
transformations, refer to [24].)
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4 Numerical verification

Numerical simulation is performed to verify the sta-
bility analysis of the standard discrete-time TDC.

4.1 Case 1: the first-order nonlinear system

In this section, the first order nonlinear system ẋ(t) =

x3
(t) + sin x(t) + 5u(t) is considered as a plant, whilst its

linearised model was used to illustrate the example in
Section 2.3. The result of the proposed stability criteria is
particularly examined when different sampling frequen-
cies as well as trajectories are assigned to the controller,
compared with the actual stability region.

Here, gp(x) = 5, which is unknown to a control de-
signer. Therefore the gain of TDC, denoted as ḡ, has to
be properly chosen as suggested by (5) [16]. For the
aforementioned plant, the TDC (4) is implemented in
the standard discrete form (9), given by

u(k) = u(k−1) + ḡ−1[−ẋ(k−1) + Amx(k) + (ẋd(k) − Amxd(k))],

where u denotes the input, Am denotes the reference
model parameter, x denotes the state, and xd denotes
the desired trajectory (Note that BmR(k) = ẋd(k)−Amxd(k),
[25]). Am = −40 is set in the simulation.

In this paper, the proposed stability criteria, (42), (43),
(47) and (48), are verified under different sampling time
conditions: T = 0.01, 0.005, and 0.001 s. Moreover, un-
like existing literature on stability of TDC, we analyse the
impact of the reference trajectory on the overall stability
using the proposed method. The reference trajectories
used in simulations are shown in Fig. 1; the 5th order
polynomial trajectory is

xd(t) =

⎧⎪⎪⎨⎪⎪⎩10t3 − 15t4 + 6t5, t � 1 s,
1, t > 1 s,

(54)

and two sinusoidal trajectories are

xd(t) =

⎧⎪⎪⎨⎪⎪⎩ sin(
1
2

t), (55)
sin(2t). (56)

For consistency of results, all necessary parameters of
the proposed stability are set to the same values as for
P = I, δ = 0.5

√
2, ν = 0.99, and ks = 100. Note that

evaluating φ1 in Lemma 2 requires the knowledge of the

exact discrete-time model of the nonlinear system. In
this simulation verification, it is acquired by numerically
solving the differential equation; for example, a differen-
tial equation solver ode45 in Matlab® is widely accepted
for the accuracy, which implements a Runge-Kutta(4, 5)
formula, also known as the Dormand-Prince pair [26].

Fig. 1 The desired trajectories xd(t) and ẋd(t) in simulations.

Fig. 2 depicts the stable range of values for ḡ at
T = 0.01 s when the system is controlled to track the
sinusoidal reference (56). The proposed sufficient sta-
bility criterion (43) and (48) are respectively evaluated
with respect to the change of ḡ; this reveals that the
gains in the range of 2.998 � ḡ � 77 guarantee stable
tracking of the reference xd(t) = sin(2t).

Fig. 2 The evaluation of the proposed stability criterion ξ and
ω as a function of ḡ for a sampling time interval T = 0.01 s
with the reference xd = sin(2t). (a) ḡ vs. ξ; 0 < ξ < 1. (b) ḡ vs.
ω; ω < 0.
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Through the same procedure for other references (54)
and (55), and sample times T = 0.005 s and 0.001 s, one
can obtain the range of ḡ satisfying the proposed stabil-
ity criterion. Results are summarised in Table 1, where
the gain sets of the actual stability criterion are found by
trial and error in numerical experiments.

Table 1 Range of ḡ meets sufficient stability criteria
for different sampling time and desired
trajectory.

(a) The 5th order polynomial xd(t).

Sampling ḡ range
time T Proposed method Actual values

0.010 [2.991, 82] [2.960, 138]
0.005 [2.745, 169] [2.728, 279]
0.001 [2.554, 780] [2.550, 1409]

(b) xd(t) = sin(0.5t).

Sampling ḡ range
time T Proposed method Actual values

0.010 [2.990, 119] [2.972, 217]
0.005 [2.794, 231] [2.736, 437]
0.001 [2.690, 1055] [2.548, 2190]

(c) xd(t) = sin(2t).

Sampling ḡ range
time T Proposed method Actual values

0.010 [2.998, 77] [2.972, 201]
0.005 [2.799, 144] [2.736, 390]
0.001 [2.695, 557] [2.548, 2010]

As seen in Table 1, the lower bounds of the proposed
criterion are close to the actual ones, while its upper
bounds are rather conservative. From a close investiga-
tion of the case shown in Fig. 2, one can notice that the
condition ω < 0 gives more conservative bounds of ḡ
than those from 0 < ξ < 1. It is mainly because ω is
determined by δ as seen in (48), which is specified as
the maximum error norm bound (49); in other words,
by setting δ, one can effectively define the allowable
maximum error range regarding the stability.

The results presented in Table 1, i.e., the upper and
lower bound values of ḡ, are verified by the simulations
of the standard discrete TDC, as shown in Fig. 3, for
T = 0.001 s with the 5th order polynomial trajectory,
T = 0.005 s with xd = sin(0.5t), and T = 0.01 s with
xd = sin(2t). (Since other six cases present the similar
results, they are omitted for the brevity of the paper.)
This illustrates that the system is stable and error norms
‖e‖ are much less than the specified error norm bound
δ.

Note the conventional stability criterion (5) only gives
the lower bound of the gain as ḡ > 2.5. Whereas, it
is clearly seen that the proposed stability criterion pro-
vides both upper and lower bounds that depend on the
sampling time T as well as the reference xd. The sta-
ble range of the gain increases as the size of sample
time decreases under the same reference; in addition,
as the frequency of the sinusoidal trajectory increases,
the stable gain range decreases. These results are con-
sistent with observed experimental results in actual TDC
systems.
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Fig. 3 The error responses e1 = x − xm, e2 = (u − um)/ks, and the error norm ‖e‖, where the red-solid and black-dashed lines
respectively correspond to the lower and upper bounds of ḡ from the proposed stability criteria shown in Table 1. (a) T = 0.001 s

under the 5th order polynomial trajectory, equation (54). (b) T = 0.005 s under the trajectory sin(
1
2

t), equation (55). (c) T = 0.010 s
under the trajectory sin(2t), equation (56).

4.2 Case 2: a two-link manipulator

In this section, dynamic simulations for a two degrees-
of-freedom manipulator are performed to validate the
proposed stability analysis of the standard discrete TDC
as an example of a practical nonlinear system applica-
tion. Fig. 4 illustrates the two-link manipulator described
by the following dynamics:

τ =M(θ)θ̈ + C(θ̇,θ) + g(θ), (57)

where τ ∈ R2 denotes the joint torque vector, θ ∈ R2

denotes the joint angle vector, M(θ) denotes the ma-
nipulator inertia matrix, C(θ̇,θ) denotes the centrifugal
and Coriolis torque matrix, and g(θ) denotes the grav-
itational torque vector, while their elements are given
as

M11 = m1l2c1 +m2(l21 + l2c2 + 2l1lc2 cosθ2) + I1 + I2,

M12 =M21 = m2(l2c2 + l1lc2 cosθ2) + I2,

M22 = m2l2c2 + I2,

C1 = −m2l1lc2 sinθ2(2θ̇1θ̇2 + θ̇
2
1),

C2 = m2l1lc2 sinθ2θ̇
2
1,

g1 = {(m1lc1 +m2l1) cosθ1 +m2lc2 cos (θ1 + θ2)}g,
g2 = m2lc2 cos (θ1 + θ2)g,

where (m1, l1, lc1, I1), (m2, l2, lc2, I2) denote the mass, link
lengths, position of the centre of mass, and the moment
of inertia of links 1 and 2, respectively. The system can
be expressed in the nonlinear system structure (1) and
(2) as follows:

x =

⎡⎢⎢⎢⎢⎢⎣θθ̇
⎤⎥⎥⎥⎥⎥⎦ , f (x) =

⎡⎢⎢⎢⎢⎢⎣ θ̇

−M(θ)−1(C(θ̇,θ) + g(θ))

⎤⎥⎥⎥⎥⎥⎦ ,

g(x) =

⎡⎢⎢⎢⎢⎢⎣ 02

M(θ)−1

⎤⎥⎥⎥⎥⎥⎦ , u = τ.
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The following parameter values are selected for simula-
tions: m1 = m2 = 1 kg, l1 = l2 = 1 m, lc1 = lc2 = 1/2 m,
I1 = I2 = 1/12 kg ·m2, and g = 9.81 m/s2.

The reference model is chosen as

Am =

⎡⎢⎢⎢⎢⎢⎣ 02 I2

−ω2
nI2 −2ζnωnI2

⎤⎥⎥⎥⎥⎥⎦ , Bm =

⎡⎢⎢⎢⎢⎢⎣ 02

ω2
nI2

⎤⎥⎥⎥⎥⎥⎦ ,

where ωn and ζn denote the desired natural frequency
and damping ratio of the manipulator system, respec-
tively. In the simulation, ωn = 10 rad/s and ζn = 0.707
are used for all joints.

Fig. 4 Schematic diagram of a two-link manipulator.

The gain of TDC, ḡ+, is set to a constant matrix, often
determined by a nominal value of g(x) [16]. Here, we
consider the following gain matrix:

ḡ+ = β[02 M̄],

where β is a positive scalar to scale the gain value and

M̄ is a constant matrix selected as M̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
5
8

1
8

1
8

1
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, which

is the inertia matrix evaluated at θ2 =
π
2

rad and scaled

down by 3
8

. The single scale gain β is introduced for
simplicity in the stability simulations presented in this
paper; in general, the gain for each joint can be inde-
pendently selected. Fig. 5 presents the tracking control
result of the two-link manipulator by standard discrete
TDC, where the sampling time is set to T = 0.005 s and
the gain scale β = 1.

The proposed stability criteria, (42), (43), (47), and
(48), are then determined under the sampling time con-
dition of T = 0.005 s, when two joints are commanded
to track the same 5th order polynomial trajectory for ten
seconds as shown in Fig. 5 (a). All necessary parameters
of the proposed stability are set to the same values as
for P = I, δ = 4.7E4, ν = 0.99, and ks = 100.

Fig. 6 then shows the analysis result regarding the

stable range of gain values represented by the scale β.
The proposed sufficient stability criterion 0 < ξ < 1,
given by (43), and ω < 0, given by (48), are re-
spectively evaluated with respect to the change of β;
this reveals that the determined gains in the range of
0.2057 < β < 1.2873 guarantee stable tracking of the
given trajectory. Those lower- and upper-bound gains
obtained from the stability analysis are evaluated as
shown in Fig. 7. Note that the conventional stability crite-
rion (5) gives 0 < β < 0.8610, regardless of the sampling
time and the trajectory.

Fig. 5 Simulation of standard disrecte TDC for the two link
manipulator when T = 0.005 s and gain scale β = 1 are set. (a)
Desired trajectory. (b) Tracking error. (c) Control signal.

Compared to the result controlled with nominal stable
gain shown in Fig. 5, one can observe that the responses
and control inputs with lower-bound gain exhibit slowly
decaying oscillations and the tracking performance is
rather poor; and for the upper-bound gain case, while
the error responses appear to be stable, the control
torques start to oscillate. As found by changing gains
by trial and error in simulations, the actual instability
occurs when the gain is β < 0.1406 or β > 1.6015. Thus,
it is confirmed that the proposed stability criteria prop-
erly provide sufficient condition, and this trend is also
consistent to the results shown in Case 1. Therefore, we
verify that the proposed stability criterion of standard
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discrete TDC can be applied to the practical two-link
manipulator system and can offer the stable region of
the gain.

Fig. 6 The proposed stability criterion ξ and ω evaluation:
x-axes are the gain scale β, while y-axis of the upper plot is ξ,
equation (43) and that of lower plot is ω, equation (48).

Fig. 7 The tracking error responses and control torques of two
joints for lower- and upper-bound gains obtained from the
proposed stability analysis. (a) Lower bound gain β = 0.2060.
(b) Upper bound gain β = 1.2873.

5 Conclusions

In this paper, we have theoretically investigated the
stability criteria for a nonlinear system under the stan-
dard form of discrete-time time delay control (TDC).
An approximate discrete-time model of the nonlinear
system under the standard TDC is derived and suffi-

cient stability criteria are then proposed. Additionally,
tight bounds in the sufficient condition are provided
by exploiting Lyapunov transformations. These criteria
have been verified by simulation results offering insight
into finding the impact of the sampling period, desired
and reference model dynamics trajectory on the actual
closed-loop system stability.
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Appendix
A Taylor series expansion of f (χi) and g(χi)u(k−1)

The first order Taylor series of f (χi) is given as

f (χi) ≈ f (χ0) + F(χ0)(χi − χ0). (a1)

where F denotes the partial derivatives in terms of χ such that

[F(χ0)]a,b =
∂[ f ]a

∂[χ]b
(χ0) for a, b = 1, . . . , n. Similarly, the first

order Taylor series of g(χi)u(k−1) is written as

g(χi)u(k−1) ≈ g(χ0)u(k−1) +G(χ0,u(k−1))(χi − χ0), (a2)

where [Gx(χ0,u(k−1))]a,b =
p∑

j=1

∂ga, j(χ0)
∂χb

uj(k).

B Taylor expansion residual

[O1(x(k), xm(k))]a =
1
2

a∑
i, j=1

∂2[ f (xq(k))]a

∂[x]i∂[x] j
[e1(k)]i[e1(k)] j, (a3)

where [ · ]a denotes the ath element of “ · ” for a = 1, . . . ,n
and xq(k) is a certain point in the line joining x(k) and xm(k).
Hereinafter, for brevity, O1(x(k), xm(k)) will be written as O1(k).

C Detailed expression of matrices in (36) & (37)
E1 = −ḡ+Am/ks ∈ Rp×n,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 = In + Ck gk ḡ+Am + CkF(xm(k)) ∈ Rn×n,

S2 = −Ck gk ḡ+F(xm(k−1)) ∈ Rn×n,

S3 = ksCk gk ḡ+(ḡ − g(k−1)) = ksCk gk(In − ḡ+g(k−1))

∈ Rn×p,

S4 = −ḡ+F(xm(k))/ks ∈ Rp×n,

S5 = ḡ+(ḡ − gk) = (In − ḡ+gk) ∈ Rp×p,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 = Ck∈ Rn,

Q2 = −Ck gk ḡ+ ∈ Rn,

Q3 = Ck − (D1 − In)A−1
m (In − ḡ ḡ+) ∈ Rn,

Q4 = −(D1 − In)A−1
m ḡ ḡ+ ∈ Rn,

Q5 = Ck gk − (D1 − In)A−1
m ḡ ∈ Rn,

Q6 = Ck gk ḡ+[g(xm(k−1)) − g(k−1)]

−(D1 − In)A−1
m ḡ ḡ+[g(xm(k−1)) − ḡ] ∈ Rn,

Q7 = −ḡ+/ks ∈ Rp,

Q8 = ḡ+[g(xm(k)) − gk]/ks ∈ Rp.

Note that all these matrices are functions of x(k), xm(k), x(k−1),
xm(k−1) and depend on the sampling time interval T. This is
illustrated in Section 4 with numerical simulations.
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