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Abstract
This paper is concerned with the robustness analysis and distributed output feedback control of a networked system with

uncertain time-varying communication delays. This system consists of a collection of linear time-invariant subsystems that are
spatially interconnected via an arbitrary directed network. Using a dissipation inequality that incorporates dynamic hard IQCs
(integral quadratic constraints) for the delay uncertainties, we derive some sufficient robustness conditions in the form of coupled
linear matrix inequalities, in which the coupled parts reflect the interconnection structure of the system. We then provide a
procedure to construct a distributed controller to ensure the robust stability of the closed-loop system and to achieve a prescribed
�2-gain performance. The effectiveness of the proposed approach is demonstrated by some numerical examples.
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1 Introduction

Recently, the rapid developments in computer net-
working technology and control engineering have en-
abled many large-scale networked systems (LSNS), such
as unmanned flight formations, automated highway sys-
tems, satellite constellations, and smart structures. The
common features of these systems are that they usually
consist of numerous subsystems and exhibit complex
dynamic behavior as a whole by exchanging information

among the subsystems through the interconnection net-
works. When controlling these systems, it is often nec-
essary to adopt a distributed architecture, in which the
controller is also composed of several interconnected
units, to take advantage of structure information and
reduce the computation or communication complexity.

Great effort has been devoted to investigating the sta-
bility analysis and distributed controller synthesis prob-
lems for special types of systems, including spatially
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invariant systems [1–4], strongly interconnected sys-
tems [5], identical dynamically coupled or decoupled
systems [6, 7], heterogeneous spatially distributed sys-
tems [8, 9]. Most distributed control approaches as-
sume that the communication is ideal. However, due
to the spatially distributed nature of LSNS and the lim-
ited network capacity, the transfer of information among
these subsystems is subjected to communication delays,
which are usually uncertain even time-varying. These
network-induced delays can lead to serious performance
degradation and even destabilization of the system. For
such systems, time-delay robustness must be explic-
itly addressed to ensure that system performance is
achieved.

Some references assumed that signals exchanged by
the subsystems affected by arbitrarily small delays [9]
or one-step delays [10, 11]. By utilizing these assump-
tions, some delay-independent robust stability criteria
were derived. These criteria, however, fail to exploit the
gain or phase properties of the delay, and may be overly
conservative when the upper and lower bounds of the
delay are given. The paper [12] considered an intercon-
nected passive system with time delays in the intercon-
nections, and presented an exact integral quadratic con-
straint (IQC) based delay-dependent stability condition.
However, this condition is only applicable to a special
system with a cyclic interconnection structure and is not
applicable to distributed controller design.

In this paper, we consider the robustness analysis
and distributed output-feedback control of a networked
system (NS) with time-varying communication delays.
The NS adopted here consists of a collection of linear
time-invariant (LTI) subsystems interconnected through
an arbitrary directed network. The objective is to de-
rive some delay-dependent and computationally effi-
cient conditions for robustness analysis, and construct a
distributed controller with the same architecture as the
plant that achieves robust stability and �2-gain perfor-
mance against the time-varying communication delays.

To accomplish this, we follow the so-called IQC ap-
proach for capturing the input-output properties of time-
varying delay uncertainties. The first contribution of this
paper is to extend the merging of time-domain IQC
descriptions of uncertainties with dissipation theory to
networked systems. Inspired by the recent works [8],
we construct a dissipation inequality based on the hard

factorization of IQCs multipliers for each individual sub-
system via a neutral interconnection constraint, in which
the time-domain IQCs are interpreted as dynamic sup-
ply functions for each subsystem. This paves the way
for the distributed controller design by respecting the
interconnection structure of the system.

Specifically, by separating the delay operators from
the interconnections, we first describe the uncertain NS
by a linear fractional transformation (LFT) model. The
properties of the time-varying delays are captured by
suitable families of dynamic hard IQCs. Using a dissi-
pation inequality that incorporates the IQCs for delay
uncertainties, we establish sufficient conditions for ro-
bust stability and �2-gain performance of the NS against
delay uncertainties in the form of coupled linear matrix
inequalities (LMI). These conditions depend only on pa-
rameters of each subsystem, IQC multipliers and inter-
connection structure information. This property makes
them computationally attractive for an LSNS with sparse
interconnections.

As the second contribution of this paper, we develop a
method for the distributed controller design by adopting
the dynamic IQC constraints directly to handle the case
when the controller is also affected by communication
delays. On the basis of the dualization lemma and elim-
ination lemma in [13] and [14], the conditions for the
existence of a distributed output-feedback controller are
formulated in terms of several matrix inequalities, which
are non-convex. Then, we show how these conditions
can be convexified.

The remaining of this paper is organized as follows.
Section 2 gives a description of the adopted NS and the
problem formulation. Section 3 develops the robust sta-
bility and performance conditions of the NS with time-
varying communication delays. Section 4 presents the
distributed controller design procedure. Some numeri-
cal results are reported in Section 5. Section 6 concludes
this paper.

Notation SymbolsRn,Rn
S,R

m×n,R+,Z+ denote the
sets of n-dimensional real vectors, n-dimensional real
symmetric matrices, m × n real matrices, nonnegative
real numbers and nonnegative integers, respectively.
�n2 denotes the set of n-dimensional square summable
signals, while �n2e represents the extended set of n-
dimensional locally square summable signals. Notation
RLm×n

∞ is used to denote the space of proper rational
transfer matrix with no poles on the unit circle. RHm×n

∞
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represents the subspace of RLm×n
∞ consisting of func-

tions with no poles outside the open unit disk. The trans-
pose and conjugate transpose of a matrix X are denoted
by XT and X∗. The para-Hermitian conjugate of Ψ ∈
RLm×n

∞ , denoted as Ψ∼, is defined by Ψ∼(ζ) := ΨT(ζ−1)
where ζ denotes the variable of Z-transformation. The
n × n identity and the m × n zero matrix are denoted by
In and 0m×n, respectively, or just I and 0 if dimension
is clear from context. diag{Xi|Li=1} denotes a block diag-
onal matrix, while col{Xi|Li=1} the vector/matrix stacked
by Xi| Li=1. Objects that can be inferred by symmetry are
sometimes indicated by�. The Kronecker product is de-
noted by ⊗. The inertia of a symmetric matrix M is de-
fined as in(M) = (in−(M), in0(M), in+(M)) with in−(M),
in0(M), in+(M)) denoting the number of negative, zero,
and positive eigenvalues of M.

Given a time-varying delay τ(t) ∈ Z+. Let Dτ denote
the time delay operator: (Dτv)(t) = v(t − τ(t)), and Sτ
denote the “delay-difference” operator (Dτ − I); i.e.,
Sτ(v) := v(t − τ(t)) − v(t).

2 Problem formulation

Consider a networked systemΣ consisting of N linear
time invariant dynamic subsystems. Each subsystem Σi

is described by the following discrete state-space equa-
tion:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t + 1, i)

z(t, i)

e(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Axx,i Axv,i Bxd,i

Azx,i Azv,i Bzd,i

Cex,i Cev,i Ded,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t, i)

v(t, i)

d(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where i = 1, 2, . . . ,N. t and i stand for the temporal vari-
able and the index number of a subsystem, respectively.
x(t, i) ∈ Rnxi is the state vector of the ith subsystem Σi

at time t. z(t, i) ∈ Rnzi /v(t, i) ∈ Rnvi is the output/input
vector of the Σi to/from other subsystems, which is also
called internal output/input vector throughout this pa-
per. e(t, i) ∈ Rnei /d(t, i) ∈ Rndi is the performance out-
put/disturbance input of the Σi.

Define NT(i) as the index set of the subsystems that
have internal outputs to subsystem Σi and NF(i) as
the index set of the subsystems that have internal in-
puts from subsystem Σi. Thus, the internal input v(t, i)
and internal output z(t, i) can be partitioned as v(t, i) :=
col{vp(t, i)|p∈NT(i)} and z(t, i) := col{zq(t, i)|q∈NF(i)}, respec-
tively.

To a distinct pair of subsystems, indexed by i and j, we

assume j ∈ NT(i). The constraint of the interconnection
between Σi and Σ j can be expressed as

vj(t, i) = (Dτi j zi)(t, j), j ∈ NT(i), (2)

where vj(t, i) ∈ Rnvij and zi(t, j) ∈ Rnzji . It is obvious that
nvij = nzji . Dτi j is the delay operator that is defined by
vj(t, i) = zi(t − τi j(t), j), where the delay duration τi j(t)
is uncertain and time-varying. To simplify the notation,
we write τi j(t) as τi j. The upper bound of τi j is denoted
by Tuij ∈ Z+ such that τi j ∈ [0,Tuij ]. Hence, the subsys-
tems are connected through

v(t) = (DτΦz)(t). (3)

Here, z(t) = col{z(t, i)|Ni=1} and v(t) = col{v(t, i)|Ni=1}. In
addition,Dτ is the delay operator generated viaDτi j ,

Dτ = diag{diag{Dτi j | j∈NT(i)}|Ni=1}. (4)

The interconnected structure is illustrated in Fig. 1 for
the case N = 3. It is assumed that every row of the
subsystem connection matrix (SCM) Φ has only one
non-zero element which is equal to one. As argued
in [15–17], this assumption explicitly describes the con-
nection between the internal inputs and outputs of dif-
ferent subsystems, and does not introduce any restric-
tions on the structure of the adopted system. Since each
individual subsystem only interact with a small num-
ber neighboring subsystems, the SCM Φ usually has a
sparse structure. For the case in Fig. 1, the SCM Φ is
given by

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 Inz21
0

Inz12
0 0 0

0 0 0 Inz32

0 Inz13
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Introduce the vector v̄(t) and let v̄(t) = Φz(t). We have
that v(t) = (Dτv̄)(t). For subsystem Σi, the internal in-
put vector v(t, i) can be expressed by v(t, i) = (Dτi v̄)(t, i),
where Dτi = diag{Dτi j | j∈NT(i)}. Based on these relations
and equation (1), the state-space description of subsys-
tem Σi can be rewritten as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t + 1, i)

z(t, i)

e(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Axx,i Axv,i Bxd,i

Azx,i Azv,i Bzd,i

Cex,i Cev,i Ded,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t, i)

(Dτi v̄)(t, i)

d(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)
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The interconnections among the subsystems are de-
scribed by

v̄(t) = Φz(t). (7)

It is obvious that the interconnections described by (7)
are turned to be ideal, that is, the flow of information be-
tween any two subsystems will be instantaneous. More-
over, the internal input of subsystem Σi becomes a de-
layed signal defined by the diagonal delay operatorsDτi .

Fig. 1 Networked system with communication delays (N = 3).

To facilitate the robustness analysis, a model trans-
formation will be performed on the original model in
order to separate the delay uncertainties from the nom-
inal LTI subsystems. Specifically, we introduce two vec-
tors w(t, i) and q(t, i). Let w(t, i) = v̄(t, i) and q(t, i) =
(Dτi v̄)(t, i)− v̄(t, i). From equation (6), we have the aug-
mented model of the subsystem Σi described in the
following LFT form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t + 1, i)

w(t, i)

z(t, i)

e(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Axx,i Axv,i Axv,i Bxd,i

0 0 I 0

Azx,i Azv,i Azv,i Bzd,i

Cex,i Cev,i Cev,i Ded,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t, i)

q(t, i)

v̄(t, i)

d(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

q(t, i) = (Sτi w)(t, i),

(8)

where Sτi is a diagonal delay-difference operator, and
it is obvious that Sτi = diag{Sτi j | j∈NT(i)}. Let d(t) =
diag{d(t, i)|Ni=1} and e(t) = diag{e(t, i)|Ni=1}. The defini-
tion of stability of the NS Σ is adapted to the current
formulation as follows.

Definition 1 The networked system Σ formulated
by the feedback interconnection subsystem (8) and the
subsystem connection (7) is stable if it is well-posed and
if the mapping from d(t) to e(t) has finite �2 gain.

3 Robust stability and performance analy-
sis

IQCs is a powerful tool in robust stability analysis
of uncertain systems. They are extensively applied to
specify a constraint on the input/output signals of the
uncertainty. More precisely, let Δ denote a bounded,
causal operator. Two signals w ∈ �m2 and q ∈ �n2 related
by q = Δ(w) satisfy the IQC defined by Π if

� π
−π

⎡⎢⎢⎢⎢⎢⎣
ŵ(e jω)

q̂(e jω)

⎤⎥⎥⎥⎥⎥⎦
∗

Π(e jω)

⎡⎢⎢⎢⎢⎢⎣
ŵ(e jω)

q̂(e jω)

⎤⎥⎥⎥⎥⎥⎦dω � 0, (9)

where ŵ and q̂ are Fourier transforms of w and q, re-
spectively. Π is a bounded LTI self-adjoint operator on
�2 space, while Π(e jω) is its frequency response func-
tion. The following definition characterize the IQC in
the time domain.

Definition 2 Let Π ∈ RL(m+n)×(m+n)
∞ be factorized

as Ψ∼MΨ where M ∈ Rnz×nz
S and Ψ ∈ RHnz×(m+n)

∞ .
Then (Ψ,M) is a hard IQC factorization of Π if for any
bounded, causal operator Δ satisfying the IQC defined
by Π the following inequality holds:

T∑
t=0

(zψ(t))TMzψ(t) � 0 (10)

for all T � 0, v ∈ �n2 , w = Δ(v), and z = Ψ

⎡⎢⎢⎢⎢⎢⎣
v

w

⎤⎥⎥⎥⎥⎥⎦.

A time domain IQC as in Definition 1 is referred to as
a hard IQC in [18]. In contrast, factorizations for which
the time domain constraint holds only for T = ∞ are
called soft IQCs. It should be noted that the hard/soft
property depends on the factorization (Ψ,M) but not be
inherent to the multiplier Π [19]. The distinction is im-
portant because the dissipation inequality is valid only
for hard IQCs. The next lemma provides a sufficient
condition that Π has a hard factorization.

Lemma 1 Let Π ∈ RL(m+n)×(m+n)
∞ if Π = Ψ∼MΨ

and partition as

⎡⎢⎢⎢⎢⎢⎣
Π11 Π12

Π∼12 Π22

⎤⎥⎥⎥⎥⎥⎦ where Π11 ∈ RLm×m
∞ and

Π22 ∈ RLn×n
∞ . Assume Π11 > 0 and Π22 < 0, then Π has

a hard factorization (Ψ,M).

Assume that the delay-difference operator Sτi satis-
fies a collection of IQC multipliers {Πk, k = 1, 2, . . . ,Nτ},

which can be partitioned as

⎡⎢⎢⎢⎢⎢⎣
Π11,k Π12,k

Π∼12,k Π22,k

⎤⎥⎥⎥⎥⎥⎦ with Π11,k >

0 and Π22,k < 0. According to Lemma 1, every Πk
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has a Jnvi ,nvi
-spectral factorization (Ψk,i,Mk,i) using the

methods of [19]. We further assume the factorization

(Ψk,i,Mk,i) has the form of Ψk,i =

⎡⎢⎢⎢⎢⎢⎣
ψ11,ki ψ12,ki

0 Invi

⎤⎥⎥⎥⎥⎥⎦ and

Mk,i =

⎡⎢⎢⎢⎢⎢⎣
Invi

0

0 −Invi

⎤⎥⎥⎥⎥⎥⎦. As argued in [20], this assumption

is without loss any generality.
Then, the state-space realization of the associated sys-

tem Ψk,i can be described as

⎡⎢⎢⎢⎢⎢⎣
xψk (t + 1, i)

zψk (t, i)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
Aψk,i Bψkq,i Bψkw,i

C̄ψk ,i D̄ψkq,i D̄ψkw,i

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xψk (t, i)

q(t, i)

w(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (11)

where xψk (t, i) ∈ R
nψk,i denotes the state vector of the

associated system Ψk,i with xψk (0, i) = 0, and zψk (t, i) ∈
R

2nvi is the output of Ψk,i. The output matrices have the
following structure for all k = 1, 2, . . . ,Nτ,

C̄ψk ,i =

⎡⎢⎢⎢⎢⎢⎣
Cψk ,i

0

⎤⎥⎥⎥⎥⎥⎦ , D̄ψkq,i =

⎡⎢⎢⎢⎢⎢⎣
Dψkq,i

Invi

⎤⎥⎥⎥⎥⎥⎦ , D̄ψkw,i =

⎡⎢⎢⎢⎢⎢⎣
Dψkw,i

0

⎤⎥⎥⎥⎥⎥⎦ .

All {Ψk,i, k = 1, 2, . . . ,Nτ} are aggregated into a single
system Ψi with the following state-space realization:

⎡⎢⎢⎢⎢⎢⎣
xψ(t + 1, i)

zψ(t, i)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aψ,i Bψq,i Bψw,i⎡⎢⎢⎢⎢⎢⎣
Cψ,i Dψq,i Dψw,i

0 Invi
0

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xψ(t, i)

q(t, i)

w(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

where xψ(t, i) = col{xψk (t, i)|Nτk=1} with xψ(t, i) ∈ Rnψi . The
matrix parameters are partitioned as

Aψ,i = diag{Aψk ,i|Nτk=1}, Bψq,i = col{BΨkq,i|Nτk=1},
Bψw,i = col{BΨkw,i|Nτk=1}, CΨ,i = diag{CΨk ,i|Nτk=1},
Dψq,i = col{DΨkq,i|Nτk=1}, Dψw,i = col{DΨkw,i|Nτk=1}.

Now, we combine the IQC-induced system (12) to the
augmented system (8). The resulting extended system
can be described in the following form for i = 1, 2, . . . ,N
and k = 1, 2, . . . ,Nτ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃(t + 1, i)

zψk (t, i)

z(t, i)

e(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

At,i Bt1,i Bt2,i Bt3,i

Ck,i Dk1,i Dk2,i 0

Āzx,i Azv,i Azv,i Bzd,i

C̄ex,i Cev,i Cev,i Ded,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃(t, i)

q(t, i)

v̄(t, i)

d(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

where x̃(t, i) = [xT
ψ(t, i) xT(t, i)]T ∈ Rnx̃i with nx̃i =

nxi + nψi and the system matrices given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

At,i =

⎡⎢⎢⎢⎢⎢⎣
Aψ,i 0

0 Axx,i

⎤⎥⎥⎥⎥⎥⎦ , Bt1,i =

⎡⎢⎢⎢⎢⎢⎣
Bψq,i

Axv,i

⎤⎥⎥⎥⎥⎥⎦ ,

Bt2,i =

⎡⎢⎢⎢⎢⎢⎣
Bψw,i

Axv,i

⎤⎥⎥⎥⎥⎥⎦ , Bt3,i =

⎡⎢⎢⎢⎢⎢⎣
0

Bxd,i

⎤⎥⎥⎥⎥⎥⎦ ,

Ck,i =

⎡⎢⎢⎢⎢⎢⎣
[0nvi×nα Cψk,i 0nvi×nβ ] 0nvi×nxi

0 0

⎤⎥⎥⎥⎥⎥⎦ ,

Dk1,i =

⎡⎢⎢⎢⎢⎢⎣
0

Invi

⎤⎥⎥⎥⎥⎥⎦ , Dk2,i =

⎡⎢⎢⎢⎢⎢⎣
Dψkw,i

0

⎤⎥⎥⎥⎥⎥⎦ ,

Āzx,i = [0nzi×nψi
Azx,i ], C̄ex,i = [0nei×nψi

Cex,i ],

(14)

where nα =
k−1∑
ς=1

nψς,i and nβ =
Nτ∑
ς=k+1

nψς,i .

In order to establish the stability conditions of the NS
against time-varying delays, we will establish the con-
nection between time-domain IQCs and the dissipation
theory. We first introduce the following definition of dis-
sipativity [21].

Definition 3 (Dissipativity) A discrete time system
ΣG is (Q, S,R)-dissipative with respect to the energy sup-
ply rate s(u, y) := yTQy + 2yTSu + uTRu, if there exists
a non-negative storage function V(x) : Rn → R+ such
that

V(x( j)) � V(x(i)) +
j−1∑
t=i

⎡⎢⎢⎢⎢⎢⎣
y(t)

u(t)

⎤⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎣

Q S

ST R

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
y(t)

u(t)

⎤⎥⎥⎥⎥⎥⎦ (15)

holds for all x ∈ Rn, all times j > i � 0, i, j ∈ Z+, and all
input u ∈ �m2e.

The energy supply rate function s(u, y) can be defined
according to the quadratic performance criteria of the
system. In this paper, the NS Σ is required to be finite-
gain �2 stable, which is equivalent to that there exists
γ > 0 such that it is (−I, 0, γ2I)-dissipative.

Furthermore, utilizing the neutral interconnection
constraint, we introduce the following quadratic form
as a special energy supply rate for each subsystem

Qi(z(t, i), v̄(t, i)) =

⎡⎢⎢⎢⎢⎢⎣
z(t, i)

v̄(t, i)

⎤⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎣

Ui 0

0 Vi

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
z(t, i)

v̄(t, i)

⎤⎥⎥⎥⎥⎥⎦

=
N∑

j=1

⎡⎢⎢⎢⎢⎢⎣
zj(t, i)

v̄ j(t, i)

⎤⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎣

Xij 0

0 Yij

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
zj(t, i)

v̄ j(t, i)

⎤⎥⎥⎥⎥⎥⎦ , (16)

where Ui = diag{Xij| j∈NF(i)} and Vi = diag{Yij| j∈NT(i)}.
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Let the scaling matrix Xij = −Yji, then

Q(z(t), v̄(t)) =
N∑

i=1
Qi(z(t, i), v̄(t, i)) = 0. (17)

The following theorem provides sufficient conditions
for robustness analysis of an NS with time-varying com-
munication delays.

Theorem 1 Consider the networked system Σ.
Given the upper bound vector Tui = col{Tuij | j∈NT(i)} of
the time-varying delay τi = col{τi j| j∈NT(i)} for all i = 1, 2,
. . . ,N with τi and Tuij ∈ Z+, if there exist positive-
definite matrices Pi ∈ R

nxi+nψi
S and Xij ∈ R

nzij

S , and
positive-definite diagonal matrices Xk,i ∈ R

nvi
S for all i =

1, 2, . . . ,N, j ∈ NT(i) and k = 1, 2, . . . ,Nτ such that
⎡⎢⎢⎢⎢⎢⎣
AT

t,iPiAt,i − Pi �

BT
t,iPiAt,i BT

t,iPiBt,i

⎤⎥⎥⎥⎥⎥⎦ + [�]T

⎡⎢⎢⎢⎢⎢⎣
Ui 0

0 Vi

⎤⎥⎥⎥⎥⎥⎦ [Cφ,i Dφ,i ]

+
Nτ∑
k=1

(I2 ⊗ Xk,i)[�]TMk,i[Ck,i Dk,i ]

+ [�]T

⎡⎢⎢⎢⎢⎢⎣
I 0

0 −γ2I

⎤⎥⎥⎥⎥⎥⎦ [Cp,i Dp,i ] < 0 (18)

is satisfied for all i = 1, 2, . . . ,N with
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui = diag{Xij| j∈NF(i)}, Vi = diag{Yij| j∈NT(i)},
Xij = −Yji, Bt,i = [Bt1,i Bt2,i Bt3,i],

Cφ,i =

⎡⎢⎢⎢⎢⎢⎣
0nzi×nψi

Azx,i

0 0

⎤⎥⎥⎥⎥⎥⎦ , Cp,i =

⎡⎢⎢⎢⎢⎢⎣
0nei×nψi

Cex,i

0 0

⎤⎥⎥⎥⎥⎥⎦ ,

Dφ,i =

⎡⎢⎢⎢⎢⎢⎣
Azv,i Azv,i Bzd,i

0 I 0

⎤⎥⎥⎥⎥⎥⎦ , Dp,i =

⎡⎢⎢⎢⎢⎢⎣
Cev,i Cev,i Ded,i

0 0 I

⎤⎥⎥⎥⎥⎥⎦ ,

Dk,i = [Dk1,i Dk2,i].
(19)

Then, system Σ is robustly stable for all the time-varying
communication delay τi j ∈ [0,Tuij ], and the induced �2
gain from d to e is no more than a priori given γ > 0.

Proof Assume that all the IQC multipliers {Πk, k =
1, 2, . . . ,Nτ} for Sτi depend on the upper bound vector
Tui of the time-varying delay τi. When the value of Tui is
given, we can construct the Jnvi ,nvi

-spectral factorization
(Ψk,Mk) ofΠk. From the (1, 1) block of the left-hand side
of (18), we have

AT
t,iPiAt,i − Pi +

Nτ∑
k=1

Xk,iCT
k,iCk,i + CT

φ,iUiCφ,i

+ CT
p,iCp,i < 0, (20)

where Pi and Ui are positive definite according to hy-
pothesis. This implies that

AT
t,iPiAt,i − Pi < 0. (21)

Then, each individual subsystem is stable.
Define the storage function V : Rnxi+nψ → R

+ as
V(x̃(t, i)) = x̃T(t, i)Pix̃(t, i). Multiplying the left and right
sides of (18) by [x̃T(t, i) qT(t, i) v̄T(t, i) dT(t, i)] and its
transpose and summing over i = 1, . . . ,N yield

x̃T(t + 1)Px̃(t + 1) − x̃T(t)Px̃(t) +Q(z(t), v̄(t))

+
Nτ∑
k=1

XkzT
ψk

(t)Mkzψk (t) + eT(t)e(t) − γ2dT(t)d(t) < 0,

(22)

in which

x̃(t) = col{x̃(t, i)|Ni=1}, P = diag{Pi|Ni=1},
zψk (t) = col{zψk (t, i)|Ni=1}, Xk = diag{Xk,i|Ni=1},
Mk = diag{Mk,i|Ni=1}.

Furthermore, using the fact that Q(z(t), v̄(t)) = 0 and
summing both sides of the above inequality from t = 0
to t = T with zero initial conditions, we obtain

x̃T(T + 1)Px̃(T + 1) +
Nτ∑
k=1

Xk

T∑
t=0

zT
ψk

(t)Mkzψk (t)

+
T∑

t=0
eT(t)e(t) − γ2

T∑
t=0

dT(t)d(t) < 0. (23)

Applying the hard IQC condition (10) and non-
negativity of the storage function V, we obtain

T∑
t=0

eT(t)e(t) < γ2
T∑

t=0
dT(t)d(t). (24)

Now, we conclude that the NS is robustly stable for
all the communication time-varying delay τi j ∈ [0,Tuij ],
and the worst-case �2 gain from d to e is no more than
γ. �

Theorem 1 involves parameter dependent LMI condi-
tions. Note that inequality (22) requires the time-domain
IQC to hold over finite time horizons. Hence the exis-
tence of a hard factorization of Πk permits the merging
of IQC descriptions of delay uncertainties with dissipa-
tion theory. As was shown in [18,22,23], a broad class of
multipliers has a hard factorization. Thus, for the given
Tuij and γ, Theorem 1 provides convex conditions on
Pi, Xij and Xk,i that are sufficient to upper bound the �2
gain from d to e.
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Note also that the conditions (18) are coupled LMIs
through the scaling matrices Xij for all i = 1, 2, . . . ,N
and j ∈ NT(i). This is based on the constraint (16) that
expresses the neutral property of the interconnections in
terms of energy supply. The number of coupled indepen-
dent scaling matrices in (18) is equal to the number of
non-zero blocks of the SCMΦ. Hence, ifΦ has a sparse
structure, the sparsity of the interconnection structure
can also be reflected by the number of coupled scaling
matrices.

The classical approach to analyze the robust stability
and performance of the NS is to eliminate the intercon-
nection constraint (8) to describe the entire system as
a lumped system. Then, a robustness condition based
on the lumped formulation of the system can be de-
rived using IQCs and a standard dissipation argument
as in [19, Theorem 3]. Compared with the conditions
based on the lumped formulation of the IQC analysis
problem (LF-IQC), the conditions in Theorem 1 are com-
pletely determined by the parameters of subsystem Σi,
the IQC multipliers and the interconnection structure
information of the system.

It should be noted that the conditions in Theorem 1
are more conservative than those in LF-IQC although
both of them are based on the IQC framework, because
we have restricted the quadratic supply rate to a partic-
ular type as in equation (16) when utilizing the neutral
interconnection property of dissipative systems. How-
ever, by considering these supply rates as free parame-
ters, we take advantage of the interconnection informa-
tion of the directed network and give less conservative
analysis conditions than those with fixed supply rates.
Another source of conservatism in Theorem 1 is derived
from the selected IQC multipliers modeling the delay
uncertainties, which can be reduced by exploring more
compact IQCs to bound the delay-difference operators.

4 Robust distributed control design

We extend the subsystem Σi with a control input
u(t, i) ∈ Rnui and a measurement output y(t, i) ∈ Rnyi ,
which leads to the following state-space description
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t + 1, i)

z(t, i)

e(t, i)

y(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Axx,i Axv,i Bxd,i Bxu,i

Azx,i Azv,i Bzd,i Bzu,i

Cex,i Cev,i Ded,i Deu,i

Cyx,i Cyv,i Dyd,i 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t, i)

v(t, i)

d(t, i)

u(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

We assume that the to-be-designed controller K is
another interconnected system that consists of N con-
troller subsystems. The controller subsystem Ki associ-

ated with (25) is described as
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xK(t + 1, i)

zK(t, i)

u(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AK
xx(i) AK

xv,i BK
xu,i

AK
zx,i AK

zv,i BK
zu,i

CK
x,i CK

v,i DK
u,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸�����������������︷︷�����������������︸

Ki

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xK(t, i)

vK(t, i)

y(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (26)

where xK(t, i) ∈ RnxK
i , zK(t, i) ∈ RnzK

i and vK(t, i) ∈ RnvK
i

with i = 1, . . . ,N. Notice that controller subsystems can
communicate via the signals vK(t, i) and zK(t, i). Assume
that the distributed controller shares the same inter-
connection topology with that of the plant. In this way,
the vK(t, i) and zK(t, i) can be partitioned as vK(t, i) :=
col{vK

p (t, i)|p∈NT(i)} and zK(t, i) := col{zK
q (t, i)|q∈NF(i)}, re-

spectively. If we assume that j ∈ NT(i), the constraint of
the interconnection between Ki and Kj is described by

vK
j (t, i) = (DτK

i j
zK

i )(t, j), j ∈ NT(i), (27)

where vK
j (t, i) ∈ R

nvK
i j and zK

i (t, j) ∈ R
nzK

ji with nvK
i j
= nzK

ji
.

DτK
i j

is the delay operator, where τK
i j is time-varying delay

duration. We further assume that τi j and τK
i j do not have

to be equal but share the same upper bound Tuij ∈ Z+.
The objective here is to design an interconnected

output-feedback controller K such that the closed-loop
system is robustly stable and has finite �2 gain in the
face of communication delays. The distributed control
system is depicted in Fig. 2.

A similar model transformation will be performed on
(26) to separate the delay uncertainties from the LTI
part of the controller subsystem. Then, we have the
augmented model of the Ki described in the following
LFT form:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xK(t + 1, i)

wK(t, i)

zK(t, i)

y(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AK
xx,i AK

xv,i AK
xv,i BK

xu,i

0 0 I 0

AK
zx,i AK

zv,i AK
zv,i BK

zd,i

CK
x,i CK

v,i CK
v,i DK

u,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xK(t, i)

qK(t, i)

v̄K(t, i)

u(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

qK(t, i) = (SτK
i
wK)(t, i).

(28)

Define the delay vector τC
i j := col{τi j, τK

i j} and the
delay-difference operatorSτC

i j
:= diag{Sτi j ,SτK

i j
}. LetSτC

i

= diag{SτC
i j
| j∈NT(i)} denote a diagonal delay-difference

operator associated with the closed-loop subsystem
consisting of Ki and Σi. We can employ a set of dy-
namic IQC multipliers {Πk, k = 1, 2, . . . ,Nτ} to char-
acterize the delay-difference operator SτC

i
. Denote a

state-space realization of the IQC-induced system ΨC
i
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by (AC
ψ,i, [B

C
ψq,i BC

ψw,i],C
C
ψ,i, [D

C
ψq,i DC

ψw,i]) with the same
structure as equation (12). This system essentially re-

places the original relation qC(t, i) = (SτC
i
wC)(t, i), which

is shown in Fig. 3.

Fig. 2 Closed-loop networked system with N = 3.

Fig. 3 Robust synthesis interconnection.

By connecting each LFT sub-controller (28) to the sub-
system (8) and absorbing the IQC-induced system (12),
the extended closed-loop subsystem are given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xC(t + 1, i)

zC
ψ(t, i)

zC(t, i)

e(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AC
i BC

1,i BC
2,i BC

3,i

C̄C
ψ,i D̄C

ψq,i D̄C
ψw,i 0

AC
zx,i AC

zv,i AC
zv,i BC

z,i

CC
ex,i CC

ev,i CC
ev,i DC

ed,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸����������������������︷︷����������������������︸

Mi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xC(t, i)

qC(t, i)

v̄C(t, i)

d(t, i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (29)

where xC(t, i) ∈ Rn
ψC

i
+nxC

i , zC(t, i) ∈ RnzC
i , v̄C(t, i) ∈ RnvC

i ,

qC(t, i) ∈ RnvC
i and zC

ψ(t, i) ∈ R
nzC
ψi with nxC

i
= nxi + nxK

i
,

nzC
i
= nzi + nzK

i
, nvC

i
= nvi + nvK

i
and nzC

ψi
= n(Nτ+1)nvC

i
.

Accordingly, we can partition the interconnection vec-
tors vC(t, i) and zC(t, i) as vC(t, i) = col{vC

j (t, i)| j∈NT(i)}
and zC(t, i) = col{zC

j (t, i)| j∈NF(i)}, respectively, in which

vC
j (t, i) ∈ R

nvC
i j and zC

j (t, i) ∈ R
nzC

i j .
The state-space matrices of (29) can be described as

Mi=

⎡⎢⎢⎢⎢⎢⎣
Ai Bi

Ci Di

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bxu,i

0

Bzu,i

Deu,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ki[Cyx,i Cyv,i Cyv,i Dyd,i], (30)

where

Ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aψ,i 0 0 0 Bψq,i 0 Bψw,i 0

0 AK
ψ,i 0 0 0 BK

ψq,i 0 BK
ψw,i

0 0 Axx,i 0 Axv,i 0 Axv,i 0

0 0 0 0 0 0 0 0

Cψ,i 0 0 0 0 0 Dψw,i 0

0 CK
ψ,i 0 0 0 0 0 DK

ψw,i

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 Azx,i 0 Azv,i 0 Azv,i 0

0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai 0 B1,i B2,i

0 0 0 0

C̃C
ψ,i 0 0 D̃C

ψw,i

0 0 I 0

Ãzx,i 0 Ãzv,i Ãzv,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

Bi = [0 0 BT
xd,i 0| 0 0 0 0| BT

zd,i 0]T

= [BT
3,i 0| 0 0| B̃T

zd,i]
T, (32)

Ci = [0 0 Cex,i 0| Cev,i 0| Cev,i 0]
= [C̃ex,i 0| C̃ev,i | C̃ev,i], (33)

Di = Ded,i, (34)

Bxu,i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 Bxu,i

I 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (35)

Bzu,i =

⎡⎢⎢⎢⎢⎢⎣
0 0 Bzu,i

0 I 0

⎤⎥⎥⎥⎥⎥⎦ , (36)

Cyx,i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 I

0 0 0 0

0 0 Cyx,i 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (37)

Cyv,i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 I

Cyv,i 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (38)

Dyd,i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

Dyd,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (39)

Deu,i = [0 0 Deu,i]. (40)

Now, we show the conditions for the existence of a
distributed output-feedback controller in the following
theorem.

Theorem 2 Consider the networked system Σ.
Given the upper bound vector Tui = col{Tuij | j∈NT(i)}
of the time-varying delay τC

i = col{τC
i j | j∈NT(i)} for all

i = 1, 2, . . . ,N with τC
i and Tuij ∈ Z+, if there ex-

ist positive-definite matrices PG
i , P̂G

i ∈ R
nxi+n

ψC
i

S and

XC
i j , X̂C

i j ∈ R
nzC

i j

S , and diagonal positive-definite matri-
ces XC

k,i, X̂
C
k,i ∈ R

nvC
i for all i = 1, 2, . . . ,N, j ∈ NF(i) and

k = 1, 2, . . . ,Nτ such that (41a)–(41f) are satisfied for all
i = 1, 2, . . . ,N. Then, there exists a distributed controller
with the same structure as Σ such that the closed-loop

system (29) is robustly stable for all the communication
time-varying delay τC

i j ∈ [0,Tuij ], and the induced �2 gain
from d to e is no more than a priori given γ > 0.

[�]T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ1,i � �

Υ1,i −I �

Ω1,i 0 −Λ̂i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
ΓX,i 0

0 I

⎤⎥⎥⎥⎥⎥⎦ < 0, (41a)

[�]T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ2,i � �

Υ2,i γ2I �

Ω2,i 0
Nτ∑
k=1

XC
k,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
ΓY,i 0

0 I

⎤⎥⎥⎥⎥⎥⎦ > 0, (41b)

⎡⎢⎢⎢⎢⎢⎣
PG

i I

I P̂G
i

⎤⎥⎥⎥⎥⎥⎦ � 0, (41c)

⎡⎢⎢⎢⎢⎢⎣
XC

k,i I

I X̂C
k,i

⎤⎥⎥⎥⎥⎥⎦ � 0, (41d)

XC
i j X̂

C
i j = InzC

i j
, (41e)

XC
k,iX̂

C
k,i = InvC

i j
, (41f)

where

ΓX,i = ker

⎡⎢⎢⎢⎢⎢⎢⎣
0nvi×n

ψC
i

0 0 Invi
0 Invi

0

0 Cyx,i Cyv,i 0 Cyv,i 0 Dyd,i

⎤⎥⎥⎥⎥⎥⎥⎦, (42)

ΓY,i = ker

⎡⎢⎢⎢⎢⎢⎢⎣
0nvi×n

ψC
i

0 0nvi×nzC
ψ

0 Invi
0

0 BT
xu,i 0 BT

zu,i 0 DT
eu,i

⎤⎥⎥⎥⎥⎥⎥⎦, (43)

Ξ1,i = [�]T

⎡⎢⎢⎢⎢⎢⎣
−PG

i 0

0 PG
i

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

I 0 0 0

Ai B1,i B2,i B3,i

⎤⎥⎥⎥⎥⎥⎦

+ [�]T

⎡⎢⎢⎢⎢⎢⎣
UC

i 0

0 VC
i

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
Ãzx,i Ãzv,i Ãzv,i B̃zd,i

0 0 I 0

⎤⎥⎥⎥⎥⎥⎦

+ [�]T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−

Nτ∑
k=1

Xk,i 0

0 −γ2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
0 I 0 0

0 0 0 I

⎤⎥⎥⎥⎥⎥⎦ , (44)

Ξ2,i = [�]T

⎡⎢⎢⎢⎢⎢⎣
−P̂G

i 0

0 P̂G
i

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
AT

i C̃T
ψ,i ÃT

zx,i C̃T
ex,i

−I 0 0 0

⎤⎥⎥⎥⎥⎥⎦

+ [�]T

⎡⎢⎢⎢⎢⎢⎣
ÛC

i 0

0 V̂C
i

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

0 0 −I 0

BT
2,i DT

ψw,i AT
zv,i CT

ev,i

⎤⎥⎥⎥⎥⎥⎦

+ [�]T

⎡⎢⎢⎢⎢⎢⎣
Λ̂i 0

0 I

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
0 −I 0 0

0 0 0 −I

⎤⎥⎥⎥⎥⎥⎦ , (45)

Υ1,i = [C̃ex,i C̃ev,i C̃ev,i Ded,i], (46)

Υ2,i = [BT
3,i 0 BT

zd,i DT
ed,i], (47)

Ω1,i = [C̃ψ,i 0 D̃ψw,i 0], (48)
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Ω2,i = [BT
1,i 0 ÃT

zv,i C̃T
ev,i], (49)

Λi = diag{XC
k,i|

Nτ
i=1}, (50)

Λ̂i = diag{X̂C
k,i|

Nτ
i=1}, (51)

UC
i =

⎡⎢⎢⎢⎢⎢⎣
diag{Xij| j∈NF(i)} diag{XH

i j | j∈NF(i)}
diag{(XH

i j )T| j∈NF(i)} diag{XK
i j | j∈NF(i)}

⎤⎥⎥⎥⎥⎥⎦ , (52)

VC
i =

⎡⎢⎢⎢⎢⎢⎣
diag{Yij| j∈NT(i)} diag{YH

i j | j∈NT(i)}
diag{(YH

i j )T| j∈NT(i)} diag{YK
i j | j∈NT(i)}

⎤⎥⎥⎥⎥⎥⎦ , (53)

XC
i j =

⎡⎢⎢⎢⎢⎢⎢⎣
Xij XH

i j

(XH
i j )T XK

i j

⎤⎥⎥⎥⎥⎥⎥⎦ , (54)

YC
i j =

⎡⎢⎢⎢⎢⎢⎢⎣
Yij YH

i j

(YH
i j )T YK

i j

⎤⎥⎥⎥⎥⎥⎥⎦ , (55)

XC
i j = −YC

ji , (56)

ÛC
i =

⎡⎢⎢⎢⎢⎢⎣
diag{X̂ij| j∈NF(i)} diag{X̂H

i j | j∈NF(i)}
diag{(X̂H

i j )T| j∈NF(i)} diag{X̂K
i j | j∈NF(i)}

⎤⎥⎥⎥⎥⎥⎦ , (57)

V̂C
i =

⎡⎢⎢⎢⎢⎢⎣
diag{Ŷi j| j∈NT(i)} diag{ŶH

i j | j∈NT(i)}
diag{(ŶH

i j )T| j∈NT(i)} diag{ŶK
i j | j∈NT(i)}

⎤⎥⎥⎥⎥⎥⎦ , (58)

X̂C
i j =

⎡⎢⎢⎢⎢⎢⎣
X̂ij X̂H

i j

(X̂H
i j )T X̂K

i j

⎤⎥⎥⎥⎥⎥⎦ , (59)

ŶC
i j =

⎡⎢⎢⎢⎢⎢⎣
Ŷi j ŶH

i j

(ŶH
i j )T ŶK

i j

⎤⎥⎥⎥⎥⎥⎦ , (60)

X̂C
i j = −ŶC

ji . (61)

Proof Applying our robustness analysis results to
the extended closed-loop subsystems (29), we derive
the following LMI condition for all i = 1, 2, . . . ,N,

WT
i ΘiWi < 0, (62)

where

Wi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0

AC
i BC

1,i BC
2,i BC

3,i

C̄C
ψ,i D̄C

ψ1,i D̄C
ψ2,i 0

0 I 0 0

AC
zx,i AC

zv,i AC
zv,i BC

z,i

0 0 I 0

CC
ex,i CC

ev,i CC
ev,i DC

ed,i

0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (63)

Θi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−PC
i 0 0 0 0 0 0 0

0 PC
i 0 0 0 0 0 0

0 0 ΛC
i 0 0 0 0 0

0 0 0 −
Nτ∑
k=1

XC
k,i 0 0 0 0

0 0 0 0 UC
i 0 0 0

0 0 0 0 0 VC
i 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 −γ2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (64)

Notice that the state-space matrices of the extended
closed-loop subsystem depends affinely on Ki. Thus,
we would like to derive equivalent conditions that do
not involve the controller’s data Ki, i = 1, 2, . . . ,N.

We first discuss the inertia of the matrix Θi. Because
every (Ψk,i,Mk,i) is the Jnvi ,nvi

-spectral factorization ofΠk,i

and XC
k,i > 0, thus

in
(
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Λi 0

0 −
Nτ∑
k=1

Xk,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
)
= (nvi + nvK

i
, 0,Nτ × (nvi + nvK

i
)).

(65)

Since XC
i j > 0 and XC

i j = −YC
ji , we have in±(XC

i j) =

in∓(YC
ji). Hence

in
( ⎡⎢⎢⎢⎢⎢⎣

UC
i 0

0 VC
i

⎤⎥⎥⎥⎥⎥⎦
)
= (nvi + nvK

i
, 0,nzi + nzK

i
). (66)

Since PC
i ∈ R

nxC
i
+n
ψC

i
S , thus

in
( ⎡⎢⎢⎢⎢⎢⎣
−PC

i 0

0 PC
i

⎤⎥⎥⎥⎥⎥⎦
)
= (nxC

i
+ nψC

i
, 0,nxC

i
+ nψC

i
). (67)

If we take PG
i , P̂G

i to be the top-left blocks of PC
i ,

(PC
i )−1, respectively. By applying the elimination lemma

from [13] to LMIs (62) , we obtain (41c)–(41f) and the
following LMIs

ΓT
X,i[Ξ1,i + Υ

T
1,iΥ1,i +Ω

T
1,iΛiΩ1,i]ΓX,i < 0, (68)

ΓT
Y,i[Ξ2,i − γ−2ΥT

2,iΥ2,i −ΩT
2,i(

Nτ∑
k=1

Xk,i)−1Ω2,i]ΓY,i > 0,

(69)

which lead to (41a) and (41b) by taking the Shur-
complement.
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If the conditions (41a)–(41f) are feasible, we can fol-
low the similar techniques as in [8] to construct the
extended scales PC

i by taking nxK
i
= nxi + nψC

i
such that

LMI (62) is satisfied for all i = 1, 2, . . . ,N. �

Note that the conditions (41a)–(41f) are LMIs, but
the conditions (41e) and (41f) are non-convex. To ad-
dress this problem, we transform the original feasibility
problem into a so-called cone complementarity problem
(CCP)

min
N∑

i=1
(
∑

j∈NF(i)
Tr(XC

i j X̂
C
i j) +

Nτ∑
k=1

Tr(XC
k,iX̂

C
k,i))

s.t. (41a)–(41d). (70)

The global minimum of optimization problem (70) is re-
quired to be nzC +Nτ × nvC . A linearization method pro-
posed in [24] can be employed to solve such a problem.
Given a set of feasible solutions (XC

i j)0, (X̂C
i j)0, (XC

k,i)0,
(X̂C

k,i)0 that solve the LMIs (41a)–(41d), a linear approxi-
mation of (70) has the form of

min
N∑

i=1
(
∑

j∈NF(i)
Tr((XC

i j)0X̂C
i j + (X̂C

i j)0XC
i j)

+
Nτ∑
k=1

Tr((XC
k,i)0X̂C

k,i + (X̂C
k,i)0XC

k,i))

s.t. (41a)–(41d). (71)

Hence the non-convex conditions (41a)–(41f) in Theo-
rem 1 can be verified by solving a standard semi-definite
program. For more details of the linearization algorithm
we refer the reader to [24] and the references therein.

Once the optimization problem (71) has global op-
timal solutions, it is sketched in [8] and [14] how to
construct the distributed controller K such that (62) is
feasible, which implies that the distributed controller K
achieves the desired goal of stabilizing the NS Σ.

Note also that the dimensions of the interconnection
signals vK

j (t, i) and zK
i (t, j) between Ki and Kj are with-

out any constraints in this paper. This is because each
of the closed-loop scales YC

i j (or XC
ji ) is directly calcu-

lated according to the optimization problem (71), which
is different from the reconstruction methods adopted
in [8,9].

5 Numerical examples

In this section, three numerical examples are given to
demonstrated the efficacy of the proposed robust sta-

bility analysis and distributed control design methods of
this paper.

For all the examples in the sequel, two IQC multipliers
from [23] are employed to characterize the associated
delay-difference operator Sτ, which are

Π1 = [�]∼
⎡⎢⎢⎢⎢⎢⎣
(Tu + 1)X1 0

0 −X1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
In 0

In In

⎤⎥⎥⎥⎥⎥⎦ , (72)

Π2 = [�]∼
⎡⎢⎢⎢⎢⎢⎣
T 2

u X2 0

0 −X2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
(1 − ζ−1)In 0

0 In

⎤⎥⎥⎥⎥⎥⎦ , (73)

where X1 = XT
1 � 0 and X2 = XT

2 � 0. Tu is the upper
bound of delay duration. It can be proved that both of
them are hard factorizations.

Example 1 Consider a network system Σwith time-
varying communication delays. The system consists of
N subsystems, each of them modeled as (1) and the in-
terconnections among them are represented by (3). The
following properties are satisfied:
� Let nxi = nvi = nzi ≡ 2 and ndi = nei ≡ 1.
� Every parameter of the subsystems is independently

and randomly generated from a continuous uniform dis-
tribution over the interval [−0.5, 0.5].
� Each row of the SCM Φ is generated randomly and

independently, in which the non-zero element is se-
lected according to a discrete uniform distribution over
all the possible locations.
� The upper boundTuij of each time-varying delay τi j is

independently and generated randomly from a discrete
uniform distribution on the set [0, 10].
� The induced �2 gain from d to e is set to γ ≡ 1.
Two approaches are utilized in verifying the robust

stability of the generated system. One is based on LF-
IQC by [19, Theorem 3], the other is on Theorem 1.

First, we give a general comment using the number of
variables and the number of LMIs as measures of com-
putational burden. Table 1 summarizes the number of
independent variables for each approach. It is obvious
that Nτ = 2 because we have used two IQC multipliers
(72) and (73) to describe the associated delay-difference
operators. For simplicity, let nvij = 1 for all j ∈ NT(i) and
i = 1, . . . ,N. The numbers of variables are calculated
and plotted in Fig. 4 for N = 1, 2, . . . , 30. The numbers
of variables for Theorem 1 do not grow much with N
when compared with LF-IQC. However, note that The-
orem 1 involves an LMI condition for each subsystem,
and all the LMIs are partly coupled. Thus, it is hard to
analyze theoretically which approach is computation-
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ally more demanding for a given N. Next, we will carry
out specific robust stability verifications for the two ap-
proaches.

Table 1 Number of variables for each approach.

Method Number of variables

LF-IQC N(nxi + nψi )(N(nxi + nψi ) + 1)/2

+Nτ
N∑

i=1

∑
j∈NT(i)

[nvij (nvij + 1)/2]

Theorem 1 N(nxi + nψi )[(nxi + nψi ) + 1]/2

+(Nτ + 1)
N∑

i=1

∑
j∈NT(i)

[nvij (nvij + 1)/2]

Fig. 4 Number of variables as a function of N.

For each subsystem number N, one hundred systems
are generated. Feasibility of the corresponding LMIs is
verified using Matlab’s LMILab toolbox, and computa-
tions are performed with a personal computer with an
Intel(R) Core(TM) i5-8250U CPU. According to these
computations, the average CPU time for each approach
is plotted in Fig. 5 as a function of N.

Fig. 5 Average CPU computation time versus N.

This figure shows that the growth rate in the average
CPU time with respect to N is smaller for Theorem 1
than LF-IQC. It is also clear that for the NS with small

size (less than approximately 5) LF-IQC is more efficient
than Theorem 1. This is because in Theorem 1, even
if the variables are less than those in LF-IQC, the LMI
(18) is required to be verified for all i = 1, 2, . . . ,N in
a partly coupled manner, which makes the algorithmic
complexity of Theorem 1 more costly from computation
time point of view. However, According to Table 1, the
numbers of variables in LF-IQC grow with the order of
N2, while Theorem 1 has the growth order of N. As the
numbers of subsystem grow, LF-IQC is computationally
more demanding because of the dramatic increase in
the numbers of variables.

Example 2 In this example, we compare our ap-
proach with the existing approach based on the lumped
formulations in terms of the degree of conservatism.
The NS consists of two subsystems whose state-space
model are given below.
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t + 1, 1)

z(t, 1)

e(t, 1)

y(t, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.72 −0.16 0.40 0.20

0.45 0 0.30 0.10

0.02 0 0 0.10

1 0.10 1.40 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t, 1)

v(t, 1)

d(t, 1)

u(t, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (74)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t + 1, 2)

z(t, 2)

e(t, 2)

y(t, 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.81 −0.28 0.60 0.20

0.37 0 0.40 0.10

0.01 0 0 0.10

1 0.10 1.60 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t, 2)

v(t, 2)

d(t, 2)

u(t, 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (75)

These subsystems are connected through

v(t) =
( ⎡⎢⎢⎢⎢⎢⎣
Dτ1 0

0 Dτ2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
0 1

1 0

⎤⎥⎥⎥⎥⎥⎦ z
)
(t). (76)

We are interested in computing the upper bounds of
τ1 and τ2 such that the above system is robustly stable
for all τi ∈ [0,Tui ], i = 1, 2 and the �2 gain from d to e
is no more than 1. Fig. 6 shows the estimated stability
boundary as a function of delays τ1 and τ2 for each ap-
proach. The upper dot dash curve is for the approach
LF-IQC and the lower solid curve is for Theorem 1. The
areas to the lower left of the curves represent the cor-
responding stability regions. Evidently, using the same
IQC multipliers to describe the delay-difference opera-
tor, Theorem 1 presents the more conservative results
compared to LF-IQC. This is not a surprise, as Theo-
rem 1 is only a sufficient condition for the robustness
of the NS and utilizes less structural information of the
NS than the approach of LF-IQC. However, when an NS
has a very large scale, Theorem 1 provides a tradeoff
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between computation time and conservatism.

Fig. 6 Estimated boundary for the stability region in τ1–τ2

plain.

Example 3 Consider the same model as in Exam-
ple 2. When the upper bound of τ1 and τ2 are set to
Tu1 = 4 and Tu2 = 8, respectively, it can be verified
that the robustness analysis conditions in Theorem 1
are not satisfied (note that this does not imply that the
system is unstable, since the analysis LMIs in Theorem 1
is sufficient, but not necessary, conditions). The objec-
tive is to design a distributed, interconnected controller
such that the closed-loop system is robustly stable for
all τi, τK

i ∈ [0,Tui ], i = 1, 2 and the �2 gain from d to e
is no more than 1. To this end, we first confirm the ex-
istence of such a controller by verifying the conditions
presented in Theorem 2. Then, a standard algorism is
employed to reconstruct the distributed controller. The
results are given in (77) and (78).

K1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1564 −0.0017 0.0009 0.0014 −0.1201

0.0001 −0.0175 −0.0012 −0.0879 0.0001

0.0015 0.0000 0.0000 0.0000 0.0015

0.0000 0.0000 0.0000 0.0000 0.0000

0.0770 −0.0147 0.0085 0.0019 −2.7602

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(77)

K2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0583 −0.0021 0.0038 −0.0003 −0.1072

0.0000 −0.0067 0.0009 −0.0641 0.0000

0.0042 0.0002 −0.0003 0.0000 0.0084

0.0000 0.0000 0.0000 0.0000 0.0000

0.0026 −0.0122 0.0143 0.0010 −2.7217

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(78)

Note that both of the controller subsystems have the

order of 3, which is equal to the sum of the order of the
associated subsystem and the order of the IQC-induced
system. This achieves the design objective.

6 Conclusions

In this paper, we investigated the robustness and dis-
tributed control of a networked system with uncertain
time-varying communication delays. By merging the dy-
namic IQC technique with the dissipation theory, we
gave some sufficient conditions for the robust stability
and performance of the NS against delay uncertainties.
Furthermore, we derived some conditions for the exis-
tence of a distributed controller and employed an exist
method to construct the controller parameters. Finally,
we illustrated the usefulness of the analysis and synthe-
sis results by several numerical examples. In a future
research, we will consider the extension of this work
using more general and tighten IQCs to cover the de-
lay for the reduction of conservatism of the robustness
analysis problem.
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