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Abstract
A new short-term optimal control of air quality in an industrial region during atmospheric inversions is proposed. Its goal is

to prevent violation of health standard of air quality in a few monitored zones. The control establishes restrictions on the emission
rates of industrial sources and includes the identification of the industrial sources violating (exceeding) the emission rates set by
the control. Both control and identification are based on using solutions to an adjoint dispersion model. Conditions that show
the convergence of the emission rates, prescribed by the control, to the original emission rates of the industrial sources are given
(Theorems 4 and 5). These results ensure that the new emission rates of industrial sources (established by the control) will be
as close as possible to the original emission rates throughout the entire period of application of the control. This creates the
minimum possible restrictions on the functioning of industrial enterprises. The highlight of the new control is the possibility of
selecting special weights for each pollution source in the goal function that is minimized. These weights are mainly aimed at
reducing the intensity of emissions of the main sources of pollution. An example demonstrates the ability of the new method. A
similar approach can also be used to develop methods for cleaning water zones polluted by oil (the problem of bioremediation),
and to prevent excessive pollution of urban areas with automobile emissions.
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1 Introduction

The purpose of this study is to propose a new math-
ematical method for protecting the air quality in an in-
dustrial region during adverse weather conditions. The
method is the optimal short-term control of emission

rates of industrial sources. In the case when a dispersion
model predicts an excess of the maximum permissible
concentration of a pollutant in a monitored zone, the
control determines new, optimal to some extent, emis-
sion rates for the industrial sources. From this point on,
each industrial source should continue its work with
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reduced emission rates prescribed by the control. This
prevents a violation of the air quality standard in the
monitored zones selected in the industrial region. In the
case of constant emission rates, a method of identifying
the industrial sources that exceed the emission rates set
by the control is also given. Both methods are based
on using a dispersion model and its adjoint model. The
highlight of the new control is the possibility of select-
ing special weights for each pollution source in the goal
function that is minimized. These weights are aimed at
reducing the intensity of emissions of those sources that
pollute the most. Conditions that show the convergence
of the emission rates, prescribed by the control, to the
original emission rates of the industrial sources are given
(Theorems 4 and 5). These results ensure that the re-
duced emission rates of industrial sources (established
by the control) will be as close as possible to the original
emission rates throughout the entire period of applica-
tion of the control. This creates the minimum possible
restrictions on the functioning of industrial enterprises.

The new control can be applied to dispersion mod-
els of various degrees of complexity. In this work, we
use a two-dimensional (vertically integrated) dispersion
model in a limited area with open boundaries whose
unique solvability was proved in [1]. It is easy to justify
the use of such model during atmospheric inversions.
Indeed, the intensity of emissions of pollution sources
should usually be reduced under adverse meteorologi-
cal conditions, when dispersion of pollutants is difficult
and, above all, when an inversion layer forms on the
Earth’s surface. In meteorology, an inversion is almost
always a deviation from the normal change of the air
temperature with altitude. Usually the air at the surface
of the Earth is warmer than the air above it, that is, the
air temperature decreases with altitude. Under an at-
mospheric inversion, warmer air is held above cooler
air, i.e., the normal temperature profile with altitude
is inverted. The height of the inversion layer of air can
reach hundreds of meters, and therefore high pipes of in-
dustrial enterprises cannot save the situation. Inversion
detains contaminants close to the ground, preventing
them from dispersing, and all contaminants accumu-
late in the inversion layer, covering the industrial region
until the meteorological conditions change. This phe-
nomenon creates the greatest danger to human health.
An inversion also suppresses convection (vertical move-
ments) by acting as a “cap”. Under such conditions the
use of two-dimensional (vertically integrated within the
inversion layer) model can give satisfactory results.

Also, to simplify the analysis, we assume that the wind
velocity is known from a model of atmospheric dynam-
ics or from observations (using, for example, monthly
mean climatic wind velocities), and therefore the disper-
sion model contains only the advection-diffusion equa-
tion. Of course, in practice, the combination of the con-
trol strategy with a more realistic dispersion model will
give a better result.

An adjoint dispersion model is introduced using the
Lagrange identity and the definition of adjoint opera-
tor [2]. Then dual (direct and adjoint) estimates of the
pollution concentration are derived in a few ecologi-
cally most sensitive areas (monitored zones). The ad-
joint estimates depend explicitly on the number of the
sources, their positions and emission rates, as well as
on the initial distribution of pollutant in the region. In
these estimates, the solutions to adjoint problems serve
as weighting functions that determine the contribution
of each industrial source to the pollution of a selected
monitored zone. Therefore, adjoint estimates play an im-
portant role in studying the sensitivity of the dispersion
model to changes in its parameters and in developing
optimal short-term control of industrial emissions under
adverse weather conditions.

The control can be applied whenever a dispersion
model gives an unsatisfactory air quality forecast. It pre-
scribes to reduce the emission rate of each industrial
source in advance to avoid violating the air quality stan-
dards in the monitored zones the next day (days).

Note that optimal control strategies can be distin-
guished from each other by the goal functions that need
to be minimized. An example is given to show the skilfull
of the proposed control strategy. The work ends with a
description of the method of identification of industrial
sources that exceed the emission rates established by
the control.

2 Dispersion model in a limited area

Let D be a two-dimensional limited area with open
boundary S. Assume that there are N industrial sources
located at points ri = (xi, yi) of domain D, which operate
with emission rates Qi(t), 0 < t < T, i = 1, 2, . . . ,N. Let
φ(r, t) denote the concentration of a pollutant at a point
r = (x, y) of domain D and time t. The dispersion model
in the domain D and time interval (0,T) is

∂

∂t
φ + Aφ = f (r, t), (1)
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where

Aφ = div(Uφ) + σφ − div(μ∇φ) (2)

and U(r, t) = {u(r, t), v(r, t)} is a known wind velocity
that satisfies the continuity equation

divU = 0. (3)

The term σφ describes an exponential decay of φ(r, t)
due to physical and chemical processes (σ(r, t) > 0),
μ(r, t) > 0 is the coefficient of turbulent diffusion,

f (r, t) ≡ N∑
i=1

Qi(t)δ(r − ri) (4)

is the pollution forcing, and δ(r − ri) is the Dirac delta
function. As the initial condition we take

φ(r, 0) = φ0(r) at t = 0, (5)

where φ0(r) is the known initial distribution of the pol-
lutant concentration in D.

Usually the pollution flux through the open bound-
ary S of domain D is unknown, and any errors in the
pollution flux at the boundary perturb the solution in-
side D. Therefore, it is important to put such boundary
conditions that guaranty the existence, uniqueness and
stability of the model solution in space-time domain
D × (0,T). In this work, we take the boundary condi-
tions supposed in [1] under which the problem is well
posed both physically and mathematically:

μ
∂
∂n
φ = 0 at S+; μ

∂
∂n
φ −Unφ = 0 at S−. (6)

In conditions (6), Un = U ·n is the projection of velocity
U on the unit external normal n to the boundary S, and
the boundary S = S+ ∪ S− is divided into the “inflow”
part S− (where Un < 0, i.e., the pollution flux is directed
inside D) and “outflow” part S+ (where Un � 0, and the
pollution flux is directed outside D) (Fig. 1). Operator (2)
is positively semidefinite [3], and therefore problem (1)–
(6) is well posed according to Hadamard [4], namely, it
has a unique solution φ(r, t) that continuously depends
on the initial distribution φ0(r), the number of sources
N, their positions ri and emission rates Qi(t).

The total mass of pollutant in D is
�

D
φdr, and we

consider value ‖φ(r, t)‖ = (
�

D
φ2dr)

1
2 as the norm of

the solution. It is easy to see that these values obey the

integral equations

d
dt

�
D
φdr =

N∑
i=1

Qi(t) −
�

D
σφdr −

�
S+

UnφdS, (7)

d
dt

�
D
φ2dr = 2

N∑
i=1

Qi(t)φ(ri, t)−2
�

D
(σφ2+μ|∇φ|2)dr

−
�

S
|Un|φ2dS. (8)

Thus, the total mass of pollutant in D and the norm
of solution to problem (1)–(6) increase due to non-
zero emission rates Qi(t), and decrease due to dissi-
pative processes (σ > 0, μ > 0) and outflow of pollutant
through the part S+ of the boundary. If f (r, t) ≡ 0 (in-
dustrial activity in the region is stopped), the dissipative
processes are neglected (σ = 0, μ = 0) and Un = 0
everywhere at the boundary S (there is no flow of pol-
lutants through the boundary), then both integrals are
conserved:

�
D
φdr = const and

�
D
φ2dr = const. (9)

Fig. 1 Open boundary S = S+ ∪ S− of domain D. Point A
belongs to S+, and point B belongs to S−.

Despite the obvious artificiality of the condition Un =

0 at the open boundary S, the equations (7)–(9) are use-
ful in testing numerical algorithms and computational
programs.

3 Adjoint model

Obviously, the solution φ(r, t) of problem (1)–(6) de-
termines the concentration of pollutant at any point of
the space-time domain D × (0,T). Suppose now that
we want to know the contribution of each industrial
source to the pollution of some ecologically sensitive
monitored zone Ω located in domain D. To this end,
problem (1)–(6) must be solved N times, separately for
each source of pollution. And if the number N of in-
dustrial sources is large then this approach will require
considerable computation. In this case, using the dis-
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persion model (1)–(6) is not the optimal way, and the
contribution of each source is much easier to determine
using the so-called adjoint estimates based on the use of
the solutions to an adjoint dispersion model [5]. These
solutions serve as valuable information functions [6].

Thus, in addition to the model (1)–(6), we consider in
the space-time domain D × (0,T) the adjoint model

−∂g
∂t
+ A∗g = p(r, t), (10)

where U(r, t) = {u(r, t), v(r, t)} is the wind velocity of the
dispersion model, and

A∗g = −div(Ug) + σg − div(μ∇g). (11)

At the inflow and outflow parts of boundary S the adjoint
model has the following conditions:

μ
∂g
∂n
+Ung = 0 at S+; μ

∂g
∂n
= 0 at S−. (12)

As the “initial” condition for the adjoint problem we take

g(r,T) = 0 at t = T in D (13)

because this problem is well posed only if solved from
t = T to t = 0. Note that the wind velocity U(r, t) and
coefficients μ(r, t) and σ(r, t) in the adjoint model are the
same as in the dispersion model (1)–(6), while forcing
p(r, t) is still undefined. Thus,

divU = 0. (14)

How is the adjoint model constructed? This is briefly
explained in Appendix A.

4 Direct and adjoint estimates

Let us define the mean concentration of pollutant
φ(r, t) in the ecologically sensitive zone Ω ⊂ D and
time interval (T − τ,T) as

J(φ) =
1
τ|Ω|

� T

T−τ

�
Ω
φ(r, t)drdt. (15)

We will call (15) direct estimate of mean concentration
of φ(r, t) inΩ. It requires to solve the dispersion model
(1)–(6). We will now derive one more estimate of value
(15) using the solution to adjoint model (10)–(13).

A combination of problems (1)–(6) and (10)–(13) on
the base of Lagrange identity, integration in time from 0

to T, and the use of conditions (5) and (12) leads to

� T

0
dt

�
D

p(r, t)φ(r, t)dr

=
� T

0
dt

�
D

g(r, t) f (r, t)dr +
�

D
g(r, 0)φ0(r)dr. (16)

Let us define forcing p(r, t) in (10) as

p (r, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
τ|Ω| , if (r, t) ∈ Ω × (T − τ,T),

0, otherwise.

Then substituting (4) and such determined p (r, t) in
(16) we obtain

J(φ) =
N∑

i=1

� T

0
g(ri, t)Qi(t)dt +

�
D

g(r, 0)φ0(r)dr. (17)

It is so-called adjoint estimate of mean concentration
of φ(r, t) in Ω. It is equivalent to (15). However, un-
like (15), estimate (17) is independent of the solution
φ(r, t) of dispersion problem (1)–(6) and uses only val-
ues g(ri, t) and g(r, 0) of the adjoint model solution at
positions ri of industrial sources and at t = 0, respec-
tively.

The last integral in (17) which determines the contri-
bution of initial pollution in D we denote it as

c0 =
�

D
g(r, 0)φ0(r)dr. (18)

The dual estimates (15) and (17) complement each
other depending on the situation. The direct estimate
(15) uses the solution φ(r, t) of dispersion problem (1)–
(6), and hence, this problem must be solved again when-
ever the number N of sources, their positions ri and
emission rates Qi(t) vary. Thus, the direct estimates
should be used if the pollution concentration is evalu-
ated at each point, or in many zones of domain D. How-
ever, such comprehensive information is rather costly
and often unnecessary. In many cases it is sufficient to
know value (15) only in few ecologically most impor-
tant zones of region D. Then it is much simpler to find
the solution g(r, t) of the adjoint model (10)–(13) for
each zone Ω and use the adjoint estimate (17). Some-
times they give an immediate solution to non-trivial
problems [7–10].

It should be emphasized that the adjoint estimates
play an important role in controlling emission rates of
pollution sources. In contrast to (1)–(6), the adjoint
problem (10)–(13) is independent on the number of
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sources N, their positions ri and emission rates Qi(t),
and therefore its solution can be found for each zoneΩ
independently of specific values of all these parameters.

5 Optimal short-term control of emission
rates

Let a forecast model M (in our case, the model (1)–(5))
is used to predict the concentration φ�Q(r, t) of a pollu-
tant in the domain D and time interval (−t0,T) using the
emission rates �Q(t) = {Q1(t), . . . ,QN(t)} of N industrial
sources emitting a pollutant. Here t0 > 0 is the time
required to fulfill the forecast in the interval (−t0,T) and
control in the interval (0,T) (see Fig. 2). Suppose that
the forecast is unsatisfactory in the sense that

J(φ�Q) > J0, (19)

i.e., the mean concentration of the pollutant in a moni-
tored zoneΩ ⊂ D and time interval (T−τ,T) exceeds the
air quality standard J0 (see (17) and Fig. 2). Therefore,
the goal of control is to determine in the interval (0,T)
such reduced emission rates �q(t) = {q1(t), . . . , qN(t)} of
industrial sources that

J(φ�q) � J0 (20)

in Ω × (T − τ,T). Let

F(�q) =
1
2

N∑
i=1
γ2

i ‖Qi − qi‖2 = 1
2

N∑
i=1
γ2

i

� T

0
(Qi − qi)2dt

(21)

be defined in the domain

Θ = {�q(t) : qi(t) � 0, i = 1, 2, . . . ,N; J(φ�q) � J0}. (22)

Thus, Θ is the set of such emission rates �q(t) = {q1(t),
. . . , qN(t)} that guarantee the compliance with the air
quality standard J0 in Ω: J(φ) � J0.

The optimal control consists in finding such rates
�Q∗(t) ∈ Θ that minimize the function F(�q) in the fea-
sible set Θ:

F(�Q∗) = min{F(�q) : �q ∈ Θ}. (23)

Clearly, the control depends on the norm ‖ · ‖ used in
(21). In this work we use the norm in the space L2(0,T).
Note that �Q∗(t) is the optimal solution that represents
the least restriction on the work of industrial sources

(i.e., the new emission rates �Q∗(t) are as close to the
original emission rates �Q(t) as possible).

Fig. 2 Scheme of a short-term control within time interval
(0,T).

The weights γi, i = 1, 2, . . . ,N for the objective func-
tion (21) will be selected as follows. Let

ci =
� T

0
g(ri, t)Qi(t)dt > 0

denote the mean concentration obtained in the moni-
tored zone Ω only due to emissions from the ith pol-
lution source (i = 1, 2, . . . ,N). Then fi =

ci

c1 + . . . + cN
is the portion of pollution produced by the ith source,

and we select γi =
1
fi

. Thus, γi tends to be large for

a small portion of fi. For each monitored zone Ω, ci

and γi can be calculated by using the adjoint model so-
lution and formula (17). Each weight γi introduced in
(21) is in favor of small polluters. Indeed, each pollution
source with a lower impact in the monitored zone Ω
gets a larger weight γi. As a result, the control sets the
optimal emission rate Q∗i (t) for this source closer to the
original one Qi(t). Thus, formulas (21)–(23) represent a
new control of emissions from industrial sources, which
is primarily aimed at reducing emission rates of major
sources of pollution. For explaining the role of weights γi

in (21) let us consider a simple example of optimization
problem.

Example 1 Suppose that c0 = 0 (see (18)) and there
are only two industrial sources in the region D. Then the
optimal control is

min→ F =
1
2

[γ2
1(Q1 − q1)2 + γ2

2(Q2 − q2)2]

subject to β1q1 + β2q2 = J0, β1 � 0, β2 � 0.

We used here the first mean value theorem for definite
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integrals

� T

0
g(ri, t)qi(t)dt = qi

� T

0
g(ri, t)dt = βiqi, i = 1, 2,

where g(ri, t) is the value of the adjoint solution at the
position ri of the ith industrial source. The optimal so-
lution that minimizes F is expressed as

Q∗2 = Q2

( 1
(γ1

γ2

)2(β2

β1

)2
+ 1

)
+ β2

( J0 − β1Q1

β2
2 +
(γ2

γ1

)2
β2

1

)
,

Q∗1 =
J0 − β2Q∗2
β1

.

It is easy seen that Q∗2 → Q2 as γ2 → ∞. On the other

way, if γ1 → ∞ then Q∗2 →
J0 − β1Q1

β2
, and due to the

second equation,

Q∗1 =
J0 − β2Q∗2
β1

, i.e., Q∗1 → Q1.

Note that the variational problem (23) can be solved by
an iterative optimization method using a consistent eval-
uation of the dynamic model M. Usually, this process is
not very efficient because it may require many calcula-
tions due to the complexity of model M. Therefore, let us
now propose an alternative method based on the use of
the adjoint operator, which allows us to solve the prob-
lem of optimal control without a successive evaluation
of the dynamic model.

The solution to problem (23) is critically dependent
on the parameter

α = J0 −
�

D
g(r, 0)φ0(r)dr.

Indeed, for α < 0 there is no solution to (23) because
the sanitary norm will not be maintained even if all emis-
sions are reduced to zero (i.e., any production activity
in the domain D will be stopped).

The following two theorems are valid for any selection
of the positive weights γi in (21). They can be proved in
the same way as in [11].

Theorem 1 Let α = 0. Then the optimal control
problem (23) has only one solution

Q∗i (t) =

⎧⎪⎪⎨⎪⎪⎩
0, if t ∈ Ii,

Qi(t), if t ∈ [0,T]\Ii,

where Ii = {t ∈ [0,T] : g(ri, t) > 0}, 1 � i � N.

Theorem 2 If α > 0 then the optimal control prob-
lem (23) has a unique solution �Q∗ ∈ Θ such that
Q∗i (t) � Qi(t) (0 � t � T, 1 � i � N) and J(φ) = J0.

If there is only one source in the region, the statement
of Theorem 2 can be specified:

Theorem 3 Suppose that there is only one industrial
source with emission rate Q(t) located at the point r1 of
the domain D. If α > 0 and J(φ) > J0 then

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q∗(t) = Q(t) − βg(r1, t),

β =
J(φ) − J0� T

0
g2(r1, t)dt

(24)

is the only solution to the optimal control (23), provided
that Q∗(t) � 0 for any t ∈ [0,T].

By Theorem 2, the feasible set (22) reduces to a much
smaller set

Θ = {qi(t) � 0 :
N∑

i=1

� T

0
g(ri, t)qi(t)dt = α}. (25)

An approximate (numerical) solution to the problem of
optimal control is obtained with highly effective numer-
ical algorithm of sequential orthogonal projections [11].
From the computational view point, the new set Θ is
much less than (22), and therefore preferable in calcu-
lations.

Remark 1 We will show in Appendix B that equation
(24) also suggests a non-optimal strategy to control the
emission rates. For this, we define new emission rates
Q̂i(t), i = 1, 2, . . . ,N, as follows:

Q̂i(t) = Qi(t) − βig(ri, t),

βi =
ci + (c0 − J0) fi� T

0
g2(ri, t)dt

,

where c0 =
�

D
g(r, 0)φ0(r)dr and ci =

� T

0
g(ri, t)Qi(t)dt.

6 Convergence of emission rates pre-
scribed by the control

The following two assertions give the conditions un-
der which the emission rates prescribed by the controls
Q̂i(t) and Q∗i (t) converge to the original emission rates
of industrial sources.
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Theorem 4 Suppose that for all i and t ∈ (0,T)

Qi(t)
‖Qi‖ �

J(φ�Q) − J0

J(φ�Q) − c0

g(ri, t)
‖g(ri, t)‖ . (26)

Then Q̂i(t) � 0 for all i and t ∈ (0,T). Besides, Q̂i → Qi

uniformly on (0,T) as J(φ�Q)→ J0.

The proof of this theorem is given in Appendix C. The-
orem 4 assures that if the excess over the sanitary norm,
J(φ�Q) − J0, is small then for all moments, the tempo-
ral behavior of rates Q̂i(t) prescribed by the control will
approximate the temporal behavior of the original emis-
sion rates Qi(t). In other words, no major changes in the
work of industrial sources are required. Note that such
control is obtained directly from the adjoint functions.

The following theorem characterizes the convergence
of the optimal rates Q∗i .

Theorem 5 Suppose that the condition (26) is satis-
fied. Then, for all i,

‖Qi −Q∗i ‖2 � (
J(φ�Q) − J0

γi
)2

N∑
j=1

1
‖g(r j, t)‖2 . (27)

Therefore, ‖Qi −Q∗i ‖ → 0 as γi → ∞ or when J(φ�Q)→
J0.

The proof of this theorem is given in Appendix D.
Theorems 4 and 5 show the convergence of the new
emission rates, established by the controls, to the origi-
nal emission rates of the industrial sources. These results
ensure that the new emission rates of industrial sources
will be as close as possible to the original emission rates
throughout the entire period of application of the con-
trol. This creates the minimum possible restrictions on
the functioning of industrial enterprises.

7 Optimal short-term control with syn-
thetic data

To demonstrate the capabilities of the new control
strategy, we now consider a numerical example using
synthetic data. The six industrial sources are considered
in the domain D = (0, 5)×(0, 5), and the control of emis-
sions is applied in the time interval (0,T) where T = 8. As
a monitored zone we take Ω = (2, 3) × (2, 3) during the
whole interval, i.e., τ = T = 8. Fig. 3 shows the location
ri of the point sources (i = 1, 2, . . . , 6), the position of
zone Ω, and the nondivergent wind velocity U = (u, v)
where u(x, y) = y2/25 and v(x, y) = x/5. The diffusion

and transformation parameters for the dispersion model
are μ = 0.1 and σ = 0.001, respectively.

Fig. 3 The location ri of the point sources and monitored zone
Ω in domain D. The arrows show the wind direction U.

The emission rates of the six industrial sources during
the interval (0,T) are as follows:

Q1(t) = 3, Q2(t) = 10e−(t−4)2
,

Q3(t) = |t − 2|, Q4(t) = 2 − 0.5 cos(
π
2

t),

Q5(t) = 2e−(t−1)2 and Q6(t) = e−(t−3)2
+ 2e−(t−5)2

.

In this example, the initial distribution of the pollutant
at t = 0 is taken uniform and small: φ(r, 0) = 0.2. Due
to the work of sources and initial condition, the mean
concentration of pollutant J(φ�Q) in the monitored zone
Ω is 1.7596 and exceeds the sanitary standard J0 = 1.5
[12]. Then the optimal control method is used to reduce
the emission rates and respect the sanitary standard J0.

At the first stage, the adjoint problem is solved back-
ward from t = T to t = 0. Figs. 4 and 5 show the isolines
of the adjoint function g(r, t) in D, at t = 6 and t = 4. It is
seen that the area of nonzero values of g(r, t) expands in
the southwestern direction, opposite to the direction of
the wind speed in D, as it must be. Therefore, the focus
should be on monitoring the emission rates of sources
located in the south-western part of the domain D.

Using the adjoint solution g(r, t), one can estimate
the pollution levels ci in the monitored zone. The val-
ues ci, fi and γi for each point source are contained
in Table 1. Besides, in our case, c0 = 0.1391 and
α = J0 − c0 = 1.3609 > 0. According to fractions fi,
the sources located at points r3 and r4 make an insignif-
icant contribution to the pollution of zoneΩ. Therefore,
it is expected that the optimal control will prescribe min-
imal reductions in their emission rates. Figs. 6–11 show
the original emission rates Qi and the optimal rates Q∗i
for each source.
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Fig. 4 Isolines of the adjoint function g(r, t) at t = 6.

Fig. 5 Isolines of the adjoint function g(r, t) at t = 4.

Table 1 Location ri and coefficients ci, fi and γi of
each pollution source.

i ri ci fi γi

1 (0.95,0.95) 0.4785 0.2953 3.3867
2 (0.95,1.95) 0.5286 0.3262 3.0654
3 (0.95,2.95) 0.1212 0.0748 13.3660
4 (0.95,3.95) 0.0082 0.0051 196.6810
5 (2.95,0.95) 0.1992 0.1230 8.1330
6 (1.95,0.95) 0.2846 0.1757 5.6931

Fig. 6 The emission rate Q1(t) and the optimal rate Q∗1(t) in
time interval (0,T).

Fig. 7 The emission rate Q2(t) and the optimal rate Q∗2(t) in
time interval (0,T).

Fig. 8 The emission rate Q3(t) and the optimal rate Q∗3(t) in
time interval (0,T).

Fig. 9 The emission rate Q4(t) and the optimal rate Q∗4(t) in
time interval (0,T).

Fig. 10 The emission rate Q5(t) and the optimal rate Q∗5(t) in
time interval (0,T).
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Fig. 11 The emission rate Q6(t) and the optimal rate Q∗6(t) in
time interval (0,T).

Figs. 8 and 9 show that the original and optimal emis-
sion rates of the sources, located at points r3 and r4,
are almost equal. Finally, we point out that the CPU-
time used to find the numerical solution of the adjoint
model [13], together with the optimal emission rates for
this example is less than 2 min.

8 Detection of the sources which exceed
prescribed emissions

In practice, there are the situations when, despite of
applying a control strategy, the measurements show the
violation of air quality standard again: J(φ) > J0. It means
that some industrial sources exceed the emission rates
qi(t) prescribed by the control, and are responsible for
excessively polluting the zone Ω. We now briefly de-
scribe a way to detect such sources.

Let Qi(t) be original emission rates of industrial
sources, and let qi(t) be reduced emission rates pre-
scribed by a control in order to satisfy the air quality
standard inΩ× (T−τ,T): J(φ) � J0. Suppose that some
sources ignored this requirement and continued to work
with unknown emission rates Q̄i(t) > qi(t), and hence
are responsible for excessively polluting the zone Ω.
This raises the question of detection and sanctioning
of such sources. Though the detection problem is not
trivial for time-dependent emission rates, it can easily
be solved for invariable emission rates. Note that the
assumption of stationary emission rates is not a strong
limitation if the time interval (0,T) is sufficiently small
[14].

Suppose that in the interval (0,T), the ith industry
had to operate at a constant emission rate qi, prescribed
by the control, but it worked at an unknown constant
rate Q̄i. Let δQi = Qi − Q̄i (i = 1, 2, . . . ,N), and let J(φ)
and J̄(φ) be the mean pollutant concentrations (15) in

the zone Ω predicted by the model before control and
measured after control, respectively. Thus,

δJ(φ) = J(φ) − J̄(φ) (28)

is a known value. Let us choose K zones in the domain
D (K � N), and denote as δJk(φ) the value (28) obtained
for the kth zone Ωk (k = 1, 2, . . . ,K). Denote the solu-
tion to adjoint problem (10)–(13) for the zone Ωk by
gk(r, t), and its value at the position ri of the ith industry
by gk(ri, t) (i = 1, 2, . . . ,N). Taking into account that in
our case, δφ0(r) ≡ 0, and δQi is constant for each i, the
adjoint estimates (17) for K zones lead to a linear system

N∑
i=1

akiδQi = δJk(φ), k = 1, 2, . . . ,K (29)

with non-negative elements

aik =
� T

0
gk(ri, t)dt (30)

of the N × K matrix (i = 1, 2, . . . ,N; k = 1, 2, . . . ,K). If
K > N then matrix is rectangular and system A�x = �b
given by (29) and (30) can be solved by the method of
least squares: �x = (ATA)−1AT�b. Solution to (29) gives
the values δQi, and hence, the values Q̄i = Qi − δQi.
Thus, if for some i, Q̄i > qi then the ith plant violated
the prescribed emission rate in the interval (0,T).

9 Conclusions

A new mathematical method for protecting the air
quality in an industrial region during adverse weather
conditions is proposed. For the case of constant emis-
sion rates, a method of identifying the industrial sources
that exceed the emission rates established by the control
is also given. Both methods are based on using a dis-
persion model, its adjoint model, and adjoint estimates
of mean concentration of pollutant in monitored zones.
The highlight of the new control is a new goal function
that is minimized. Currently, it contains special weights
for each industrial source in order to reduce the inten-
sity of emissions of those sources that pollute the most.
Conditions that show the convergence of the emission
rates, prescribed by the control, to the original emission
rates of the industrial sources are given (Theorems 4 and
5). These results ensure that the new emission rates of
industrial sources (established by the control) will be as
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close as possible to the original emission rates through-
out the entire period of application of the control. This
creates the minimum possible restrictions on the func-
tioning of industrial enterprises.

The new control method is the optimal short-term
regulation of emissions from industrial sources. In the
case when a dispersion model predicts an excess of the
maximum permissible concentration of a pollutant in
monitored zones, the method determines new, optimal
to some extent, emission rates for each industrial source.
From this point on, each industrial source should con-
tinue its work with reduced emission rates prescribed
by the control. This prevents a violation of the air quality
standard in the monitored zones selected in the indus-
trial region.

The model of dispersion of a quasi-passive pollutant
in a limited area with open boundaries used here dur-
ing adverse weather conditions is considered separately
from the dynamic model of the atmosphere, i.e., the
wind velocity is assumed to be known from a dynamic
model or observations [15]. As a result, the process of
dispersion of pollutant is governed by the advection-
diffusion equation.

It should be stressed that the control of emission rates
of industrial sources uses the adjoint estimates of mean
concentrations of pollutant in the monitered zones. The
adjoint estimates are important because they explicitly
depend on the number, positions and emission rates
of the sources, as well as on the initial distribution of
pollutant in the region. The adjoint model solutions in
these estimates serve as weighting functions that pro-
vide valuable information about the contribution of each
industrial source and the initial data to the pollution of
each monitored zone. These properties make the adjoint
estimates very effective in developing control strategies,
as well as in studying the sensitivity of the dispersion
model solution to changes in the intensity of sources
and the initial distribution of pollutant in the region.

The ability of the new control method is illustrated
by an example when the domain contains six pollution
sources and one monitored zone. The example shows
the effectiveness of the new goal function. Note that a
similar approach can also be used to develop methods
for cleaning water zones polluted by oil (the problem of
bioremediation), and to prevent excessive pollution of
urban areas with automobile emissions.
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Appendix A Construction of the adjoint model
The operator A∗ of the adjoint model is adjoint to the oper-

ator A of dispersion model (1)–(6). The adjoint operator A∗ is
defined by means of the Lagrange identity (Aφ, g) = (φ,A∗g)
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[2], which in our case has the form
�

D
(Aφ)gdr =

�
D
φ(A∗g)dr.

Therefore, the model adjoint to (1)–(6) in the space-time do-
main D × (0,T) is defined by equations (10) and (11). Note
that the wind velocity U(r, t) and coefficients μ(r, t) and σ(r, t)
in the adjoint model are the same as in the dispersion model
(1)–(6), while forcing p(r, t) is still undefined.

In order to explain the choice of the boundary conditions
(12) at the inflow and outflow parts of boundary S, let us
compare equations (1) and (10) provided that f (r, t) ≡ 0 and
p(r, t) ≡ 0. One can see that equation (10), after using the
substitution t′ = T − t, differs from equation (1) only in the
sign of velocity U, and therefore, the inflow and outflow parts
S− and S+ of the dispersion problem and adjoint problem are
swapped. This explains why the boundary conditions (6) of
dispersion problem are transformed into conditions (12) in
the adjoint problem.

The choice of initial condition for the adjoint problem at the
moment t = T is explained by the fact that this problem is
well posed only if solved from t = T to t = 0. It follows from
the fact that the time derivatives in (1) and (10) have different
signs, while the operators A and A∗ are both positive definite
[3]:

(Aφ,φ) =
�

D
[div(Uφ) + σφ−div(μ∇φ)]φdr > 0,

(A∗g, g) =
�

D
[−div(Ug) + σg − div(μ∇g)]gdr > 0.

Appendix B Non-optimal control strategy
We now show that equation (24) also suggests a non-

optimal strategy to control the emission rates. Indeed, let us
define new emission rates Q̂i(t) as

Q̂i(t) = Qi(t) − βi g(ri, t),

βi =
ci + (c0 − J0) fi� T

0
g2(ri, t)dt

, i = 1, 2, . . . ,N.

Then, multiplying the first equation by g(ri, t) and integrating
the result over time in the interval (0,T) we obtain

� T

0
Q̂i(t)g(ri, t)dt =

� T

0
Qi(t)g(ri, t)dt − βi

� T

0
g2(ri, t)dt.

The substitution of the coefficients βi into the last equation
and summing the resulting equation over i from i = 1 to i = N
gives

N∑
i=1

� T

0
Q̂i(t)g(ri, t)dt

=
N∑

i=1

� T

0
Qi(t)g(ri, t)dt − N∑

i=1
(ci + (c0 − J0) fi).

Since
N∑

i=1

� T

0
Qi(t)g(ri, t)dt =

N∑
i=1

ci and
N∑

i=1
fi = 1,

we obtain
N∑

i=1

� T

0
Q̂i(t)g(ri, t)dt = −(c0 − J0)

N∑
i=1

fi = J0 − c0.

Finally,

J(φQ̂) = c0 +
N∑

i=1

� T

0
Q̂i(t)g(ri, t)dt = J0.

Consequently, the emission rates Q̂i(t) can also be consid-
ered as a non-optimal control of the mean concentration of
pollutant in the zone Ω, provided that Q̂i(t) � 0 for all i.

Appendix C Proof of Theorem 4
The new emission rates Q̂i(t) are defined as follows:

Q̂i(t) = Qi(t) − βi g(ri, t)

= Qi(t) − (ci + (c0 − J0) fi)
g(ri, t)
‖g(ri, t)‖2 .

Since fi =
ci

N∑
j=1

cj

then

Q̂i(t) = Qi(t) −

N∑
j=1

cj + (c0 − J0)

N∑
j=1

cj

ci

‖g(ri, t)‖
g(ri, t)
‖g(ri, t)‖

and

Q̂i(t) = Qi(t) −
J(φ�Q) − J0

J(φ�Q) − c0

ci

‖g(ri, t)‖
g(ri, t)
‖g(ri, t)‖ .

On the other hand, the use of Schwarz’s inequality leads to

ci

‖g(ri, t)‖ =
� T

0
Qi(t)

g(ri, t)
‖g(ri, t)‖dt � ‖Qi‖.

Therefore,

Q̂i(t) � Qi(t) −
J(φ�Q) − J0

J(φ�Q) − c0

g(ri, t)
‖g(ri, t)‖ ‖Qi‖.

It follows from the last inequality that Q̂i(t) � 0 if and only if
the condition (26) is satisfied.

To prove the uniform convergence of the emission rates,
note that

Q̂i(t) = Qi(t) −
J(φ�Q) − J0

J(φ�Q) − c0

ci

‖g(ri, t)‖
g(ri, t)
‖g(ri, t)‖
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= Qi(t) − (J(φ�Q) − J0)
ci

N∑
j=1

cj

g(ri, t)
‖g(ri, t)‖2 .

The estimation ci
N∑

j=1
cj

< 1 yields to

|Q̂i(t) −Qi(t)| � (J(φ�Q) − J0)
g(ri, t)
‖g(ri, t)‖2 .

Defining M as the upper bound of
g(ri, t)
‖g(ri, t)‖2 for all i and

t ∈ (0,T), we obtain

|Q̂i(t) −Qi(t)| �M(J(φ�Q) − J0) for all i and t ∈ (0,T).

Thus, Q̂i(t)→ Qi uniformly on (0,T) as J(φ�Q)→ J0.

Appendix D Proof of Theorem 5
Note that

F(Q̂) =
1
2

N∑
j=1
γ2

j ‖Qj − Q̂j(t)‖2 = 1
2

N∑
j=1
γ2

jβ
2
j ‖g(r j, t)‖2

=
1
2

N∑
j=1
γ2

j

(cj + (c0 − J0) fj)2

‖g(r j, t)‖2 .

Using that fj =
cj

N∑
k=1

ck

and γ j =
1
fj

the last equation is simplified

as

F(Q̂) =
1
2

(J(φ�Q) − J0)2
N∑

j=1

1
‖g(r j, t)‖2 .

Due to (26) Q̂ = (Q̂1, . . . , Q̂N) ∈ Θ, and therefore, Fmin =

F(�Q∗) � F(Q̂). Finally, for all i we obtain that

1
2
γ2

i ‖Qi −Q∗i ‖2

� F(�Q∗) � F(Q̂) =
1
2

(J(φ�Q) − J0)2
N∑

j=1

1
‖g(r j, t)‖2 ,

and then

‖Qi −Q∗i ‖2 �
( J(φ�Q) − J0

γi

)2 N∑
j=1

1
‖g(r j, t)‖2 for all i.

Taking the limit on both sides of this estimation as γi →∞, or
when J(φ�Q)→ J0, we obtain that ‖Qi −Q∗i ‖ → 0.
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