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Abstract
In this article, we establish the route taken by the author, and his research group, to bring differential flatness to the realm

of active disturbance rejection control (ADRC). This avenue entitled: 1) generalized proportional integral observers (GPIO), as
natural state and disturbance observers for flat systems, 2) generalized proportional integral (GPI) control, provided with extra
integrations, to produce a modular controller known as flat filters (FF’s) and, finally, 3) the establishing of an equivalence of
observer based ADRC with FF’s. The context is that of pure integration systems. The obtained controllers depend only on the
order of the flat system and they are to be directly used on the basis of the available flat output signal in a universal, modular,
fashion. The map is complemented with the relevant references where the intermediate techniques were illustrated and developed,
over the years, in connection with laboratory experimental implementations.
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1 Introduction
Differential flatness is a system property establish-

ing, in a natural manner, an input output description
of the system, thus easing the controller design task in,
both, SISO (single-input single-output) and MIMO (mul-
tiple inputs multiple outputs) nonlinear systems within a
zero dynamics-free environment. All system states and
the control inputs are differentially parameterizable in
terms of the flat outputs and of a finite number of their

time derivatives with a clear opportunity for identifi-
cation of possible structural singularities. The flatness
property substantially eases off-line trajectory planning
issues, while trivializing feedback controller design. One
of the advantages of the flatness property, in their input-
to-flat-output representation of the dynamics, is that it
allows to efficiently circumvent matching conditions,
as it naturally leads to trivially matched input-to-flat-
output models. Flatness allows for exact static feedback
linearization, for SISO systems, and to clearly identify
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the need for static or dynamic feedback linearization, in
MIMO nonlinear systems. Flatness easily leads to con-
troller synthesis based on desirable input to flat outputs
closed-loop dynamics, in total absence of unobservable
zero dynamics. In the linear system case, flatness is com-
pletely equivalent to system’s controllability, while flat
outputs are trivially observable.

Nonlinear differentially flat systems are equivalent to
perturbed chains of pure integration. Treating, via dras-
tic model simplification, the effects of endogenous non-
linearities in combination with exogenous inputs into
a single footing of total unknown, unstructured, distur-
bance (addressed as the total disturbance), immediately
prompts for the need of, simultaneous, state and dis-
turbance estimates. Generalized proportional integral
(GPI) observers are extended state observers tradition-
ally used for robust phase variable reconstruction and
high-gain based disturbance estimation, including the
estimation of a finite number of disturbance input time
derivatives. Integral phase variables reconstruction, via
iterated inputs and outputs integrations, with suitably
added iterated output integral compensation is an alter-
native to GPI observer design, which is known as GPI
control. The GPI control scheme establishes a means of
circumventing nonlinear observers design in both SISO
and MIMO nonlinear systems. The key point here is to
carry out the GPI observer, or GPI controller design,
for the unperturbed version of the system, and, then,
assess the effect of the neglected disturbance on the
closed-loop response of the system to the designed con-
troller. The scheme results in attenuation or disturbance
rejection properties and generates a desirable, robust,
trajectory tracking, or output stabilization, performance.

The robustness consideration of GPI controller de-
sign, on flat systems simplified to perturbed chains
of pure integrations, directly results in a high gain FF
with desirable trajectory tracking qualities simultane-
ously achieved with low frequency input disturbance
rejection and high frequency output measurement noise
filtering or attenuation.

In this article, we establish the route, taken by the
author and his colleagues, students and coworkers, to
bring Differential Flatness to the realm of ADRC design.
This entitled GPI observers, GPI control via integral re-
constructors and, finally, the establishing of an impor-
tant equivalence between Observer based ADRC and
robust linear control based on FF’s. This developments

clarified, step by step, the way to establish a complete
equivalence of ADRC via reduced order extended ob-
servers, and robust GPI control based on integral recon-
structors also called FF’s. The context, quite on purpose,
is that of pure integration systems which is the funda-
mental paradigm of flat nonlinear systems. The obtained
controllers can be directly used on the perturbed flat
system in a universal controller fashion requiring only
knowledge of the dimension of the nonlinear flat system.
The map is complemented with the relevant references
where the intermediate techniques were illustrated with
the help of experimental results.

Section 2 introduces flatness and formulates the prob-
lem of controlling a flat output under unknown, time-
varying, lumped input disturbances constituted by en-
dogenous (state dependent) inputs and exogenous in-
puts. Section 3 illustrates the use of GPI observers and
its relevance in the control of uncertain input-output
models of flat systems and assesses the performance
of the estimator in frequency domain terms. Section 4
explains GPI control in the context of an unperturbed
chain of integrations. Section 5 places the uncertain
control problem for flat systems in the context of ro-
bust FF’s. Section 6 contains the equivalence of reduced
order extended observers, for disturbance estimation in
an ADRC scheme, with the FF approach.

To simplify the presentation, only the SISO nonlinear
case will be treated throughout. Extension to MIMO flat
systems, linearizable via static or dynamic feedback, is
not particularly difficult. All technical assumptions are
to be considered globally valid in the relevant state or
phase space. For convenience, we only treat flat output
stabilization problems. The results trivially extend to flat
output reference trajectory tracking problems.

2 Flat systems
An n-dimensional, smooth, nonlinear system of the

form: ẋ = f (x, u), y = h(x), with x ∈ Rn, y ∈ R and u ∈
R, is said to be flat, with flat output y ∈ R, if there exists a
diffeomorphic map Φ : x �→ (y, ẏ, . . . , y(n−1)) := y ∈ Rn

and a smooth function ψ : (y, y(n)) ∈ Rn × R �→ u ∈ R,
i.e.,

x = Φ(y), u = ψ(y, y(n)). (1)

Φ is said to differentially parameterize the n components

of the state x. We assume that
∂ψ

∂y(n)
� 0. The state de-
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pendent input coordinate transformation: u = ψ(y, v),
confirms that the original system is equivalent to the
pure integration, controllable, linear system, y(n) = v.
The relation u = ψ(y, y(n)) is addressed as the input-
(flat) output description of the system, or simply, the
input-output system.

The vast majority of examples of flat systems include
the affine in the control input case: ẋ = f (x)+g(x)u, y =
h(x), with ( f , g) a smooth pair of complete vector fields
defined on the tangent space of Rn. The input-output
description of the nonlinear, affine in the control, flat
system is readily determined by

y(n) = Ln
f h(Φ(y)) + [LgLn−1

f h(Φ(y))]u. (2)

It will be assumed that the nonlinear input gain:
[LgLn−1

f h(Φ(y))], is nonzero in a sufficiently large open
subset of Rn. If nothing is specified about LgLn−1

f h( · ),
the previous regularity assumption will hold globally in
R

n.
Many engineering SISO nonlinear systems are flat

(DC-to-DC converters such as the boost, the buck and
the buck-boost converters; electric motors, such as DC
motors, induction motors, variable reluctance motors,
and permanent magnet synchronous motors; Airplane
models, PVTOL systems, helicopters, some drones and
marine vessels models). Many popular underactuated
mechanical systems (ball and beam, inverted pendulum
on a cart, the Furuta pendulum, the Kapitsa pendulum,
etc.) are, generally speaking, non flat.

Suppose, for a moment, that the term Ln
f h(Φ(y)) is

not precisely known, or difficult to “wire-up” in an
experimental implementation of a certain output feed-
back control law strategy, implying its “exact cancella-
tion”. Contrary to this, assume also that the input gain,
b(y) := LgLn−1

f h(Φ(y)), is perfectly known. The term
Ln

f h(Φ(y)), viewed as an unknown scalar time function:
η(t) = Ln

f h(Φ(y(t))), is then properly regarded as an
endogenous perturbation input. Any external, unstruc-
tured, perturbation input, affecting the system’s state
model, acts as amatched perturbation input in the input-
output model and it is addressed as the exogenous per-
turbation, denoted by ϑ(t). The total perturbation input
is, hence, defined as ξ(t) = η(t) + ϑ(t). We consider
then the simplified model as the perturbed integration
system,

y(n) = b(y)u + ξ(t). (3)

Flatness clearly leads, in a natural manner, to the
paradigmatic perturbed model customarily considered
in ADRC. Endogenous and exogenous perturbation in-
puts are handled as the total additive perturbation input.
Particularly simple regular cases include: constant input
gain: b(y) = b, output dependent input gain, b(y) = b(y).
The general regular case, b(y) � 0, is treated via a
suitable homotopic equivalence of the closed-loop out-
put solution trajectories with those pertaining unit input
gain, trivially stable, closed-loop output trajectories. This
uses a globally well defined, state-dependent, time co-
ordinate transformation. In such cases, b(y, t), is largely
unknown except, possibly, for its (unchanging) sign.

Let, without loss of generality, b(y(t)) > 0 uniformly
in time. Consider the implicit state-dependent time co-
ordinate transformation,

dτn = b(y(t))dtn,
(dτ

dt

)n
= b(y(t)) (4)

with the corresponding differential equation exhibiting
the trivial initial conditions: τ(0) = 0. This defines a state-
dependent time scaling transformation t �→ τ. Since
b(y(t)) = LgLn−1

f h(Φ(y(t))), is uniformly strictly posi-
tive, the solution trajectory, τ(t), is uniformly increasing,
thus qualifying as a time-like variable. The transforma-
tion τ : t �→ τ, represented by the solution of the dif-
ferential equation for τ, is, hence, globally invertible on
the non-negative portion ofR, denoted byR+. The time
transformed system is

dny
dτn = u + ξ̃(τ), ξ̃(τ) =

ξ(τ)
b(y(τ))

. (5)

For any static, or dynamic, feedback control law u (such
as ADRC), and any given set of initial conditions for the
phase variables, y(0), the trajectory, in the flat output
phase space of the original system, is a smooth map,
y : R+ → Rn, defined by: t �→ y(t). The corresponding
phase space trajectory, τ �→ y(τ), of the pure integra-
tion system, starting from the same initial condition, is
a continuous deformation of that of the original system.
In fact, the two maps: t �→ y(t) and τ �→ y(τ) belong to
the same homotopy class.

Indeed, consider the map z : [0, 1]×R+ → Rn defined
by

z(ρ, t) = y((1 − ρ)t + ρφ(t)). (6)
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This map, continuously deforms phase space trajecto-
ries, t �→ y(t), of the nonlinear flat system into phase
space trajectories, t �→ y(τ(t)), of the simplified system.
The monotonicity of the function τ(t), with τ(0) = 0,
guarantee that lim

t→∞ y(t) and lim
t→∞ y(τ(t)) are the same.

Since the phase trajectories for the original and the time-
scaled pure integration system start at the same initial
condition, and end at the same point at infinity, the time-
scaling homotopy class existing between the trajectory
maps is well defined. Trajectories homotopic, via time
scale transformations, to stable trajectories are stable.

We, henceforth, consider, without loss of generality,
pure integration systems of the form:

y(n) = u + ξ(t). (7)

3 Generalized proportional integral ob-
servers

The flat system equivalence to a perturbed pure in-
tegration system, with unit control input gain, still re-
quires, for robust feedback purposes, of the following
two items 1) the asymptotic estimation of the phase
variables set {y, ẏ, . . . , y(n−1)}, simply denoted by y, and
2) the accurate estimation of the disturbance input ξ(t),
as if it were an unstructured, purely time-varying, total
disturbance input. It is clear that the prevailing linearity
of the simplified system prompts, for the phase variables
estimation purposes, the use of a linear Luenberger type
of observer and the incorporation of a reasonable total
disturbance model for the signal ξ(t). Under the suit-
able disturbance smoothness assumption, an mth order
Taylor time-polynomial approximation at time t, of the
disturbance input, leads to the following self-updating
linear approximation model:

ξ(t) = z1(t), z(m)
1 (t) = 0. (8)

Defining zi(t) = z(i−1), i = 1, 2, . . . ,m, we immediately
obtain

ż1 = z2,

ż2 = z3,
...

żm−1 = zm,

żm = 0.
(9)

The disturbance approximation model corresponds with
an (m − 1)st order time polynomial which ultra-locally
will be made to act as a self-updating polynomial spline
approximating the actual value of the disturbance input.
This self-updating character is bestowed through the
disturbance estimation errors in the following manner.

Define the simplified plant phase variables: yi = yi−1,
i = 1, 2, . . . ,n. Consider next the full order system
model, including the disturbance model, and, also, its
associated (perturbed) asymptotic extended observer:

ẏ1 = y2,
d
dt

ŷ1 = ŷ2 + λm+n−1(y − ŷ1),

ẏ2 = y3,
d
dt

ŷ2 = ŷ3 + λm+n−2(y − ŷ1),
...

...

ẏn = u + z1,
d
dt

ŷn = u + ẑ1 + λm(y − ŷ1),

ż1 = z2,
d
dt

ẑ1 = ẑ2 + λm−1(y − ŷ1)
...

...

żm = 0,
d
dt

ẑm = λ0(y − ŷ1).

The (redundant) output estimation error, ey = y − ŷ1, is
seen to satisfy the following perturbed linear dynamics,

e(m+n)
y + λm+n−1e(m+n−1)

y + . . . + λ1ėy + λ0ey = ξ
(m)(t).

(10)

Clearly, the unperturbed version (ξ(t) = 0) of the output
estimation error dynamics can be specified to become
asymptotically exponentially stable through the choice
of suitable Hurwitz design coefficients: {λ0, . . . , λm+n−1}.
Let ξ(s) denote the Laplace transform of the total distur-
bance signal ξ(t). The injected estimation error dynam-
ics is described by the perturbed band-pass stable filter,

ey(s) =
smξ(s)

sm+n + λm+n−1sm+n−1 + . . . + λ0
, (11)

which enjoys infinite attenuation at very low, and at very
high, frequencies. At intermediate frequencies, where
the minimum disturbance attenuation (or, actually, dis-
turbance amplification) may be experienced, a high gain
observer design, based on corresponding Hurwitz coef-
ficients: κi, i = 0, 1, . . . ,m+n, defined by,λi = κi/εm+n−i,
i = 0, 1, . . . ,m + n − 1 substantially attenuates to a de-
sired level the mth derivative of the smooth total distur-
bance influence on the output estimation error and of
its time derivatives. The parameter ε is a small positive
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real number. The frequency response of the output es-
timation error would be given, in normalized frequency
terms, σ = εs, by

ey(σ) =
εnσmξ(σ)

σm+n + κm+n−1σm+n−1 + . . . + κ1σ + κ0
. (12)

The attenuation effects of the high gain design parameter
ε are clearly depicted.

As a result, as ε is made sufficiently small, an uni-
formly absolutely bounded total perturbation input,
with uniformly absolutely bounded time derivatives, in-
duces a phase variable estimation error which can be
made as small in magnitude as desired. Clearly, for
j = 0, 1, . . . , n − 1,

σ jey(σ) =
εn− jσm+ jξ(σ)

σm+n + κm+n−1σm+n−1 + . . . + κ1σ + κ0
, (13)

which still enjoys infinite, low and high frequency, atten-
uation features and modest attenuation at intermediate
frequencies as the order of the output estimation error
time derivative, j, increases from 0 towards n − 1.

The disturbance estimation error eξ = ξ(t)− ẑ1 is seen
to satisfy, in the time domain,

e(n)
y + λm+n−1e(n−1)

y + . . . + λm+1ėy + λmey = ξ − ẑ1.

(14)

As the estimation errors time derivatives, e( j)
y , j = 0, 1,

. . . ,n, uniformly ultimately approach a neighborhood of
the origin in the estimation error phase space, the dis-
turbance estimation error, ξ − ẑ1, approaches a small
neighborhood of the origin of the real line, still conve-
niently determined by the small parameter ε.

It should be clear by now, that the approximation er-
ror ξ(t) − z1, associated with the proposed Taylor poly-
nomial model of the total disturbance, ξ(t), exhibits an
explicit linear dependance on the phase variable estima-
tion errors. Forcing their contributions to be part of an
(m + n)th order asymptotically exponentially stable lin-
ear dynamics perturbed by the disturbance model actual
residual, the resulting disturbance estimate error auto-
matically adapts to a small vicinity of zero, thus making
the Taylor polynomial approximation truly self-adapting.

In the context of pure integration perturbed systems,
GPI observers have been shown to be a generalization
of Han’s extended state observer, but one which is also
capable of on-line estimating a finite number of time
derivatives of the total disturbance input. High gain state

estimation seems to be at the heart of observer based
ADRC control.

It was, therefore, rather natural to combine GPI ob-
servers in an ADRC scheme for simplified models of
totally perturbed flat nonlinear systems. The estimated
phase variables completed a suitable linear feedback
loop with rather accurate, though approximate, distur-
bance cancellation.

4 GPI control: dynamical output feedback
control without observers

The stabilization of a perturbed pure integration sys-
tem can be accomplished by the use of suitable classical
compensation networks. The lack of universality of clas-
sical compensation networks is determined, primarily,
by the nature of the disturbance function, by the order
of the plant and by the knowledge of the control input
gain. There exists a very close connection between GPI
control, based on integral phase variables reconstruc-
tors, and classical output compensation networks. The
presence of additive exogenous and endogenous (total)
disturbances disrupts the established input error inte-
gration process aimed to obtain structural estimates of
the output phase variables. To circumvent this incon-
venience, one must first establish the structure of the
GPI output compensator, regardless of the additive dis-
turbances and, then, proceed to examine, and assess,
the closed-loop performance in the presence of such
unknown but bounded perturbation inputs.

Consider then the nth order pure integration system
as simplified from the input-to-flat output dynamics,

y(n) = u. (15)

Iterated integrations of the input u yield structural esti-
mates of the phase variables as follows:

yi := ŷ(i)(t)

=
� t

0

� ρ1

0
. . .

� ρn−i−1

0
u(ρn−i)dρn−i . . .dρ1

=:
� (n−i)

u(t), i = 1, 2, . . . , n − 1. (16)

Each estimate is off by an (n − i − 1)th order time-
polynomial, whose coefficients are exclusively depen-
dent upon the unknown initial conditions associated
with the estimated phase variable. Any linear feedback
control scheme, based on the use of all these struc-
tural estimates of the phase variables (from the first,
y1 = ˆ̇y = ŷ(1), to the (n− 1)th, yn−1 = ŷ(n−1)), must dully
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compensate, as classically done, for the resulting linear
combination of the corresponding time-polynomial er-
rors. This simply requires a suitable linear combination
of iterated integrals of the output signal y, ranging from
a first order output integration, for compensation of the
constant errors, up to an iterated (n − 1)th order output
iterated integration for the compensation of the (n−2)th
order time polynomial associated with the estimation y1

of ẏ = y(1). The linear control scheme, thus requires only
the measurements of the input signal u and of the output
signal y for its implementation.

A compensator for the unperturbed chain of integra-
tions is given by

u=−n−1∑
i=1

k2n−i−1yn−i −
n−1∑
j=0

kn− j−1(
� ( j)

y)

=−n−1∑
i=1

k2n−i−1(
� (i)

u) − n−1∑
j=0

kn− j−1(
� ( j)

y). (17)

In terms of the Laplace transforms, one obtains the im-
plicit expression for the control input u

u(s) = −
[ n−1∑

i=1

k2n−i−1

si

]
u(s) −

[ n−1∑
j=0

kn− j−1

sj

]
y(s). (18)

Solving for u(s) we have

u(s) =−
[kn−1sn−1 + kn−2sn−2 + . . . + k1s + k0

sn−1 + k2n−2sn−2 + . . . + kn+1s + kn

]
y(s).

(19)

The closed-loop, unperturbed, system is readily ob-
tained as

[s2n−1 + k2n−2s2n−2 + . . . + k1s + k0]y(s) = 0. (20)

The order of the dynamic output feedback compensator,
for the unperturbed input output dynamics, is one less
than the order of the plant. The output can be exponen-
tially asymptotically stabilized via the suitable choice of
the design parameters, {k2n−2, . . . , k1, k0}, as the coeffi-
cients of a (2n − 1) degree Hurwitz polynomial in the
complex variable s. The above stabilizing classical com-
pensation network is addressed as the GPI controller.

The above dynamic flat output feedback control
scheme allows for flat output stabilization without ex-
plicitly using a linear observer exhibiting exponentially
asymptotically stable (redundant) flat output estimation
error.

5 Flat filters
The GPI controller is non robust with respect to ad-

ditive disturbance inputs of the simplest kind (constant
unknown disturbances, for example). As it was done
in GPI observer based ADRC control of simplified, per-
turbed, flat systems, total additive disturbances may be
modeled as finite order time polynomials (say, poly-
nomials of order m − 1). There are, however, at least,
two equivalent manners of bestowing the self updating
feature to such a finite order, linear, total perturbation
model. One of them is through exogenous input exten-
sions, coupled with imposition of closed-loop stability
for the entire extended systems. This is dual to the GPI
observer approach. We take, however, the alternative
route of compensating, in the feedback control, the ef-
fects of the total perturbation input through a suitable
finite linear combination of iterated output integrations.

Robustness of the previously exposed output feed-
back control scheme is obtained after adding m addi-
tional iterated output integrations and redefinition of the
controller design parameters.

Consider the output feedback control law

u = −n−1∑
i=1

k2n+m−i−1yn−i −
n+m−1∑

j=0
kn+m− j−1(

� ( j)
y)

= −n−1∑
i=1

k2n+m−i−1(
� (i)

u) − n+m−1∑
j=0

kn+m− j−1(
� ( j)

y). (21)

Solving for u(s), after using the Laplace transform op-
erator on the implicit controller expression, we obtain

u(s) = −
[ kn+m−1sn+m−1 + . . . + k1s + k0

sm(sn−1 + k2n+m−2sn−2 + . . . + kn+m)

]
y(s).

(22)

The closed-loop system, in the absence of input dis-
turbances, is given by

[s2n+m−1 + k2n+m−2s2n+m−2 + . . . + kn+msn+m

+ kn+m−1sn+m−1 + . . . + k2s2 + k1s + k0]y(s) = 0, (23)

which can be made to asymptotically exponentially con-
verge towards zero provided the appropriate (Hurwitz)
gains are used.

For the perturbed pure integration system

y(n) = u + ξ(t). (24)

The previously derived dynamic output feedback con-
troller is directly used on the perturbed system. One
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obtains the following closed-loop system, driven by the
total perturbation input.

y(s) =
sm(sn−1 + k2n+m−2sn−2 + . . . + kn+m)ξ(s)

s2n+m−1 + k2n+m−2s2n+m−2 + . . . + k1s + k0
. (25)

The frequency response of the output stabilization error
(represented by y itself) exhibits significantly large atten-
uation at low and high frequencies, thus rejecting high
frequency measurement noise and rejecting also typi-
cal low frequency disturbance inputs. For intermediate
frequencies, a high gain parameter factor, in the form:
κ = ki/ε2n+m−1−i. This induces the normalized frequency
relation,

y(σ) =
εn−1σm(σn−1 + κ2n+m−2σn−2 + . . . + κn+m)ξ(σ)
σ2n+m−1 + κ2n+m−2σ2n+m−2 + . . . + κ1σ + κ0

.

(26)

6 Flat filters and observer based ADRC: An
equivalence

Consider the pure integration perturbed system

y(n) = u + ξ(t). (27)

We adopt, for the reduced order observer, the n − 1
dimensional system state representation including an
artificial velocity measurement (y2 = ẏ = ẏ1):

ẏ2 = y3,

...

ẏn−1 = yn,

ẏn = u + ξ,
y2 = ẏ1.

(28)

A reduced order extended state observer (ROESO),
which takes y2 as the artificially measured output, in-
cluding, also, m extra output integrations, is given by

d
dt

ŷ2 = ŷ3 + λm+n−2(ẏ − ŷ2),

d
dt

ŷ3 = ŷ4 + λm+n−3(ẏ − ŷ2),

...

d
dt

ŷn−1 = ŷn + λm+1(ẏ − ŷ2),

d
dt

ŷn = u + ξ̂1 + λm(ẏ − ŷ2),

d
dt
ξ̂1 = ξ̂2 + λm−1(ẏ − ŷ2),

...

d
dt
ξ̂m−1 = ξ̂m + λ1(ẏ − ŷ2),

d
dt
ξ̂m = λ0(ẏ − ŷ2).

(29)

Define

η̂2 = ŷ2 − λm+n−2y,
η̂3 = ŷ3 − λm+n−3y,
...

η̂n = ŷn − λmy,
ζ̂1 = ξ̂1 − λm−1y,
...

ζ̂m−1 = ξ̂m−1 − λ1y,
ζ̂m = ξ̂m − λ0y.

(30)

The ROESO is thus proposed to be

d
dt
η̂2 = η̂3 − λm+n−2η̂2 + (λm+n−3 − λ2

m+n−2)y,

d
dt
η̂3 = η̂4 − λm+n−3η̂2

+(λm+n−4 − λn+m−3λm+n−2)y,
...

d
dt
η̂n−1 = η̂n − λm+1η̂2 + (λm − λm+1λm+n−2)y,

d
dt
η̂n = u + ζ̂1 − λmη̂2 + (λm−1 − λmλm+n−2)y,

d
dt
ζ̂1 = ζ̂2 − λm−1η̂2 + (λm−2 − λm−1λm+n−2)y,

...
d
dt
ζ̂m−1 = ζ̂m − λ1η̂2 + (λ0 − λ1λm+n−2)y,

d
dt
ζ̂m = −λ0η̂2 − λ0λm+n−2y.

(31)

The estimates of the original phase variables may be
computed from the following expressions:

ŷ1 = y1 = y,
ŷ2 = η̂2 + λm+n−2y,
ŷ3 = η̂3 + λm+n−3y,
...
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ŷn = η̂n + λmy,
ξ̂1 = ξ̂ = ζ̂1 + λm−1y,
...

ξ̂m−1 = ˆξ(m−2) = ζ̂m−1 + λ1y,
ξ̂m = ˆξ(m−1) = ζ̂m + λ0y.

Defining also, for the original system,

η2 = y2 − λm+n−2y,
η3 = y3 − λm+n−3y,
...

ηn = yn − λm,

ζ1 = ξ1 − λm−1y,
...

ζm−1 = ξm−1 − λ1y,
ζm = ξm − λ0y

(32)

with ξ1 = ξ, ξ2 = ξ̇, . . . , ξm = ξ(m−1). One readily obtains

η̇2 = η3 − λm+n−2η2 + (λm+n−3 − λ2
m+n−2)y,

η̇3 = η4 − λm+n−3η2 + (λm+n−4 − λn+m−3λm+n−2)y,
...

η̇n−1 = ηn − λm+1η2 + (λm − λm+1λm+n−2)y,
η̇n = u + ζ1 − λmη2 + (λm−1 − λmλm+n−2)y,
ζ̇1 = ζ2 − λm−1η2 + (λm−2 − λm−1λm+n−2)y,
...

ζ̇m−1 = ζm − λ1η2 + (λ0 − λ1λm+n−2)y,
ζ̇m = ξ

(m) − λ0η2 − λ0λm+n−2y.
(33)

The ROESO state, and disturbance, estimation errors are
seen to satisfy:

ė2 = e3 − λm+n−2e2,

ė3 = e4 − λm+n−1e2,
...

ėn−1 = en − λm+1e2,

ėn = (ξ − ξ̂1) − λme2,

ėζ1 = eζ2 − λm−1e2 = eζ1 − λme2,
...

ėζm−1 = eζm − λ1e2,

ėζm = ξ
(m) − λ0e2.

(34)

In other words, the estimation error e2 satisfies the linear
perturbed differential equation:

e(n+m−1)
2 + λm+n−2e(n+m−2)

2 + . . . + λ1ė2 + λ0e2 = ξ
(m).

(35)

From here, it easily follows that,

e2(s)

=
[ sm

sn+m−1 + λm+n−2sm+n−2 + . . . + λ1s + λ0

]
ξ(s),

e3(s)

=
[ sm(s + λm+n−2)
sn+m−1 + λm+n−2sm+n−2 + . . . + λ1s + λ0

]
ξ(s),

...

en(s)

=
[ sm(sn−2 + λm+n−2sn−3 + . . . + λm+1)
sn+m−1 + λm+n−2sm+n−2 + . . . + λ1s + λ0

]
ξ(s),

eξ(s)

=
[ sm(sn−1 + λm+n−2sn−2 + . . . + λm+1s + λm)

sn+m−1 + λm+n−2sm+n−2 + . . . + λ1s + λ0

]
ξ(s),

(36)

which implies large attenuation of the low frequency in-
put disturbance signal, ξ(t), in the state and disturbance
estimation errors, produced by the proposed ROESO.

Finally, let ŷ1 = y. A ROESO-based ADRC controller,
for output stabilization purposes, is proposed as

u=−ξ̂ − n∑
j=1
γ j−1 ŷ j

=−ξ̂ − n∑
j=1
γ j−1yj +

n∑
j=2
γ j−1(yj − ŷ j)

=−ξ̂ − n∑
j=1
γ j−1yj +

n∑
j=2
γ j−1ej, (37)

where yj is the ( j − 1)th order time derivative of the
output y.

The nth order time derivative of the output (itself the
stabilization error) satisfies

yn+1 = y(n) = (ξ − ξ̂) − n∑
j=1
γ j−1yj +

n∑
j=2
γ j−1ej

= eξ − γ0y − n∑
j=2
γ j−1yj + γ j−1ej. (38)

Let q(s) denote the following characteristic polynomial:
q(s) = sn+m−1 + λn+m−2sn+m−2 + . . . + λ1s + λ0 and let
p(s) denote the closed-loop control characteristic poly-
nomial p(s) = sn + γn−1sn−1 + . . . + γ1s + γ0. Using the
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above expressions, one obtains, in the Laplace transform
domain:

p(s)y(s)= (sn + γn−1sn−1 + . . . + γ0)y(s)

= eξ(s) +
n∑

j=2
γ j−1

[nj(s)
q(s)

]
×
[nn+1

q(s)

]
ξ(s)

+
n∑

j=2
γ j−1

[nj(s)
q(s)

]
ξ(s) (39)

with

nj(s) = sm(sj−2 + λn+m−2sj−3 + . . . + λn+m−( j−1)),
nn+1 = sm(sn−1 + λm+n−2sn−2 + . . . + λm+1s + λm).

(40)

The closed-loop system output, y1, evolves, excited by
the disturbance ξ, in accordance with the following dy-
namics:

y(s) =
[m(s)

r(s)

]
ξ(s), (41)

where

m(s) = sm[sn−1 + (λm+n−2 + γn−1)sn−2 + (λm+n−3

+γn−1λm+n−2 + γn−3)sn−3 + . . . + (λm

+γn−1λm+1 + γn−2λm+2 + . . . + γ1λm+n−1)],
r(s) = p(s)q(s)
= (sn + γn−1sn−1 + . . . + γ1s + γ0)(sn+m−1

+λm+n−2sm+n−2 + . . . + λ1s + λ0).
(42)

Clearly the denominator r(s) is of the form,

r(s) = s2n+m−1 + k2n+m−2s2n+m−2 + . . . + k1s + k0, (43)

while the numerator is of the form,

m(s) = sn+m−1 + k2n+m−2sn+m−2 + . . . + km+nsm. (44)

The characteristic polynomial of the closed-loop sys-
tem factors into the product of the ROESO characteristic
polynomial (i.e., n + m − 1 = (n − 1) + m) and the nth
order characteristic polynomial of the closed-loop sys-
tem, obtained by straightforward pole placement on the
nth order pure integration plant system, as if all the
phase variables had been available for feedback. All this
is, evidently, in accordance with the observer controller
design separation principle for state feedback through
an observer in linear systems.

An output stabilization feedback controller for an nth
order pure integration system, y(n) = u+ξ(t), was found
to be characterized, in the frequency domain, by

u = −
[ km+n−1sm+n−1 + . . . + k1s + k0

sm(sn−1 + k2n+m−2sn−2 + . . . + km+n)

]
y(s) (45)

with the filter gains chosen to guarantee a Hurwitz
closed-loop characteristic polynomial. The closed-loop
system is described by

y(s) =
[n(s)

d(s)

]
ξ(s), (46)

where

n(s)= sm(sn−1 + k2n+m−2sn−2 + . . . + kn+m),
d(s)= s2n+m−1 + k2n+m−2s2n+m−2

+ . . . + kn+msn+m + . . . + k1s + k0,

(47)

which is clearly identifiable with the ROESO-based
ADRC closed-loop system, depicted in equation (41),
thanks to the fact that the closed-loop characteristic
polynomial coefficients uniquely determine all the co-
efficients in the flat filter controller. We therefore have

p(s)= s2n+m−1 + k2n+m−2s2n+m−2 + . . . + kn+msn+m

+ . . . + k0

= (sn + γn−1sn−1 + γ1s + γ0)(sn+m−1

+λm+n−2sm+n−2 + . . . + λ1s + λ0).

Clearly, given a ROESO-based ADRC controller design,
there exists a unique stable flat filter controller which
has exactly the same set of fundamental transfer func-
tions (sensitivity, complementary sensitivity and open
loop transfer functions). On the other hand, given a
FF controller design, there exists non-unique equivalent
ROESO based ADRC controllers. This one-way equiv-
alence is substantially helpful in synthesizing observer
based ADRC control schemes in the form of a single
linear controller, in the form of a stable proper transfer
function with enhanced disturbance attenuation features
and good low frequency trajectory tracking features. The
equivalence has been tested, also, in several experimen-
tal settings.

7 Conclusions
In this article, a roadmap, intimately related to the

author’s gradual understanding, and linking, of ADRC
with differential flatness and GPI control in the form of



258 H. Sira-Ramı́rez / Control Theory Tech, Vol. 16, No. 4, pp. 249–260, November 2018

robust flat filters, has been provided through the basic
developments leading from one end to the other. An
exposition has been given of the inherent and natural
relevance of differential flatness in the control of non-
linear uncertain systems for the SISO case. Also, the
natural importance of classical compensation schemes
in the control of uncertain nonlinear systems cannot be
overemphasized. It is the author’s belief that the key is-
sue, and one which encounters serious difficulties and
criticisms on ADRC in the automatic control commu-
nity, is given by the unstructured nature of the simpli-
fied pure integration system in the realm of non-linear
control, whose design methods have been traditionally
dominated by meticulous consideration of the nonlin-
ear state structure. When the cult to the nonlinearities
is swept away, in the form of a total purely time varying
disturbance, all the arsenal of robust linear control can
be readily applied to great advantage. It is my personal
belief that ADRC still has numerous development av-
enues, both, in theory and practise, in comparison with
other nonlinear control and observer design methods.
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Birkhäuser, 2015.

[3] H. Sira-Ramı́rez, C. Garcı́a Rodrı́guez, J. Cortes-Romero, et al.
Algebraic Identification and Estimation Methods in Feedback
Control Systems. Hoboken: Wiley, 2014.

[4] H. Sira-Ramı́rez, S. Agrawal.Differentially Flat Systems. New York:
Marcel Dekker, 2004.

[5] H. Sira-Ramı́rez, E. W. Zurita-Bustamante, M. A. Aguilar-Orduña,
et al. Sliding mode control devoid of state measurements. New
Perspectives and Applications of Modern Control Theory. J. B.
Clempner, W. Yu (eds.). Cham: Springer, 2017: 73 – 102.

[6] H. Sira Ramı́rez, F. Gonzalez Montañez, J. Cortes Romero, et
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