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Abstract
The paper addresses the problem of reconciling the modern control paradigm developed by R. Kalman in the sixties of the

past century, and the centenary error-based design of the proportional, integrative and derivative (PID) controllers. This is done
with the help of the error loop whose stability is proved to be necessary and sufficient for the close-loop plant stability. The
error loop is built by cascading the uncertain plant-to-model discrepancies (causal, parametric, initial state, neglected dynamics),
which are driven by the design model output and by arbitrary bounded signals, with the control unit transfer functions. The
embedded model control takes advantage of the error loop and its equations to design appropriate algorithms of the modern
control theory (state predictor, control law, reference generator), which guarantee the error loop stability and performance. A
simulated multivariate case study shows modeling and control design steps and the coherence of the predicted and simulated
performance.
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1 Introduction

In the 80’s of the past century, J. Han of the Chi-
nese Academy of Sciences, Beijing, China, in a suite of
Chinese-written papers (see [1] for a more recent En-
glish summary) pointed out the difficulties of the mod-
ern control paradigm proposed by R. Kalman in his
seminal paper “On the general theory of control sys-
tems” [2] in front of the real plant uncertainty. Z. Gao
observed in [3] that the robust control design is a para-

dox that looks unsolvable within the modern control
paradigm. The stunning fact is that, after sixty years of
modern control theory and myriads of publications, the
proportional, integrative and derivative (PID) controller,
formulated around 1920 and applied to ship steering
by [4, 5], is still the work-horse of automatic control
in all the fields of application. The argument of J. Han
and Z. Gao [1, 3, 6] is that PID design and tuning (the
error-based design paradigm) is substantially model in-
dependent and only guaranteed by the experimental per-
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formance of the measured tracking error between ref-
erence and plant measurements. It seems evident that
a fracture exists between a well-established and mature
mathematical theory and a centenary successful engi-
neering practice.

Is a reconciliation workable and by which means?
The goal of this paper is to prove that reconciliation
is feasible and that robust control theories and design
methodologies exist and have been in-field applied. The
main design objective is to guarantee stability and per-
formance of a real control system in the presence of
a given class of uncertain discrepancies between real
plant and mathematical model.

The key result of the paper in Section 2.3.3 is that,
given a suitable mathematical model of the plant and
the required performance, Kalman theory allows a class
of parameterized controllers to be designed and tuned in
order to guarantee stability and performance in presence
of a well-defined class of uncertain discrepancies. The
tool for controller tuning and performance verification
is the error loop [7], in which plant and model discrep-
ancies are appropriately filtered by the controller itself
for guaranteeing stability and requirements. A theorem
proves that the error loop stability is a necessary and
sufficient condition for the stability of the closed-loop
plant.

The paper is organized into three steps.
Section 2 starts by briefly recalling Kalman theory

and objectives [2] and the unstructured uncertainty de-
fined by the robust stability theory of J. C. Doyle and
G. Stein [8]. Both theories together with the small-
gain theorem of G. Zames [9] are the foundations of
the theory of F. Donati and M. Vallauri [10]. The the-
ory exploits the machinery of the input-output norm
of dynamic operators to define concept and method of
“almost-linear plants”. In essence, the output error norm
between almost-linear plant and model can be made
smaller than the model output norm: in other terms,
the fractional error can be brought to be less than 100%.
Though insufficient to invoke the small-gain theorem for
the whole loop including plant and controller, it facili-
tates the model-based design of a feedback controller
that guarantees a loop gain less than unit and therefore
closed-loop stability. The stabilizable loop, referred to
as the error loop in [7], is proved to be the cascade of
the unstructured uncertainty and of two model-based
closed loop transfer functions.

Section 3 traces the path from Section 2 to the embed-
ded model control (EMC) [7,11]. First it goes beyond the

unstructured uncertainty by separating four uncertainty
classes: initial state, parametric and causal uncertainty
and neglected dynamics, and proves that whereas para-
metric and causal uncertainty must be canceled on the
plant, neglected dynamics contribution must be blocked
from entering the controller itself. The controller archi-
tecture is similar to that of F. Donati and M. Vallauri [10]
as well as to the internal model control [12] and the ac-
tive disturbance rejection control [3]. As a second point,
design and embedded model are distinguished. The de-
sign model, which surrogates the plant, includes the
whole uncertainty class. The uncertainty simplifies to the
causal uncertainty in the embedded model, which is the
core of the controller and is the basis for the controller
design. Design model and controller allow to build de-
sign equations which relate tracking and other errors to
the uncertainty class elements (the error loop equations)
and guide the robust controller tuning (pole placement)
through analytic inequalities relating requirements, con-
troller parameters (closed-loop poles) and uncertainty
bounds.

Models, equations and pole placement of Section 3
are employed in Section 4 to solve a well-known multi-
variate and nonlinear control problem [13], which does
not admit the normal form of the feedback linearization
[14] and is non-minimum phase in the linear approx-
imation. Analytic design versus uncertainty is checked
by simulated trials.

2 The robust design problem

2.1 R. Kalman’s theory

In his seminal paper on the “General theory of con-
trol systems” [2], R. Kalman’s ultimate objective was to
answer two questions:

1) What kind and how much information are needed
to achieve a desired type of control?

2) What intrinsic properties characterize a given un-
alterable plant as far as control is concerned?

The aim is that of “initiating study of the pure theory of
control, imitating the spirit of Shannon’s investigations
in the theory of information”, but “avoiding the well-
known difficulty of Shannon’s theory: methods of proof
which are impractical for actually constructing practical
solutions”. To this end, “only constructive methods are
employed” but restricted to “dynamic systems with a
finite dimensional state space and linear transition func-
tions, excited by an uncorrelated stationary Gaussian
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random process”. R. Kalman did not explicitly answered
the above questions but proved that “the general prob-
lem of optimal regulation is solvable if and only if the
plant is completely controllable”, and that “the optimal
state prediction which solves the Wiener filtering prob-
lem” requires the complete observability of a linear dy-
namic system excited by a Gaussian random process.
The concepts of plant (“physical object”) and mathe-
matical model (“dynamic system”) are distinguished;
but the paper concentrates on the model properties with
the explicit assumption (page 482, [2]) that model input
and output are at the same time plant input and output.
The inherent uncertainty of the input and output random
processes is just seen as a model (and plant) property.

Sufficient conditions for linear time-invariant (LTI)
model stabilizability. In summary, although not explicitly
stated and by confounding plant with model, controlla-
bility and observability (briefly minimality) are proved to
be sufficient conditions for designing asymptotically sta-
ble (AS) LTI regulators and predictors, and necessary and
sufficient for their optimality, independently of the un-
correlated stationary Gaussian random processes (with
bounded covariance in the discrete-time (DT) case and
bounded spectral density (SD) in the continuous-time
(CT) case) which are applied to the model. Minimality
is only sufficient for the stabilizability since also non-
minimal LTI models may be feedback stabilized.

2.2 Doyle-Stein’s robust stability

A first step toward a theory of uncertain dynamic
systems and their stabilizability was done in 1981 by
J. C. Doyle and G. Stein [8]. The input-output LTI de-
sign model expressed by the minimal transfer matrix
M(s = j2π f ), f � 0 (without pole-zero cancellation), is
complemented by an unknown but bounded perturba-
tion ΔP(j f ), whose bound is defined by the set mem-
bership statement:

0 < σ2
max(ΔP(j f ))

= λmax(ΔPT(−j f )ΔP(j f )) � δ(j f ), (1)

where f � 0 and σmax is the largest singular value of
ΔP(j f ). The uncertainty defined in (1) which does not
postulate any specific expression of ΔP(j f ) is referred to
as unstructured uncertainty. Since matrix algebra admits
multiplication (though not commutative), the authors
of [8] recognized that uncertainty can be expressed in a

multiplicative way as

P(j f ) =M(j f ) + ΔP(j f ) = (I + ∂P(j f ))M(j f ), (2)

where, if M is invertible, the form

∂P(j f ) = P(j f )M−1(j f ) − I (3)

takes the meaning of a fractional/relative error. Com-
parison of the set membership uncertainty in (1) with
the uncertainty of a stationary Gaussian random pro-
cess postulated by the R. Kalman theory in [2], though
of interest, is left to the reader.

Sufficient conditions for robust LTI stabilizability.
Given a feedback F(j f ) that stabilizes the closed-loop
complementary sensitivity (CS) V(j f ) defined by V =
(I + FM)−1FM, and the additional assumption of equal
number of unstable poles in FP and FM, the “robust”
closed-loop sufficient stability condition amounts to the
small-gain inequality:

σmax(∂P(j f ))σmax(V(j f )) < 1, f � 0. (4)

2.3 Donati-Vallauri’s robust control theory and the
Han’s paradox

2.3.1 The input-output unstructured uncertainty

A further step was made in 1984 by F. Donati and M.
Vallauri [10] by defining the unstructured uncertainty in
terms of the input-output norm of dynamic operators
(not necessarily linear) and by employing the same ma-
chinery of the small-gain theorem [11] of G. Zames [9].
In this framework, given, for instance, the finite norm of
a time-truncated vector signal:

‖v‖2,H =
√� H

0
|v(τ)|2 dτ < ∞, H < ∞, (5)

where |v(τ)| is the vector Euclidean norm, a dynamic
system y = P(u) is said to be finite-gain stable if there
exists a pair

{
η, δ
}

of finite reals such that

‖y‖2,H � η‖u‖2,H + δ, 0 � H < ∞, (6)

where, in the sequel, ‖ ·‖ = ‖ ·‖2,H unless otherwise said.
Time truncation corresponds to the frequency resolu-
tion Δ f � H−1. i) Given a real plant (distinguished from
mathematical models) defined by an unknown input-
output operator y = P(u) and an admissible input set
U; ii) given a minimal linear dynamic model ym = Mu
(respecting causality) and the model error ỹm = y− ym,
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plant and model admit an unstructured uncertainty, if
and only if a finite pair

{
ηP, δP

}
exists such that

‖ỹm‖ =‖y − ym‖ � ηP‖u‖ + δP,

0 � ηP, δP < ∞, u ∈ U. (7)

In [9] and [10], the input-output operators map time
signals defined in a Banach space [15]. Here, we restrict
to a Hilbert space [15] defined by the scalar product
< v,w > of the complex vectorial functions v and w for
any finite 0 � H < ∞:⎧⎪⎪⎪⎨⎪⎪⎪⎩

〈v,w〉 =
� H

0
v∗(τ)w(τ)dτ < ∞, H < ∞,

‖v‖2 = 〈v, v〉,
(8)

where v∗ is the transpose conjugate of v. In the LTI case
and in the Hilbert space, the input-output norm of a dy-
namic operator M is defined in the frequency domain
by

‖M‖∞ = sup
‖u‖�1

‖Mu‖
‖u‖ = sup

f
σmax(M(j f )). (9)

The operator norm ‖ · ‖∞ is known as the H∞ norm and
σmax denotes the largest singular value. In the following,
the supremum sup will be changed into maximum max
by slightly shifting the imaginary axis poles into the left
half-plane.

As in (3), we prefer converting (8) into a fractional un-
certainty, by replacing ‖u‖ with ‖ym‖. This requires the
replacement of u with ym in P(·) and the approximate
inversion of M by means of a suitable feedback Fu as in
Fig. 1.

As a result, the input setU becomes restricted to the
subset

U∗ : {u = VuM−1ym = Vuu, u ∈ U}, (10)

where Vu = (I+FuM)−1FuM is AS and, being a comple-
mentary sensitivity, plays the role of a low-pass (LP) filter
capable of attenuating the high-frequency (HF) compo-
nents of u. This is the dual effect of the time truncation
in (5), since the frequency bandwidth (BW) fu of Vu con-
strains the time resolutionΔt of u to satisfyΔt � 1/(2 fu).
If M is a DT model with time unit T, the inverse approx-
imation is accurate as soon as Δt < T. It is now possible
to define the fractional error operator ∂P(ym):

ỹm = y − y∗m = P(VuM−1ym) − Vuym = ∂P(ym), (11)

and to redefine the unstructured uncertainty by means
of the following input-output norm inequality:

‖ỹm‖ =‖y − y∗m‖ � ηm‖ym‖ + δm,

0 � ηm, δm < ∞, u∗ ∈ U∗. (12)

Fig. 1 Block diagram of the fractional error operator.

In the light of (4), an uncertainty defined by

σmax(∂P(j f )) � η > 1, f � f∂P, (13)

and implying σmax(V(j f )) � 1/η < 1, is such to contrast

the sensitivity performance requirement σmax(S(j f )) �

1/η < 1, f � fs, where S = I − V, as soon as fs > f∂P,
leading to an unfeasible design.

Two questions arise. Which is the source of the in-
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coherence among model, uncertainty and required per-
formance? Focusing on the model and its uncertainty, is
there a criterion for testing model adequacy?

F. Donati and M. Vallauri in [10] approached the prob-
lem by extending Kalman theory to robust design, i.e.,
by separating control strategies into state observer, feed-
back control law and reference generator. Under un-
structured uncertainty, observer and control law design
cease to be independent, but their dependence can be
made sufficiently weak. Let the control performance be
defined by the norm ‖Wr(r − y)‖ of the weighted track-
ing error Wr(r − y), where r ∈ R is the reference signal
belonging to a set R of the Hilbert space defined by (8)
and Wr is a LP filter.

2.3.2 First design step: the almost-linear plant

The first design step is to look for an almost-linear
plant ŷ = P̂(u) with the following properties:

1) The unstructured uncertainty inequality, to be com-
pared with (12), holds

‖ỹ‖ =‖ŷ − ym‖ � η‖ym‖ + δ,
0 � η < 1, 0 � δ < ∞, u ∈ U, (14)

where ỹ = ŷ − ym is the model error of the almost-
linear plant and η < 1 in agreement with the small-gain
theorem [11]. In (14) we took the liberty, justified by
T > Δt � 1/(2 fu), of assuming ym = y∗m and u = u∗.

2) The norm ‖Wr(r− ŷ)‖ of the weighted tracking error

Wr(r − ŷ) of the almost-linear plant, can be made arbi-
trarily small by the second design step in Section 2.3.3.

Real and almost linear plants are shown in Fig. 2.
The first property can be achieved by filtering the

open-loop model error in (11), now rewritten as ỹm =

y − ym, through the CS Vm = (I +MFm)−1MFm of an
AS state observer. The observer is built around M by
means of a feedback operator Fm, which is driven by
the measured model error em = y− ŷ (see the left-hand
side (LHS) of Fig. 2). Controllability and observability of
M are sufficient conditions for this design. Let us write
ŷ in terms of the observer sensitivity Sm = (I +MFm)−1

and of the CS Vm = I − Sm, i.e.,

ŷ = SmMu + Vmy⇒ ŷ − ym = Vm(y − ym). (15)

The right-hand side (RHS) identity of (15) allows the in-
equality (14) to be rewritten with the same variables of
(12) as follows:

‖ỹ‖ =‖ŷ − ym‖ = ‖Vm ỹm‖ � η‖ym‖ + δ,
0 � η < 1, 0 � δ < ∞, u ∈ U. (16)

Further, since Vm is a LP filter, (16) proves that an AS
state observer can attenuate the norm of the open-loop
model error ỹ = y−ym down to the norm of the almost-
linear plant model error ỹ (also closed-loop model error
and prediction error in Section 3).

Fig. 2 Equivalence between a plant with a state observer and the almost-linear plant.

The LHS block-diagram in Fig. 2 shows plant and state
observer, both driven by u. Equation (15) allows us to
draw the RHS diagram which shows how plant and
model contribute to P̂. For later use (see Section 3.1),
the output d of the dynamic feedback Fm plays the role

of an input disturbance adding to the command. This
interpretation has been exploited by the EMC (see [7]
and [11]) and by the Active Disturbance Rejection Con-
trol (ADRC) [3] in the design of Fm, with the aim of can-
celing the unknown components of d from the plant.
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We also define the output disturbance

dy =Md, (17)

which is common in the classical control design. Thus,
P̂ can be rewritten as

ŷ =M(u + d) = ym + dy. (18)

Since, given a controllable and observable M, a family
of AS state observers with different filtering capabilities
can be built, given a plant P, the design of an adequate
model M is a necessary condition for the construction
of an almost-linear plant satisfying (16). In other terms,
given P and M, no Vm may exist that guarantees (16).
The statement justifies Kalman’s theory (the modern
control paradigm in [3]) and contradicts the ubiquitous
univariate PID feedback, whose design is substantially
model independent and only guaranteed by the experi-
mental performance of the measured tracking error e(t),
as pointed out by J. Han and Z. Gao in [1,3,6] (what they
call the error-based design paradigm). The work of J. Han
on the difficulties of the modern control paradigm in the
real plant control design dates back to the 80’s, but un-
fortunately his publications were restricted to Chinese
language. He observed in [3] that the robust control
design is a paradox that looks unsolvable within the
modern control paradigm.

First of all, as pointed out by the same authors in [1]

and [3], the ideal PID law

u(t) = kpe(t) + ki

� t

0
e(τ)dτ + kd

de(t)
dt

(19)

cannot be implemented as it is, but the error e, its deriva-

tive de
dt

and the reference signal must be arranged and
adequately filtered to better match the simple feedback
(19) with plant uncertainty and irregularities. Second, in-
equality (16) is a condition on the fractional error opera-
tor ∂P(ym) defined in (11) and not on the model M. The
second design step of the Donati-Vallauri’s approach
will prove that robust control design is concerned with
the stability and performance of the so-called error loop,
which was suggested by E. Canuto (2007) in [7] and
again in [16] within the framework of the embedded
model control. In essence, the argument of this paper is
that almost-linear plant and error loop design can recon-
cile modern control and error-based control paradigms.

A first piece of the error loop is shown in Fig. 3, where
model and tracking errors propagate along a closed loop.
Section 2.3.3 will show that the stability of the error loop
is a necessary and sufficient condition for the stability of
the real closed-loop system. The loop is driven by the
reference signal r and provides the tracking error in the
form r − ym. The cloud driving the fractional error ∂P
accounts for arbitrary and unpredictable sources of un-
certainty (causal uncertainty) like the random measure-
ment errors in the Kalman’s theory. The block marked
by “?” will be the result of the second design step.

Fig. 3 A first piece of the error loop.

To conclude, since ∂P(·) is partially unknown and
time-varying, inequality (16) cannot be exhaustively
proved in the command setU, given that the set ∂P of
the candidate ∂P, though reasonably bounded, is par-
tially unknown. This implies the risk that (16) ceases to
be valid, the risk being commonly reduced, but not ze-
roed, by fixing a gain margin, that is η � ηmax < 1. The
inverse η−1

max > 1 is known as the gain margin. Anoma-
lous situations can be revealed by the controller itself

and require an appropriate control system reconfigura-
tion leading to degraded performance.

2.3.3 Second design step: fundamental theorem
and error loop

Although (16) is a well-defined target for the observer
design, it is insufficient for guaranteeing the closed-loop
stability of an arbitrary control law around P̂. This is rea-
sonable, since the “small gain theorem” [11] requires
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that the whole loop operator in Fig. 3 possesses a gain
less than unit. In terms of the error loop in Fig. 3, we
are still missing the operator mapping the closed-loop
model error ỹ into the tracking error r − ym.

The control requirement is formulated by the norm
inequality

‖Wr(r − y)‖ � ηr‖r‖ + δr, 0 � ηr, δr < ∞, r ∈ R, (20)

where Wr is a LP filter that was already defined and R is
the reference signal set. The feedback design around P̂
requires that ŷ appears in (20), which is obtained with
the help of (15) and by splitting the weighted tracking
error as

Wr(r − y) =Wr(r − ŷ + ŷ − y)
=Wr(r − ŷ) −WrSm(y − ym), (21)

where Wr(r − ŷ) is the weighted tracking error of P̂ and
y− ŷ =WrSm(y− ym) is the open-loop model error fil-
tered by the band-pass filter WrSm. The mid-frequency
error y − ŷ may be referred to as the residual model
error since free of low-frequency (LF) components (they
are eliminated by Sm) and HF components (they are
eliminated by Wr). In general, the residual model error
cannot be brought to zero, since the frequency BW of
Wr is wider than that of Sm.

We now state the fundamental theorem, which proves
the second property of almost-linear plants and justifies
their construction.

Fundamental design theorem The tracking error
norm ‖Wr(r − ŷ)‖ can be made arbitrarily small by the
control law

u = C(r − ŷ) + Crr, (22)

which is applied to the almost-linear plant defined by
(18) under the sufficient conditions:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
η‖Vc‖∞ < 1,

‖WrSc‖∞ → 0,

MCr = I,

(23)

where Vc(z) = I − Sc(z) is the CS of Sc = (I +MC)−1.

The first condition states that the loop gain η‖Vc‖∞
must be less than unit (bounded-input-bounded-output
stable closed loop); the second condition states that the
gain of the band-pass filter WrSc can be made arbi-
trarily small by enlarging the frequency BW of Sc (ef-
ficient closed-loop control); the third condition fixes
the reference gain in (22). The first and second con-
dition are each other contrasting, but the contrast is
attenuated by η < 1 as required by the almost-linear
plant design in (16). More practical is the lower bound
‖WrSc‖∞ � εr, which is imposed by the command set
U (typically |u(t)| � umax) and in general by technol-
ogy limitations and cost. EMC exploits these and other
contrasting inequalities by generating frequency bands
where the bandwidths of the state observer and control
law sensitivity, and of their CS, are compelled to stay.
When these regions become void, they reveal that the
control requirement in (20) cannot be met. The third
condition cannot be exactly met, but can be approxi-
mated by a wide-band closed-loop inverse Cr = VrM−1

like in (10). Fig. 4 shows the overall closed-loop system
which consists of the almost-linear plant in Fig. 2 and of
the control law (22).

Before completing the error loop in Fig. 3, we need to
prove the fundamental theorem.

Fig. 4 The closed-loop system.
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Proof of the fundamental theorem The proof starts
by replacing (22) into (18), which provides

ŷ =MC(r − ŷ) +MCrr +Md. (24)

By using the third condition in (23), we obtain the pair
of identities⎧⎪⎪⎨⎪⎪⎩ r − ŷ = Sc(I −MCr)r − Scdy = −Sc(ŷ − ym),

r − ym = (ŷ − ym) + (r − ŷ) = Vc(ŷ − ym),
(25)

and the pair of inequalities
⎧⎪⎪⎨⎪⎪⎩‖Wr(r − ŷ)‖ � ‖WrSc‖∞‖ŷ − ym‖,
‖ym‖ � ‖r‖ + ‖Vc‖∞‖ŷ − ym‖.

(26)

Replacement of the second inequality of (26) into (16)
allows the closed-loop model error ỹ = ŷ − ym to be
expressed in terms of r as follows:

‖ỹ‖ = ‖ŷ − ym‖ � η‖ym‖ + δ
� η‖r‖ + η‖Vc‖∞‖ŷ − ym‖ + δ

⇒ ‖ỹ‖ � (1 − η‖Vc‖∞)−1(η‖r‖ + δ). (27)

Finally, replacement of the third row of (27) into the first
row of (26) provides the expected inequality:

‖Wr(r − ŷ)‖ � ‖WrSc‖∞(η‖r‖ + δ)
1 − η‖Vc‖∞ = η̂‖r‖ + δ̂, (28)

which is bounded under the first condition of (23) and
converges to zero under the second condition. �

The error loop in Fig. 3 is ready to be completed. The
last row of (25) provides the missing operator, the CS
Vc, which completes the error loop as in Fig. 3. Three

tracking errors are at the output of the error loop: r − y
(from the real plant) and r − ŷ (from the almost-linear
plant) already appeared in the decomposition of (21),
whereas r − ym (from the model) appeared in the sec-
ond row of (25). Error loop stability can be defined as
follows.

Error loop stability The error loop in Fig. 5
is bounded-input-bounded-output stable if for any
bounded r∈R all the error loop signals are bounded.

A sufficient stability condition is that

⎧⎪⎪⎨⎪⎪⎩‖r − ym‖ � ηe‖ym‖ + δe,

0 � ηe = η‖Vc‖∞ < 1, 0 � δe < ∞,
(29)

since it implies that ‖ym‖ and all the other loop signals
are bounded. To prove it, consider the following upper
bound of ‖ym‖:⎧⎪⎪⎨⎪⎪⎩‖ym‖ = ‖r − r + ym‖ � ‖r‖ + ηe‖ym‖ + δe,

‖ym‖ � (1 − ηe)−1(‖r‖ + δe),
(30)

which, being ‖r‖ bounded inside R, is bounded under
ηe < 1. The identity ηe = η‖Vc‖∞ follows from the
almost-linear plant inequality (14) and the last row of
(25) (see also Fig. 5).

We now prove that the error loop stability is neces-
sary and sufficient for the closed-loop plant stability. To
this end, let us observe that the extraction of the tracking
error r − y as in Fig. 5 converts the error loop into the
closed-loop plant from r to r − y. The closed-loop plant
stability can be defined as in (7) (finite-gain stability). A
finite non-negative pair {ηc, δc} must exist such that

‖r − y‖ � ηc‖r‖ + δc, 0 � ηc < ∞, 0 � δc < ∞. (31)

Fig. 5 The error loop and the closed-loop plant.
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Closed-loop plant stability theorem Consider a
plant y = P(u) with u ∈ U and a minimal LTI model
ym = Mu. Model minimality implies that a class of
asymptotically stable CS Vm and Vc exists for the state
observer and the control law. Let us define the refer-
ence set r ∈ R, the fractional model error ∂P(ym) as in
(11) and the corresponding error loop as in Fig. 5. The
stability of the error loop defined by (29) is a neces-
sary and sufficient condition for the closed-loop plant
stability defined by (31).

Proof (Sufficient condition: error loop stability implies
closed-loop plant stability) Let us write the norm of the
plant tracking error r − y in terms of the components of
the error loop in Fig. 5:

‖r − y‖ � ‖r − ym‖ + ‖ym − y‖. (32)

From (12), (29) and (30), and by setting y∗m = ym and
u∗ = u in (12), we obtain

‖r − y‖
� (ηe + ηm)‖ym‖ + δm + δe

� (ηe + ηm)(1 − ηe)−1‖r‖ + δm + (1 +
ηe + ηm

1 − ηe
)δe

� ηc‖r‖ + δc, (33)

where, because of ηe < 1, we find, as required, that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 � ηc =

ηe + ηm

1 − ηe
< ∞,

0 � δc = δm + (1 +
ηe + ηm

1 − ηe
)δe < ∞.

(34)

Furthermore, ‖r‖ is bounded and thus proves (31) and
sufficiency.

(Necessary condition: closed-loop plant stability im-
plies error loop stability) Now let us assume (31). Let
us decompose r − ym as follows:

r − ym = (r − y) − (r − y) + Vc(ŷ − ym). (35)

The last equation, with the help of (16), converts into
the norm inequality

‖r − ym‖ � 2‖r − y‖ + ‖Vc‖∞‖ŷ − ym‖
� η‖Vc‖∞‖r − ym‖
+(2ηc + η)‖r‖ + 2δc + δ (36)

with η < 1, and finally, into the inequality

‖r−ym‖ � (1−η‖Vc‖∞)−1((2ηc + η)‖r‖ + 2δc + δ) (37)

with η < 1. For ‖r− ym‖ to be bounded, the last inequal-
ity requires that η‖Vc‖∞ < 1 as in the stability condition
(29) of the error loop. �

The theorem is believed to reconcile modern control
theory with the error-based control design. In fact, from
one side, given the minimal LTI model M, a class of AS
CS Vm (state observer) and Vc (control law) can be de-
signed and optimal elements singled out. On the other
hand, robust performance versus uncertainty can only
be guaranteed by the error loop, which converts r into
the set {r − y, r − ŷ, r − ym} of tracking errors passing
through the unstructured uncertainty, which has been
written in the fractional form ∂P(·). The uncertainty at-
tenuation is made possible by dynamic operators de-
signed within the modern control theory.

2.3.4 Approximate separation between almost-
linear plant and control law design

The fundamental theorem can be employed by con-
straining the tracking error norm ‖Wr(ŷ − r)‖ of P̂ to be
negligible with respect to the control requirements, i.e.,

⎧⎪⎪⎨⎪⎪⎩ (1 − η‖Vc‖∞)−1‖WrSc‖∞η
 ηr,

(1 − η‖Vc‖∞)−1‖WrSc‖∞δ
 δr.
(38)

This implies that the requirement in (20) simplifies into

‖WrSm(y − ym)‖ � ηr‖r‖ + δr. (39)

Inequality (39) when combined with (14) establishes a
pair of inequalities for the design of the almost-linear
plant P̂, i.e., of the state observer which consists of the
model M and of the feedback Fm. To this end, with the
help of (26) and (27), (14) is rewritten in terms of r as
follows:

‖ỹ‖ = ‖Vm(y − ym)‖
� η(1 + α(·))‖r‖ + δ(1 + α(·)

η
), (40)

where η < 1 and the correction α(·) = η‖Vc‖∞(1 −
η‖Vc‖∞)−1 = o(η‖Vc‖∞), being of the order of η‖Vc‖∞,
depends on the control-law design.

It looks natural to derive the following approximate
separation in the presence of the unstructured uncer-
tainty:

1) Uncertainty-based design: given the control re-
quirements collected in

{
ηr, δr,Wr, r ∈ R}, the plant{

y = P(u),u ∈ U} and a first guess Vc0 of Vc, M and
Fm are designed to satisfy (39) and (40).
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2) Model-based design: given
{
ηr, δr,Wr, r ∈ R}, the

model M and the technology constraint ‖WrSc‖ � εr,
the pair {C,Cr} in (24) is designed to satisfy the third
condition in (23) and (38).

3) Iteration. Given Vck, k � 1, the above design steps
are repeated until all the design inequalities (38), (39)
and (40) are satisfied.

3 The path toward embedded model con-
trol

Embedded model control is an extension of the
Donati-Vallauri’s theory outlined in Section 2.3. The aim
is an analytic design and an implementation method,
both centered on the DT state equations of the embed-
ded model.

3.1 First design step: embedded and design model,
uncertainty and state predictor

The embedded model is an extension of the LTI model
M in Fig. 1. It includes the dynamics D of the feedback
Fm in Fig. 2, which generates the input disturbance d
in (17) from a vector w of arbitrary (hence uncorre-
lated), bounded and unbiased signals. If w is given the
stochastic meaning of a zero-mean bounded-variance
white noise process with constant power spectral den-
sity (PSD) S2

w and D(s) is a transfer matrix, the PSD S2
d( f )

of d can be factored as

S2
d( f ) = D(j f )S2

wDT(−j f ). (41)

Therefore, as in [11], the embedded model is the com-
position of the controllable command-to-output dynam-
ics M with state xc and of the disturbance dynamics D
with state xd. Given the time unit T and the Nyquist
frequency fmax = 0.5/T, the standard embedded model
is written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣ x̂c

x̂d

⎤⎥⎥⎥⎥⎥⎦ (i + 1) =

⎡⎢⎢⎢⎢⎢⎣Ac Hc

0 Ad

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ x̂c

x̂d

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣Bc

0

⎤⎥⎥⎥⎥⎥⎦ (u + h(· ))

+

⎡⎢⎢⎢⎢⎢⎣Gc 0

0 Gd

⎤⎥⎥⎥⎥⎥⎦ �w,
ŷ(i) = [Cc Cd]

⎡⎢⎢⎢⎢⎢⎣ x̂c

x̂d

⎤⎥⎥⎥⎥⎥⎦,
(42)

where initial conditions and time i have been omit-
ted, the inline vector notation of [11] allows us to
write �w= [

�
wc,

�
wd], the sub-matrices, the nonlinear term

h(· ) = h(x̂c) and the initial state are known, and the com-
mand u is the same dispatched to the plant. The state
vector x̂ = [x̂c, x̂d] (inline notation) is observable from ŷ
and x̂c is controllable by u. In the simplest case, x̂ is con-
trollable by �w, where the inverted breve “� ′′ signifies
estimate, and the caret “ˆ′′ signifies one-step prediction.

Of the four uncertainty classes in [11], namely, causal
and parametric uncertainty, initial state and neglected
dynamics, (42) only retains the causal uncertainty ex-
pressed by �

w. The other three classes are expressed
with the help of the design model, which surrogates the
plant P of Section 2.3. The design model output is y
(the plant output) and the state is the vector x = [xc, xd],
which is the homologous of x̂ in (42) and plays the role
of the true state. The parametric uncertainty, not treated
in Section 2.3, is the difference Δh = h(xc) − h(x̂c) with
respect to the design-model term h(xc). The initial state
uncertainty x̃0 = x0 − x̂0 defines the initial prediction
error. The fractional error operator ∂P of the neglected
dynamics is defined as in (11), by decomposing y as
follows:

y(t) = ym(t) + ỹm(t)
= ym(t) + ∂P(ym) +wm(t), (43)

where ym is the homologous of ŷ in (42) and plays the
role of the model output of the design model. Finally,
wm is the random measurement error (absent in Sec-
tion 2.3). ∂P is here approximated by a linear operator
represented by the transfer matrix ∂P(s). Some prop-
erties of ∂P(s) can be found in [11]. The case study in
Section 4 will point out an unstable ∂P(s) not treated
in [11]. The input disturbance d in (17) is now a signal
of the design model and holds

d = Hcxd + h(xc) + Gcwc, (44)

where wc is not marked to signify the uncertainty class
of the design model.

Separation between parametric uncertainty and ne-
glected dynamics is a design issue as pointed out in [17].
As a rule, Δh does not add any dynamics to the model,
but describes nonlinear terms, cross-coupling and para-
metric uncertainty to be rejected. On the contrary, ∂P
accounts for short-term additional dynamics (delay, res-
onance, partial differential equations) whose contribu-
tion to y must be blocked from spilling into embedded
model and control law. This is the goal of the noise es-
timator �w (z) = N(z)(y − ŷ)(z), which implies that the
feedback Fm of Fig. 2 is factorized as Fm(z) = D(z)N(z).
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If Gc is not full rank (but Gd can be designed to be full
rank), two singular cases may occur as in Section 4.

1) State derivatives close to the output ŷ are noise
free, like the point-mass velocity (the same applies to
the tank level rate in Section 4). In this event, a static
output-to-noise feedback N cannot stabilize the embed-
ded model and must be replaced by a dynamic feedback.
However, a static N may be employed, if a measurement
of the noise-free state derivatives is made available as in
navigation problems (see [11] and [18]).

2) State derivatives close to the model command u are
noise free like in Section 4, where the plant command
is the integral of model command u. In this case, the
relevant states are stabilized by the control law and not
by N.

The design of the sub-matrices {Hc,Gc,Ad,Gd} and
of N, which has been referred to as the noise design
in [19], aims to distribute the necessary and sufficient
uncertainty input points to the embedded model. The
generic state equation of N is the following:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xe(i + 1) = Aexe(i) + y(i) − ŷ(i),⎡⎢⎢⎢⎢⎢⎣
�
wc
�
wd

⎤⎥⎥⎥⎥⎥⎦ (i) =
⎡⎢⎢⎢⎢⎢⎣Nc

Nd

⎤⎥⎥⎥⎥⎥⎦ xe +

⎡⎢⎢⎢⎢⎢⎣ Lc

Ld

⎤⎥⎥⎥⎥⎥⎦ (y − ŷ),
(45)

where i has been partly omitted. The equation pair that
consists of (42) and (45) constitutes a state predictor
(SP), which replaces the almost linear plant of Sec-
tion 2.3. The term state predictor is preferable to state
observer since (42) naturally provides the state one-step
prediction. The quintuple of matrices {Lc,Ld,Nc,Nd,Ae}
must be designed to stabilize the SP complementary
spectrum Γm = {γm j}, with γm j = 1 − λm j, j = 1, . . . ,nm

(pole placement). The size ne of xe depends on rank Gc.
If we assume that h(xc) is unknown (in other terms

h(x̂c) = 0 in (42)), the Z-transform of the output predic-
tion error ỹ = ŷ− ym can be proved as in [11] to satisfy
the design equation

ỹ(z) = Vm(z, Γm)ỹm(z) − Sm(z, Γm)dy(z), (46)

where the pair {Sm,Vm}, which has been already em-
ployed in (15) is a function of Γm, ỹm is the model error
defined in (11) and (43), and dy is the output distur-
bance defined in (17). The identity in (46) becomes the
first part of the control unit in Fig. 6, where the EMC
error loop is drawn.

In a more detailed way than the normed inequality
(16), (46) distinguishes between two sets of uncertainty
contributing to ỹ:

Fig. 6 The error loop according to embedded model control.

1) The first one is the uncertainty depending on
ym like the output of the fractional error ∂P(ym) in
(43) and h(xc) in (44). Their bounded uncertainty sets
∂P(·, p) ∈ ∂P and h(·, p) ∈ H are parameterized by a
bounded set p ∈ Π of parameters.

2) The second one is the uncertainty which is inde-
pendent of ym like wm in (43) and Hcxd +Gcwc in (44).
Their uncertainty sets can be defined by their bounded
PSD, S2

wm( f ) of wm and S2
w( f ) of w = [wc,wd], which

has been already employed in (41).
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Given a norm requirement on ỹ and the above uncer-
tainty sets, the first design step is to find the SP spec-
trum Γm, which guarantees that ỹ is bounded (stability)
and satisfies the norm requirement (accuracy). Since as
shown by (40), this step weakly depends on the control
law design, and control requirements are in terms of the
tracking error ỹr, we omit the SP design step, and in
Section 3.2 we just treat the combined pole placement
of Γ = {Γm, Γc}, where Γc is the control-law spectrum.

3.2 Second design steps: control law and tracking
error

As a control performance, the prediction error in
(46) must be replaced by the true output tracking er-
ror ỹr = r − ym, not to be confused with the classical
control error r − y. The output error is related to the
measured tracking error er of the control law as follows:⎧⎪⎪⎨⎪⎪⎩ ỹr = Cc(xc − xr) = Cc(xc − x̂c) − Cdx̂d + Ccer,

er = x̂c − xr +Qx̂d.
(47)

Equation (47) assumes the matrix identity Cd = CcQ,
which is part of the Davison-Francis equation [11]

⎡⎢⎢⎢⎢⎢⎣Hc +QAd

Cd

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣Ac Bc

Cc 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣QP
⎤⎥⎥⎥⎥⎥⎦ . (48)

Equation (48) fixes the disturbance rejection matrices Q
and P of the control law

u(i) = ur(i) − (Ker(i) + Px̂d(i)), (49)

where ur is the reference command, which satisfies the
controllable dynamics, and the feedback matrix K sta-
bilizes the complementary spectrum Γc = {γc j}, j = 1,
. . . , nc of Ac − BcK.

In [11], the Z-transform of ỹr has been proved to
satisfy a similar equation to (46), namely:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ỹr(z) = −V(z, Γ)ỹm(z) + S(z, Γ)dy(z),

S(z, Γ) = Sm(z, Γm) + Sw(z, Γ),

V(z, Γ) = I − S(z, Γ) = Vm(z, Γm) − Sw(z, Γ),

Sw(z) =Wc(z, Γc)Nw(z, Γm)Sm(z, Γm),

(50)

where the pair {S,V} is referred to as the overall sen-
sitivity and overall CS as they account for the closed-
loop plant, Sw is referred to as the causality correc-
tion and the expression of the factors can be found
in [11]. The name causality correction indicates that Sw

cannot be zeroed, Sw � 0, since the estimated noise
G
�
w (i) with G = [Gc QGd ], cannot be canceled by

the control law (49) because of causality. In fact, un-
der white noise assumption, the noise one-step predic-
tion is zero, i.e., Gŵ(i) = 0, and the subtraction of a
term proportional to �w (i − 1) in (49) just increases the
tracking error covariance. Since in practice, due to inac-
curate rejection, Gŵ(i) may include residual correlated
components, they may be further attenuated by adding
to (49) a stable dynamic feedback directly driven by
(y − ŷ)(i) [20]. The term plays a role similar to Youla
parameterization [21]. Let us observe that, at first sight,
the CS Vc(z), which played a role in Section 2.3, does
not appear in the last row of (50). Actually, we can prove
that Vc(z) = W−1

c0 Wc(z), and being Vc(0) = I (low-pass
filter), the frequency BW fc of Vc can be defined.

In [11], Sw has been proved to be a band-pass trans-
fer matrix, which makes the bandwidths { fs, fv} of {S,V}
narrower than the BWs { fms, fmv} of {Sm,Vm}. Fig. 7 (a),
clearly shows the phenomenon. Narrowing the sensi-
tivity BW is detrimental to the tracking error accuracy
(“bad effect”) since the unknown disturbance rejection
is band-limited. Narrowing the CS BW may be of bene-
fit (“good effect”) as it makes the state predictor more
effective in blocking the contribution of the neglected
dynamics to the control law. Equation (50) and the role
of Sw look an advancement of the theory in Section 2.3,
and are reflected by the last part of the error-loop block-
diagram of Fig. 6.

The design implications of the new error loop in Fig. 6
can be better appreciated by extracting, from ỹm in (43)
and dy in (44) (in practice from h), the uncertain com-
ponents which depend on ym and hence on the tracking
error, and therefore are prone to destabilize the closed-
loop plant. Following [11], we rewrite (50) as

(I + V(z, Γ)∂P − S(z, Γ)∂H)ỹr(z)
= (−V(z, Γ)∂P + S(z, Γ)∂H)r(z)
− V(z, Γ)wm(z) + S(z, Γ)Dy(z)w(z), (51)

where the argument z has been partly omitted, Dy(z)
transfers the noise vector w onto y, and ∂H(z) is com-
puted by assuming that h(xc) is a sector-bounded non-
linearity.

Closed-loop stability can be ensured by fixing the
worst-case elements ∂Pworst(z) = ∂P(z, pworst) and
∂Hworst(z) = ∂H(z,pworst) of the uncertainty sets, and
by applying either the Nyquist criterion or the small-
gain theorem to the loop function V(z)∂Pworst(z) −
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S(z)∂Hworst(z). Small-gain theorem allows the argument
uncertainty to be ignored.

Fig. 7 (a) Case 1, state predictor and overall sensitivity, overall
CS. (b) Tracking error RMS bound and simulated RMS.

If σmax(∂Pworst(j f )) and σmax(∂Hworst(j f )) dominate
the high- and low-frequency bands of 0 � f < fmax,
respectively, the small-gain inequality can be split into
the pair of inequalities

⎧⎪⎪⎨⎪⎪⎩η
−1
v ‖V(j f , Γ)∂Pworst(j f )‖∞ < 1,

η−1
s ‖S(j f , Γ)∂Hworst(j f )‖∞ < 1,

(52)

where the norms in (52) are defined by ‖E(j f )‖∞ =
max
| f |� fmax

σmax(E(j f )). The frequency domain separation in

(52) can be further exploited by approximating V(z)
and S(z) with their HF and LF asymptotes V∞(z, Γ)

and S0(z, Γ), respectively, as they are analytically re-
lated to the elements of Γ. Moreover, since the re-
sult of a pole placement which satisfies (52) is the fre-
quency BW pair { fs(ηs), fv(ηv)}, which is constrained by
fs(ηs) < fv(ηv) < fmax, failure of the latter inequality in-
dicates that pole placement cannot ensure closed-loop
stability versus the given uncertainty.

Given a feasible η = max
{
ηs, ηv

}
< 1 and, for sim-

plicity’s sake, by assuming zero reference, i.e., r = 0,
(51) can be transformed into the pair of performance
inequalities⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ws

1 − ησmax(V(j f , Γ)Sw( f ))S̃−1
y,max( f ) � 1,

wv

1 − ησmax(S(j f , Γ)Sd( f ))S̃−1
y,max( f ) � 1,

(53)

where w−2
s + w−2

v = 1, the frequency domain has been
separated, {Sw,Sd} denotes the spectral density bounds
of wm and dy, and S̃y,max is the spectral bound of the
output tracking error which is allocated to the pair of
inequalities in (52) through the weight pair {ws,wv}.
Stability and performance inequalities in (52) and (53)
can be combined into a single functional to be mini-
mized below unity. Moreover, performance inequalities
can be converted into variance inequalities, which are
equivalent to the weighted norm in (20).

The above inequalities are expressed in terms of
{S(Γ),V(Γ)}, but which is the interplay with the SP pair
{Sm(Γm),Vm(Γm)} of the first design step? Let

{
fms, fmv

}
be the frequency BW pair of the state predictor (SP).
Two pole placement strategies have been pointed out
in [11].

1) The standard design guarantees that the SP sensi-
tivity is not degraded by Sw, which amounts to satisfy
the frequency inequality

fms � fs < fmv < fc < fmax, (54)

where fc is the frequency BW of Vc. The inequality im-
plies and is implied by ‖Sw‖∞ < 1, and in turn implies
that the norm of the measured tracking error |r − ŷ|
tends to be a numerical zero, smaller than the output
quantization, a condition that can be in-field verified.

2) The nonstandard design aims to fc < fmv and im-
plies fs < fms, with the consequence that the SP sen-
sitivity is degraded as in Fig. 7 (a). The design becomes
mandatory to account for command saturation and for
avoiding saturation instability. The case study of Sec-
tion 4 will adopt this strategy, since “crude” command
saturation is allowed between two successive set points.
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4 Case study

The EMC design steps in Section 3 are now applied
to a well-known multivariate control problem.

4.1 From tank dynamics to the design model

Consider the four-tank control problem in [13]; the
layout is sketched in Fig. 8.

Fig. 8 Sketch of the four-tank layout.

Two pairs of cascaded tanks {k = 1, 3} and {k = 2, 4}
are fed by two pumps denoted by the subscript { j = 1, 2}.
The pair of lower tanks {k = 1, 2} discharges into the
common source tank and are fed by one of the up-
per tanks and by one of the pumps with the rule:
{ j = 1, k = 3} → k = 1 and { j = 2, k = 4} → k = 2.
The pair of upper tanks {k = 3, 4} is just fed by the
pumps with the reverse rule of the lower tanks, i.e.,
j = 1 → k = 4 and j = 2 → k = 3. The pump flows
are distributed to tanks by regulating the valves 1 and
2 to the fractions 0 � γ1 � 1 and 0 � γ2 � 1. The
fractions are collected in the vector γ = [γ1, γ2] (inline
vector notation). The kth tank level xk is bounded by
0 � xk,min � xk � xk,max and is an entry of the vector
0 � x � xmax. The level square root

√
xk defines the

tank discharge rate pk = S−1
k αk
√

2gxk = βk
√

xk, where
Sk is the horizontal section area, αk is the discharge con-
stant in m2 and g is the local gravity. The pump flow
rate 0 � qk=φk/Sk (m · s−1) � qk,max is collected in the
vector q and depends on the pump command vector
[φ1, φ2] (m3 · s−1).

The nonlinear fourth-order state equation (see [22])
is written, without initial conditions, as⎧⎪⎪⎨⎪⎪⎩ ẋ(t) = A

√
x + Bq(t − τu) + qd(t),

y(t) = Cx(t − τy) + ỹm(t),
(55)

where 0 � x � xmax, 0 � q(t) � qmax, τu is a transport
delay, τy is the level sensor delay, y is the tank level
measurement corrupted by ỹm, qd collects the flow per-

turbations due to leakage and model inaccuracy, and the
following notations apply:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x =

⎡⎢⎢⎢⎢⎢⎣x12

x34

⎤⎥⎥⎥⎥⎥⎦ , x12 =

⎡⎢⎢⎢⎢⎢⎣x1

x2

⎤⎥⎥⎥⎥⎥⎦ , x34 =

⎡⎢⎢⎢⎢⎢⎣x3

x4

⎤⎥⎥⎥⎥⎥⎦,
√

x = [
√

x1 · · · √x4], C = diag{c1, c2, c3, c4},

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β1 0 β3 0

0 −β2 0 β4

0 0 −β3 0

0 0 0 −β4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 0

0 γ2

0 (1 − γ2)
S2

S3

(1 − γ1)
S1

S4
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(56)

where B can also be written as B = [B12 B34]. In (56),
qmax is the pump maximum flow and ck = 1+ sk, sk 
 1
being the scale factor error. As soon as x→ 0, the mea-
surement error ỹm becomes biased by the least mea-
sured level denoted by xmin > 0. The limit will be em-
ployed by the control unit to bound x from below, when
necessary.

The control goal is to force the lower-tank levels in x12

to track the reference r12 = [r1, r2], where, as in [22], the
reference profile is a sequence of set points, which are
equilibrium points of (55). Given the equilibrium vector
x12 satisfying the limits in (56), the command and upper
tank equilibrium values q = [q

1
, q

2
] and x34 are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣β1
√x1

β2
√x2

⎤⎥⎥⎥⎥⎥⎦ = Gq,

⎡⎢⎢⎢⎢⎢⎣β3
√x3

β4
√x4

⎤⎥⎥⎥⎥⎥⎦ = B34q,

G =

⎡⎢⎢⎢⎢⎢⎣ γ1 (1 − γ2)S2/S3

(1 − γ1)S1/S4 γ2

⎤⎥⎥⎥⎥⎥⎦,
det G = γ1γ2(1 − σ (1 − γ1)(1 − γ2)

γ1γ2
), σ =

S1S2

S3S4
> 0.

(57)

The zero determinant det G = 0 distinguishes two
regulation problems.

1) Direct lower tank regulation for det G > 0. The cor-
responding inequality (1/γ1−1)(1/γ2−1) < 1/σ implies
the valve fraction direction γ → [1, 1] and the conver-
gence to det G = 1. Under this condition (see Fig. 8), the
lower tanks can be directly and independently regulated
to the set point x12, which must satisfy the pump flow
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and upper tank limits. The lower tank dynamics is just
first order. The upper tank dynamics, under the lower-
tank regulation, plays the role of a zero dynamics [14],
which is locally asymptotically stable. The correspond-
ing discharge flow is treated as a disturbance.

2) Indirect lower tank regulation for det G < 0. The
corresponding inequality (1/γ1 − 1)(1/γ2 − 1) > 1/σ im-
plies the valve fraction direction γ → [0, 0], and the
convergence to det G = −σ. Under this condition (see
Fig. 8), the lower tanks must be regulated through the
upper tanks and the input-output relative degree be-
comes two. In fact, for det G = −σ, as proven in [22]
and [23], the upper tank dynamics, under direct lower
tank regulation, becomes a locally unstable zero dynam-
ics [14] and the upper tank levels tend to saturate. Un-
like in [23], where a combination of the lower and tank
levels was regulated ( [22] showed that a mixed regu-
lation cannot regulate the lower tanks in the presence
of unknown disturbances), Section 4.2 and the follow-
ing will show that the indirect regulation cannot just be
addressed by converting (55) into the normal form of
the feedback linearization [14], since the resulting nor-
mal form happens to be driven by the derivative of the
pump flow, and the relevant extended dynamics [14]
is nonlinear, uncertain and affected by a non-collocated
disturbance. Moreover, since any disturbance flow af-
fecting the lower tanks will be accommodated by the
varying level and discharge rate of the upper tanks, level
set-points must be carefully selected.

The indirect regulation has been approached in [24]
by the sliding model control in the region 0.1 � γ1, γ2 �
0.2. Here, the first step is to derive a CT design model
via feedback linearization and extended dynamics (Sec-
tion 4.2). A LTI design model is the basis for building
the stabilizing ideal control law in Section 4.3. The same
model is the source of the DT embedded model (57)
in Section 4.4. In the same Section, the model is sta-
bilized by a dynamic noise estimator of the same kind
as in equation (45) and the ideal control law is con-
verted into its real form. Section 4.5 is devoted to the
pole placement in the presence of causal uncertainty
(random flows), parametric uncertainty and neglected
dynamics. The design inequalities of Section 3.2 will be
employed. A nonstandard pole placement is adopted to
cope with ’crude’ pump-flow saturation during set-point
switching. Section 4.6 will illustrate and discuss simu-
lated results in the fraction region 0 � γ1, γ2 < 0.5, to
check the previous design in the presence of uncertainty.

4.2 The design model

In view of the indirect regulation, we transform the
fourth-order equation (55) into a non-minimum-phase
sixth-order equation with zero eigenvalues and one pos-
itive transmission zero. Let us define the controllable
state xc through a smooth transformation f (x), x > 0,
and the inclusion of the pump flow rate q:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x12

v12

q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x12

f (x)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

B12

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ q,

v12 =

⎡⎢⎢⎢⎢⎢⎣v1

v2

⎤⎥⎥⎥⎥⎥⎦ = ẋ12,

f (x) =

⎡⎢⎢⎢⎢⎢⎣−β1
√

x1 + β3
√

x3

−β2
√

x2 + β4
√

x4

⎤⎥⎥⎥⎥⎥⎦ ,

(58)

where
√

xk+2(xc) = (vk + βk
√

xk)/βk+2. The derivative of
xc and the new command u = q̇ provide the following
state equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋc(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 I 0

0 0 G34(xc)

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ xc(t) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

B12

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦u(t − τu)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

d(t) + h(·)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
y(t) = [C12 0 0 ]xc(t − τy) + ỹm(t),

(59)

where initial conditions have been omitted, d = [d1, d2]
is the unknown disturbance, h(·) is a cross-coupling
term, and the following notations apply:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G34(xc) = P34(xc)B34,

P34(xc) =

⎡⎢⎢⎢⎢⎢⎣p3(xc) > 0 0

0 p4(xc) > 0

⎤⎥⎥⎥⎥⎥⎦ ,
P12(xc) =

⎡⎢⎢⎢⎢⎢⎣p1(xc) > 0 0

0 p2(xc) > 0

⎤⎥⎥⎥⎥⎥⎦,

h(·) = −P12(xc)v12 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−β2

3

2
−β2

4

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
pk(xc) =

βk

2
√

xk(xc)
(rad · s−1), k = 1, 2, 3, 4,

C12 = diag{c1, c2}.

(60)
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The pair of variable transmission zeros holds

z1,2 = ±
√

(1 − γ1)(1 − γ2)S1S2

γ1γ2S3S4
p3p4. (61)

The state-dependent matrix G34(xc) can be confined into
the command matrix, but the state-feedback design does
not change, since the relative degree does not change

from two to three and a normal form cannot be obtained.
Fig. 9 shows the block diagram of (59). Delays are rep-

resented by blocks with an inscribed D. A double-border
box denotes a nonlinear function. The variable gain pk is
denoted with an arrowed circle. Vertical arrows denote
initial conditions. The parameters bk, k = 1, . . . , 4, are
the nonzero entries of the matrix B in (56), the subscript
k being the row index of B.

Fig. 9 Block diagram of the design model.

4.3 Ideal control law

Let us neglect the command delay τu (to be part of
neglected dynamics), and include h(·) (assumed to be
unknown) into d. Let the tracking error of the lower
tanks be written as x̃12r = x12 − x12r, where x12r = x12
(the set point) is a sequence of equilibrium points in (57)
satisfying tank and pump bounds. Similarly, we define
the level rate error ṽ12r = v12 and the flow rate error
q̃r = q − qr + Q(x)d, where qr = q has been defined in
(57), and Q testifies that d is not collocated. The ideal
stabilizing control law of (59) is given by

u(t) = −(Kxx̃12r + Kvṽ12r + Kqq̃r), (62)

where the identity Kx = Kx(xc) applies to the three
gain matrices, which depend on xc through G34(xc). Be-
cause of the bound |xc| � xc,max, which derives from
the bounded x and q in (56), G34(xc) > 0 is bounded
from below and from above and the feedback gains
in (62) can be designed by assuming that the nomi-
nal matrices G34(xr) > 0 and B12 � 0 are symmetric
and constant during a set-point interval of the refer-
ence profile xr(t) = [x12r, x34r]. The matrix discrepancy
G34(xc) − G34(xr) holds:

G34(xc) − G34(xr) = ΔG34(xc) + δP34(x̃r)B34 + o(|x̃r|2),

ΔG34(xc) = ΔP34(· )B34 + P34(· )ΔB34,

ΔP34(xc) =
1
2

diag{ Δβk√
xk(xc)

, k = 3, 4},

δP34(x̃r) = −1
4

diag{
β

k
x̃kr/
√

xkr

xkr
, k = 3, 4},

(63)

where (· ) means (xc), β
k+2

x̃k+2/
√

xk+2,r = 2(ṽkr + p
k
(xkr)

×x̃kr), k = 1, 2, ΔB34 = B34−B34, and all the matrices are
bounded. Under the previous assumptions, the attribute
“ideal” means that the tracking errors in (62) are per-
fectly known. The symmetric and constant feedback ma-
trices in {Kx,Kv,Kq} that stabilize the closed-loop state
matrix Ac are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ac = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 I 0

B12Kx B12Kv B12Kq − G34

Kx Kv Kq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B12 =

⎡⎢⎢⎢⎢⎢⎣b 0

0 b

⎤⎥⎥⎥⎥⎥⎦ � 0, G34 =

⎡⎢⎢⎢⎢⎢⎣0 g

g 0

⎤⎥⎥⎥⎥⎥⎦ � 0,

Kx =

⎡⎢⎢⎢⎢⎢⎣k1x k2x

k2x k1x

⎤⎥⎥⎥⎥⎥⎦ , Kv =

⎡⎢⎢⎢⎢⎢⎣k1v k2v

k2v k1v

⎤⎥⎥⎥⎥⎥⎦, Kq =

⎡⎢⎢⎢⎢⎢⎣k1q k2q

k2q k1q

⎤⎥⎥⎥⎥⎥⎦ .
(64)
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Because of the aforementioned symmetry, the charac-
teristic polynomial Π(Ac, λ) can be factored into a pair
of third-order polynomials, whose coefficients are re-
lated to the sub-matrix entries in (64). Given a Hurwitz
spectrum Λc = Λ(Ac) and the coefficients in

Π(Ac, λ) =
2∏

i=1
(λ3 + c2iλ2 + c1iλ + c0i), (65)

the gains in (64) are found by solving an algebraic equa-
tion, which admits a unique solution for b = γ

1
= γ

2
< 1

in the matrix B12. Q(xr) = G−1
34 (xr) can be found from the

Davison-Francis equation (48), if applied to the embed-
ded model of Section 4.4.

4.4 Embedded model and real control law

The next step amounts to convert (59) into a DT em-
bedded model like that in equation (42). The model
must include the disturbance dynamics and must pro-
vide the one-step prediction of the command before
ti+1 = (i + 1)T. The real control law generates the plant
command as the digitized pump flow nq and the flow
rate derivative in (62) as a function of the measured
tracking errors as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u(i) = −(Kxexr + Kvevr + Kqeqr),

exr = x̂12 − x12r, evr = v̂12 (m · s−1),

eqr = q̂ − qr +Q(xr)x̂d (m · s−1),

nq(i + 1) = int(R−1
q q̂), 0 � nq < Nq,

(66)

where the time i has been partly omitted, the last row ex-
presses command digitization and saturation, nq(i) and
Nq are integer vectors and Rq holds:

Rq = diag{ρq1, ρq2}, ρqk = qk,max/Nqk, (67)

where k = 1, 2.
The embedded model aims to one-step predicting the

controllable state
{
x̂12, v̂12, q̂

}
and the unknown distur-

bance x̂d(i) (in acceleration units). The possible improve-
ment of the one-step prediction in (66) by the current
measurement y(i) is not considered. The pair of decou-
pled fourth-order equations, in the form of (42), is as
follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂12

v̂12

q̂

x̂d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(i+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I IT 0 0

0 I G34 IT

0 0 I 0

0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂12

v̂12

q̂

x̂d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

B12T

IT

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
�
wc

0
�
wd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ŷ(i) = [ I 0 0 0]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂12

v̂12

q̂

x̂d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(68)

where time i has been partly omitted, the unknown dis-
turbance is the sum of the noise �wc (including the com-
mand quantization error) and of the first-order random
drift x̂d driven by the noise �wd. In practice, the three
equations of (59) are completed with that of x̂d. Trans-
port and sensor delays are confined into the neglected
dynamics. Parametric errors come from the uncertainty
of B12 and the uncertainty and time variability of G34.

The matrix Gc of (42) that multiplies �wc is singular,
since no component is driving the first and third rows
of (68). The zero first row implies that a dynamic noise
estimator H must be adopted, as in [11] and in equa-
tion (45) in order to stabilize the embedded model. In
this case, only four diagonal matrices {Ae,Lc,Nc,Nd} are
necessary and sufficient to stabilize the pair of fourth-
order state predictors, which consists of (68), without
the third row, and of (45) with Ld = 0. The one-to-one
relation between the AS spectrum Λm = {Λmk, k = 1, 2}
with Λmk = {λmkj, j = 1, . . . , 4}, |λmkj| < 1, and the eight
gains of the diagonal feedback matrices {Ae,Lc,Nc,Nd}
is straightforward (see [11]).

4.5 Pole placement

The assignment of the complementary spectra Γc

(control law) and Γm (SP), which possess a total of
7+7 eigenvalues, is driven by two objectives. The first
one is asymptotic stability in the presence of uncer-
tainty and pump flow saturation. The second is the
accuracy of the lower tank level around the required
set points in the presence of random flows, measure-
ment errors and parametric uncertainty. We assume that
the nominal valve fractions are uniform and equal, i.e.,
γ

k
= γ < 0.5, k = 1, 2.

4.5.1 Stability

We do not adopt a reference generator that mini-
mizes the tracking error during set-point switching. This
implies “crude” saturation of pump flows and instability
because of the relative degree > 1. According to EMC
design [11], command saturation can be managed by
adopting the non-standard design of Section 3.2 (an al-
ternative solution is to shape the feedback gains as satu-
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rating functions). In essence, we adopt fc(Γc) < fmv(Γm)
where fc refers to Vc(Γc) and fmv to Vm(Γm). In terms
of the real complementary eigenvalues γc j(γ) ∈ Γc,
j = 1, . . . , 6 and γm j ∈ Γm, j = 1, . . . , 8, we impose
the inequalities

0 < γc,max = max
j
{γc j}

< max
j
{γm j} = γm,max � 1, (69)

where γc j = γc j(γ) depends on the fraction γ, as it enters
G34 and B12 in (68). By means of the circle criterion [14],
the following upper bound has been found for the sim-
ulated case study:

γc,max � γm,max−βγε, γm,max = 0.2, β = 0.25, ε = 0.7.

(70)

Following [11], the eigenvalues are spread with the fol-
lowing rules⎧⎪⎪⎨⎪⎪⎩γc j = γc,max2−αc( j−1), j = 1, 2, 3,

γ = γm,max2−αm( j−1), j = 1, . . . , 4,
(71)

where {αc � 0, αm � 0} is a second pair of tunable pa-
rameters.

Given (70), {αc, αm} have been tuned for guarantee-
ing closed-loop stability versus neglected dynamics due
to delays and the parametric uncertainty ΔG34(xc) +
δP34(x̃r)B34 in (63). To be simple, we only focus on the
fractional error ∂P in (51), by including ΔG34(xc) in ∂P.
The effect of δP34(x̃r)B34 as a component of ∂H will not

be studied. The design inequality to be adopted is just
the first row in (52).

In order to build up ∂P, we treat G34(xc) and P12(xc) as
perturbed constant matrices, which allows us to write
P(s) appearing in the transfer relation x12(s) = P(s)q(s)
(design model) as follows:

P(s) = e−sτs−1(sI + P12)−1(G34(xr)
+ ΔG34 + s(B12 + ΔB12)), (72)

where τ = τq + τy � 2 s is the unknown total delay and
P12 is a bounded unknown. The zero-order interpolated
transfer matrix in x̂12(s) = M(s)q(s) (embedded model)
holds

M(s) =
e−sT

s(z − 1)
(TG34(xr) + (z − 1)B12)

� s−2(G34(xr) +
sB12

T
), (73)

where z = exp(sT) with s = j2π f , and the second-row
approximation applies for f < π/T.

The open-loop fractional error ∂P(s) = P(s)M−1(s) − I
turns out to be unstable, since one of the transmission
zeros of M(s) is real positive as pointed out by (61).
However, the closed-loop V(s)∂P(s) is internally stable,
since the transmission zeros of V(s) include those of
M(s), and thus cancel the poles of M−1(s). We have
to guarantee stability in the presence of the worst-
case ∂Pworst(s), which corresponds either to G34,max =

G34(x34r,min) or to G34,min = G34(x34r,max) depending on
G34(xr). The resulting pair {αc, αm} is reported in Table 1.

Table 1 Control unit parameters and simulation results.

No Parameter Symbol Unit Value Comment

Control unit

1 Time unit T s 1
2 SP eigenvalues γm,max, αm 0.2, 1.0 Both cases
3 Sensitivity BW fms mHz 7 Sm

4 CL, Case 1 γc,max, αc 0.075, 1.2 γ = 0.1

5 Sensitivity BW fs mHz 3.3 S

6 CL, Case 2 γc,max, αc 0.029, 1.2 γ = 0.45

7 Sensitivity BW fs mHz 1.35 S

Simulation results: True tracking error of the lower tanks (RMS)

8 Case 1 σ̃xk, k = 1, 2 mm 1.3 γ = 0.1

9 Case 2 σ̃xk, k = 1, 2 mm 13.7 γ = 0.45
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As a check, the Nyquist plot of det(I+∂Pworst( jω))−1
(the open-loop case) and of det(I+V( jω)∂Pworst( jω))−1
(the closed-loop case) are shown in Fig. 10, for γ = 0.1
(simulated Case 1, Fig. 10 (a)), for γ = 0.45 (simulated

Case 2, Fig. 10 (b)) and for the pair
{
G34,min,G34,max

}
.

Since V(s)∂Pworst(s) has no unstable poles, both Nyquist
plots ensure closed-loop stability as they do not encircle
the critical point (−1, 0).

Fig. 10 Nyquist plot of the open loop and closed-loop fractional error for the pair {G34,min,G34,max}. The large closed curve
corresponds to the open-loop case. (a) Case1. (b) Case 2.

4.5.2 Accuracy

“Crude” saturation suggests that accuracy require-
ment only concerns steady state level fluctuations and
the transient time duration τ j since the switching time
tr j. The accuracy indicator is the a posteriori RMS
‖x̃k = xk − xkr‖ of the tracking error x̃k, which is defined
by

‖x̃k‖ =

√√√√√√√√√√√√√√√
nr∑
j=0

Nj−1∑
i=0

x̃2
k(i +

tr j

T
+
τ j

T
)

nr∑
j=0

Nj

, (74)

for NjT � tr, j+1 − (tr j + τ j). Given the pole placement in
(69) and (70), accuracy can only be predicted from the
inequalities in (53). The first one is concerned with the
measurement noise, whose contribution can be proved,
in the present simulated case, to be less significant than
the random flow qd in (55). Thus, we restrict the analysis
to the second inequality, where Sd( f ) (m · (√Hz)−1) is
the spectral bound, in length units, of the random flow
components qd1, k = 1, 2 (m · s−1) contributing to the
lower tank level.

Since Sd( f ), in order to be bounded-variance, must be
bounded and decreasing for f > fd, σmax(S(j f , Γ)Sd( f ))
turns out to be band-pass. By assuming that fd and

fs have the same order of magnitude, we expect that
max

f
σmax(S(j f , Γ)Sd( f )) occurs in the same frequency

region. Fig. 7 (a) shows that, forγ = 0.1 (but the same ex-
pression applies to any γ), the sensitivity low-frequency
asymptote holds:

S0( f , γ) = lim
f→0
|S(j f , γ)| = ( f/ fs(γ))3. (75)

Therefore, if the decreasing profile of Sd for f > fd
is approximated as follows (parameter values are in Ta-
ble 2):

Sd( f ) ≈ Swd

2π f
(

fd
f

)2 (m · (√Hz)−1), f > fd, (76)

the bound σ̃x,max(γ) on the tracking error RMS ‖x̃k‖,
k = 1, 2 can be expressed by

σ̃x,max(γ) � κ

√
p

2π
Sd( fs)S0( fs, γ)

� κ
Swd
√

fSD

2π

f 2
d

f 3
s (γ)

(m), (77)

where κ > 1 is a conservative factor and fSD > fs is an
estimation of the spectral density bandwidth. Fig. 7 (b)
compares the computed bound σ̃x,max(γ) and the simu-
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lated RMS ‖x̃k‖ versus the nominal γ � 0.49. Since the
computed RMS tracks the simulated RMS, it is employed

to fix the bound x̃max(γ) = nσ̃x,max(γ), where n = 3, to
the steady-state tracking error.

Table 2 Simulation parameters.

No Parameter Symbol Unit Value Comment

1 Tank flow rate βk mm/s (5.0∼9.0)±20% Equation (56)
2 Tank max level xk,max m 1.6∼1.7 Equation (56)
3 Pump max flow rate qmax mm/s 18.5 Equation (56)
4 Pump rate quantum ρqk, k = 1, 2 mm/s 0.0045 (12 bit) Equation (66)
5 Sensor noise ρyk(σyk) mm � 0.4 (0.4) 12 bit
6 Min sensor level yk,min mm 20
7 Case 1: aperture γ1,2 0.1±5% Equation (56)
8 Case 2: aperture γ1,2 0.45±5% Equation (56)
9 Driving noise SD Swd m/(s · √Hz) 0.015 Equation (77)
10 Cutoff frequency fd mHz 0.88 Equation (77)
11 Upper tank pole p rad/s 0.021 Equation (77)
12 Simulation unit Ts s 1
13 Switching times tr j ks 0, 5, 20, 35, 50 j = 0, . . . , 4

14 Tank 1 set points x1 j m 0, 0.4, 0.8, 1.2, 0 j = 0, . . . , 4

15 Tank 2 set points x2 j m 0, 0.3, 0.9, 1.3, 0 j = 0, . . . , 4

The bound σ̃x,max(γ) applies to ‖x̃k‖, k = 1, 2 for t >
tr + τ(γ, |Δxkr j|), where the set point jump |Δxkr j| occurs
at time tr j and τ j(γ, |Δxrkj|) is defined by

τ j(γ,Δxkr j) =
α

2π fs(γ)
ln(
|Δxkr j|

x̃max(γ)
) (78)

for α > 1.
Fig. 7 (a), for γ = 0.1, shows that the sensitivity low-

frequency asymptote fits S0( f , γ) in (75). The degra-
dation of |S(j f )| (overall closed-loop) with respect to
|Sm(j f )| (state predictor only) due to a non-standard de-
sign is evident: the frequency BW reduction is of about
three times, and, as soon as γ increases, it progressively
degrades the accuracy as Fig. 7 (b) shows.

4.6 Simulated results

Simulation parameters are reported in Table 2. The
nominal value of the uncertain parameters to be used
in control design and implementation are reported to-
gether with their maximum uncertainty (in percent).

Control unit parameters and results are reported in
Table 1. We distinguish between the SP sensitivity Sm

and the overall sensitivity S. DT complementary eigen-
values γk = 1−λk are reported together with the relevant

frequency BW.
The tracking error RMS in Table 1 has been computed

by neglecting the transient profile between two succes-
sive set points and the zero set-point intervals. Fig. 11
shows the time history of the lower and the upper tank
levels for γ = 0.1 (Case 1). Whereas lower-tank levels
accurately track their set points (true-level and set-point
cannot be distinguished in Fig. 11 (a)), upper-tank levels
fluctuate around their set points to allow compensation
of random flows and of set-point switching transients.
The level peaks indicate the latter compensation.

Fig. 12 (a), shows, for the Case 1, the pump com-
manded flows and the relevant set points. Pump flows
are biased because of the parameter perturbations in
Table 2, which confirms the efficient role of the ran-
dom drift x̂d of (68) in predicting and rejecting random
flows and parameter perturbations. Pump flows saturate
without significant oscillations, which confirms the CL
eigenvalue design in equation (70).

Fig. 12 (b), compares the true tracking error x̃1 =

x1 − x1r (solid line) and the measured tracking error
e1r = x̂1 − x1r (dashed line) of the tank 1. Due to a non-
standard design, these errors are different only during
the zero set-point intervals t = [0, 5) ks and t > 50 ks. For
t > 50 ks, except during the set-point switching interval,
the true tracking error, though biased, is close to zero,
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since x1 → x1r = 0. Instead x̂1 − x1 → y1,min = 20 mm,
i.e., it equals the least sensor measurement (see Table 2,
row 6). For t < 5 ks, both tracking errors should tend
to fluctuate around zero since x1 → y1,min. However,
since the upper tank levels saturate down to zero (see
Fig. 11 (b)), they become incapable of compensating the
lower-tank random flows. As a result, x̂1 → 0, whereas
x1 diverges from zero.

Fig. 11 Case 1. (a) Lower-tank levels. (b) Upper-tank levels.

Fig. 13 (b), shows the tracking errors of the Case 2.
The same considerations as for the Case 1 apply, except
that one of the upper-tank level remains close to zero
for t ∈ [5, 20) ks (Fig. 13 (a)) and impedes the regulation
of the tank 1 level. For t > 20 ks, the tracking errors
increase as predicted by Fig. 7 (b), but, outside the tran-
sient intervals, they stay within the target bound.

Fig. 12 Case 1. (a) Pump flow. (b) Tank 1 tracking errors.
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Fig. 13 Case 2. (a) Upper tank levels. (b) Tank 1 tracking
errors.

As a conclusion, simulation results fit the accuracy
requirements expressed by equation (77) and Fig. 7 (b).

5 Conclusions

The goal and effort of the paper was in the line of
reconciling the modern control theory of [2] with the
error-based design principle of the centenary PID of [5],
still the work-horse of the closed-loop control systems
in any application field. To this end, we have recalled
in some detail the robust control theory of [10] with
the aim of pointing out the concept and equations of
the error loop, whose stability has been proved to be
necessary and sufficient for the real plant stability. The
forward path of the error loop is the cascade of the
uncertain discrepancies between plant and model in se-
ries with the transfer functions of the modern control
theory. The input signals of the error loop are reference
signals and the bounded arbitrary (hence unpredictable)
signals of the R. Kalman’s theory (white noise process in
the stochastic framework). The uncertain discrepancies
are assumed to belong to parameterized sets, which, be-
ing bounded, imply that reality may generate incompat-
ible outliers. The relevant detection and the consequent
control system reconfiguration is outside of the paper
scope. Error loop equations are converted by the em-
bedded model control into design inequalities (similar
to those of the H-infinity design methods), where control
transfer functions are parameterized by the closed-loop
eigenvalues to be designed (pole placement) versus sta-
bility/performance requirements and worst–case uncer-

tainty. Frequency domain decomposition and transfer-
function asymptotes allow the designer to find analytic
inequalities capable of providing first-trial closed-loop
poles and their margin versus stability and accuracy. The
method is applied to a well-known multivariate control
problem, which does not admit the feedback lineariza-
tion normal form.
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