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Abstract
The strategy of active disturbance rejection control (ADRC) and its applications in intelligence evolution for service robot

are summarized. It is also shown that the philosophy of ADRC is consistent with the essential characteristics of intelligence
evolution. Most importantly, we concentrate on five core issues which will be encountered when applying ADRC to deal with
intelligence evolution for service robot, that is, how to eliminate the impact of unknown composite disturbances, how to handle
the nonholonomic constraints in uncalibrated visual servoing, how to realize eye-hand-torque coordination, how to deal with
the disturbance in simultaneous localization and mapping (SLAM), and how to reject the imperfections induced by network in
human-robot interaction. The main purpose of this paper is to clarify the challenges encountered on intelligence evolution for
service robot when one applies ADRC to, hoping that more and more researchers can give some suggestions or work together to
deal with these problems, and flourishing results of ADRC from both theory and applications.
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1 Introduction
Service robot is born at the right moment, when hu-

mans want to enhance the sense of happiness by al-
lowing robot to help and collaborate with us in life and
work more and more [1–3]. Service robot is a typical
nonlinear complex system and needs multidisciplinary
knowledge. It usually works in unstructured and uncer-

tain environments, such as homes, shopping malls, and
hospitals, etc. We also require that it can interact with us
naturally and realize the given task autonomously. En-
dowing service robot with intelligence maybe a promis-
ing approach to deal with this problem. On the other
hand, how to imitate human intelligence and behav-
ior is also a long standing dream for us, which may
most probably lead to intelligence evolution for service
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robot. In this paper, we mainly focus on five key issues
on intelligence evolution based on the essential behav-
iors of the typical service robot, namely motion control,
visual servoing, eye-hand-torque coordination, localiza-
tion and mapping, and intention identification of human
controller.

High performance motion control is just the basic
premise for service robot task realization. Motion con-
trol has evolved into advanced control methods, which
concern nonlinearity, robustness and intelligence more,
from the simple linear feedback control. Many typi-
cal control schemes have been developed, including
proportional-integral-derivative (PID) [4], robust con-
trol [5], adaptive control [6], stochastic control [7], slid-
ing mode control [8] as well as intelligent methods, such
as fuzzy control [9], neural network based control [10],
etc. The aforementioned methods, without any doubts,
can solve the motion control problem to a certain ex-
tent, but many problems are still open. For example, it is
difficult to analyze the stability of PID based control sys-
tem. Robust control owns innate strong conservatism.
The general premise for stochastic control, that all dis-
turbances are Gaussian, cannot be fulfilled in practical
systems. The chattering phenomenon existing in slid-
ing mode control limits its application largely. Intelligent
control methods usually lead to huge computational bur-
den and slow convergence process. On the other hand,
service robots, with different shapes and functions, usu-
ally work in unstructured, uncertain environment, and
the robot itself suffers from strong couplings, parame-
ter perturbations, and unmodelled dynamics, etc., but
almost all of the above methods are relying on accurate
system models in some ways. Therefore, the aforemen-
tioned methods cannot fulfill the performance require-
ments for service robot in most updated complex situ-
ations. However, Gao [11] clarified that the essence of
automatic control is just disturbance rejection, including
both internal and external disturbances. The huge chal-
lenge of high performance motion control for service
robot is to satisfy the accordingly performance require-
ment under inaccurate system model or even without
any knowledge about the system model.

As is known to all, “watching by eye and manipulating
through hand” is a typical feedback control scheme in
human intelligence, which constitutes the main research
topic in visual servoing [12]. A typical visual servoing
system is shown in Fig. 1, there are mainly three compo-
nents involved, that is camera calibration, image feature
extraction and system modeling. However, these pro-

cedures are inevitably subjected to issues, such as low
calibration precision, unrobust features and unmodelled
dynamics, etc. Typically, the visual servoing precision is
lower than that of system model and sensor model [13].
The core of calibration-free robotic visual servoing is
to control the robot to realize the given task, using
robot states and task status detected by camera sys-
tems, with partially known or totally unknown camera
model and the mapping relationship between the cam-
era and the manipulator. A great number of researchers
use image Jacobian matrix to deal with this problem,
that is estimating the nonlinear mapping between cam-
era and manipulator online using a time-varying linear
image Jacobian matrix at current moment, then com-
puting the control signal for the next moment [14, 15].
However, researches show that, image Jacobian matrix
based methods largely rely on the system configuration
and task to be conducted. It is also subjected to de-
layed estimation, singularity, non-convergence and very
long time for convergence. In addition, artificial neural
network [16, 17] has been used to fit the time-varying
image Jacobian matrix, it is still hard to implement in
real systems for the intolerantly long training time and
data hungry, and no convergence guaranteed. Hence,
the existing large amounts of uncertainties from such
as the unknown camera parameters, uncertain map-
ping between the visual system and robot manipulator
and the disturbances, etc., largely deteriorate the perfor-
mance of a robotic visual servoing system. More seri-
ously, many robots may be subjected to nonholonomic
constraints, such as, mobile robot, space robot, etc. The
nonholonomic constraints will cause non-square image
Jacobian matrix, which may lead to great difficulty to
obtain its inverse in servoing controller design. Further-
more, the widely existing uncertainties may degenerate
visual servoing performance severely. Thus, it is impera-
tive to develop effective methods for uncalibrated visual
servoing with nonholonomic constraints considered.

Fig. 1 A typical eye-hand coordination control system.
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On the other hand, for service robot, torque is a ba-
sic requirement that should be fulfilled during eye-hand
coordination [12]. For example, when robot conducting
polishing, wiping and grabbing or carrying something
fragile, etc., the force during contacting should be con-
trolled to a predefined intensity. Conventional methods
only take torque as a constraint, which should be satis-
fied during task execution. Considering the strong cou-
plings in robotic torque space, motion space and visual
space, one cannot specify the accurate mappings among
these spaces. Thus, eye-hand-torque coordination is of
great necessity and is also a big challenge in intelligence
evolution for service robot.

Service robot must have the capability of understand-
ing “where am I?” and “where am I going?”, because
of the unstructured and uncertain time-varying environ-
ment. Simultaneous localization and mapping (SLAM) is
the method to estimate the pose transition of robot, un-
der unknown environment and without any prior knowl-
edge. During the SLAM process, many kinds of uncer-
tainties would be introduced, such as, environment un-
certainty, uncalibrated sensors and unmodeled dynam-
ics, etc. Without any doubts, the existing uncertainties
will deteriorate the final localization and mapping per-
formance largely. References [18,19] mainly concern on
improving the robustness of the extracted features. A.
Kendall et al. [20] tries to quantify the environment un-
certainties by presenting a deep learning framework for
probabilistic pixel-wise semantic segmentation, namely
Bayesian SegNet. For visual SLAM, the problem of cam-
era calibration is even more severe, especially for cam-
eras with large distortion [21]. Many researchers try to
calibrate the SLAM system by introducing other kinds of
sensors, such as, infrared distance measurement equip-
ment, laser and inertial measurement unit (IMU), etc.,
or using advanced calibration techniques, such as re-
ceptive fields [22, 23]. Furthermore, many probabilistic
approaches have been applied to deal with the uncer-
tainties. For example, J. L. Blanco et al. [24] applies Rao-
Blackwellized particle filters (RBPFs) to mobile robot si-
multaneous localization and mapping and exploration,
in which they take the uncertainty in both the robot
path and the map into account. Therefore, how to deal
with various uncertainties in a SLAM system is of great
importance.

Service robot should have to interact with users while
accomplishing the task. With the developing of commu-
nication network, especially with the coming age of 5G
era, human-robot interaction (HMI) can further be im-

proved in its flexibility and reliability [25, 26], with var-
ious communication networks such as controller area
network (CAN), BACnet, Fieldbus, wired or wireless
Ethernet, or even the Internet. However, the introduc-
ing of network will induce imperfections from differ-
ent hierarchies, such as time delays, time-varying trans-
mission/sampling intervals, packet losses and disorder,
competition of multiple nodes accessing network, data
quantization, clock asynchronization among local and
remote network and network security and safety, etc.,
[27]. The existing of network induced imperfections will
deteriorate the performance of HMI, or even endanger
its stability. Therefore, network based HMI may cause
many unexpected bad behaviors during the task real-
ization. During the past decades, extensive studies on
network-induced imperfections have been carried out
by both the control and the communication communi-
ties assuming different scenarios, and various method-
ologies have been proposed on how to cope with the im-
perfections. While essentially eliminating the network-
induced imperfections cannot be separated from the im-
provements of the communication infrastructure itself,
developing appropriate control theories and approaches
during HMI to overcome these imperfections is of great
necessity and significance [28–30].

Various uncertainties in service robot, including un-
modelled dynamics, uncertain environment and un-
known disturbances during task executing, is of great
influence for task realization. Active disturbance rejec-
tion control (ADRC) [31] is just the control scheme
that proposed to deal with uncertain control system
since its initialization. It has some advantages for dis-
turbance rejection in uncertain control systems, and has
been attracting a large number of researchers, from both
academia and industry. ADRC control the uncertain sys-
tem by estimating the internal unmodelled dynamics
and external disturbances, as lumped total disturbance,
then an extended state observer (ESO) is constructed
to compensate for the total disturbances in real-time.
Therefore, for high performance motion control, we can
directly reduct the problem into the ADRC framework
and actively eliminate the effect caused by uncertainties.
For service robot uncalibrated visual servoing and eye-
hand-torque coordination, if we regard the unknown
mappings among visual space, motion space and torque
space as unknown dynamics, then ADRC can be use to
design a satisfied eye-hand-torque coordinator [32,33].
The essence of ADRC is that an extended state observer
is constructed to estimate the effects of all uncertainties
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that deteriorate the performance then compensate for,
and make the control system look like free of distur-
bance. Thus, if we regard the uncertainties and imper-
fections caused by the unknown environment and data
transmissions, in SLAM and HMI, as total disturbances,
we definitely can utilize the idea of ADRC to design con-
trol scheme to handle them accordingly. In fact, some
pioneer works have shown the effectiveness in dealing
with some of above problems. Therefore, we will study
on intelligence evolution for service robot from an ADRC
perspective in this paper, and mainly focus on five key is-
sues, namely motion control, uncalibrated visual servo-
ing with nonholonomic constraints, eye-hand-torque co-
ordination, simultaneous localization and mapping and
network based human-robot interaction. While present-
ing some success cases, more importantly, we want to
show the challenges encountered when applying ADRC
to tackle these problems.

2 ADRC in motion control
Until now, ADRC has been successfully applied to

many motion control problems, such as robot manip-
ulator [34], flight control [35], motor control [36], etc.
As the most important part of ADRC, the observation
performance of ESO will largely affect the control per-
formance. By introducing bounded assumption on the
system uncertainty, Lyapunov stability analysis of both
linear and nonlinear ESO is proposed in [37]. How-
ever, the above analysis is only proposed for traditional
ESO design. Except for convergence analysis, the dis-
turbance rejection performance is rarely investigated,
especially for time-varying disturbances. Madonski et
al. [38] claimed that typical ESO offers asymptotic con-
vergence of estimation for constant disturbance, time-
varying disturbance cannot be estimated by traditional
ESO thoroughly. Thus, it is important to explore the
observer design methodology against time-varying dis-
turbance for better disturbance rejection performance.

In [39], the generalized ESO with high order is inves-
tigated, showing that it improves in the tracking of fast
time-varying sinusoidal disturbances. It can be seen that
the high order ESO can improve the estimation accuracy
of sinusoidal external disturbances more or less. How-
ever, there still exists a periodic estimation error, which
will decrease the control performance. According to in-
ternal model principle, the observer cannot reject the
disturbance exactly unless the disturbance dynamics is
embedded into the observer. Next, we present an gen-

eralized ESO with the help of internal model principle to
cope with composite disturbances. More importantly,
we will clarify the challenges for composite disturbance
rejection in motion control.

By taking the disturbance dynamics into account, a
generalized ESO is proposed to estimate the equiva-
lent disturbance and system state. Thus, the outer loop
state feedback controller is designed for desired track-
ing performance. Consider an nth order SISO nonlinear
system,

⎧
⎪⎪⎨
⎪⎪⎩

ẋ = Ax + B(b(x) + a(x)u + d(t)),

y = Cx.
(1)

Assume that â(·) and b̂(·) are the nominal values of a(·)
and b(·), respectively, where â(·) and b̂(·) are locally Lips-
chitz. Then, the system with equivalent disturbance can
be represented as

⎧
⎪⎪⎨
⎪⎪⎩

ẋ = Ax + B(b̂(x) + â(x)u +D(x, d)),

y = Cx,
(2)

where D(·) ∈ R is the equivalent disturbance caused by
both unmodelled dynamics and external disturbance.
Assume that the equivalent disturbance in equation (2)
satisfies

⎧
⎪⎪⎨
⎪⎪⎩
θ̇ = p(θ) + q(θ)μ,

D = g(θ),
(3)

where θ ∈ Rm represents the state of the disturbance
system and μ ∈ R is the input. p and q are two smooth
vector fields with corresponding dimensions. g is a
smooth map. The input μ is a function of external dis-
turbance d and system state x, and the relative order of
the disturbance system satisfies r � n − 1.

With the help of Lie-algebra, by introducing the fol-
lowing differential homeomorphism transformation ξ =
ψ(θ), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 = ψ1 (θ) g (θ) ,

ξ2 = ψ2 (θ) Lpg (θ) ,
...

ξn = ψn (θ) Ln−1
p g (θ) .

(4)

Then the disturbance system can be transformed into
⎧
⎪⎪⎨
⎪⎪⎩
ξ̇ = Adξ + Bdδ,

y = Cdξ,
(5)



328 G. Xiang et al. / Control Theory Tech, Vol. 16, No. 4, pp. 324–335, November 2018

where

Ad =

⎡
⎢⎢⎢⎢⎢⎣

Ar 0(r−1)×(n−r)

0(n−r+1)×r 0(n−r+1)×(n−r)

⎤
⎥⎥⎥⎥⎥⎦ ,

Bd =

⎡
⎢⎢⎢⎢⎢⎣

0(r−1)×1

I(n−r+1)×1

⎤
⎥⎥⎥⎥⎥⎦ , Cd = [1 0 · · · 0],

Ar =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0
...
...
...

...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R(r−1)×r,

δ = LqLr−1
p g(ψ−1(ξ)) + Lr

pg(ψ−1(ξ))μ.

Consider both the system model in equation (2) and
disturbance model in equation (5), define the general-
ized states of the system as ˙̄x = [xT, ξT]T, the recon-
structed generalized system model can be obtained as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄x =

⎡
⎢⎢⎢⎢⎢⎣

A BCd

0 Ad

⎤
⎥⎥⎥⎥⎥⎦

︸�����︷︷�����︸
Ā

x̄ +

⎡
⎢⎢⎢⎢⎢⎣

B

0

⎤
⎥⎥⎥⎥⎥⎦

︸︷︷︸
B̄

(b̂(x̄) + â(x̄)u) +

⎡
⎢⎢⎢⎢⎢⎣

0

Bd

⎤
⎥⎥⎥⎥⎥⎦

︸︷︷︸
Ē

δ,

y = [C 0]
︸︷︷︸

C̄m

x̄,

D = [0 Cd]
︸�︷︷�︸

C̄d

x̄, x = [In×n 0]
︸���︷︷���︸

C̄x

x̄.

(6)

By simple mathematical manipulation, the recon-
structed system is observable if and only if the origi-
nal system equation (1) is observable. For more discus-
sions on this topic, please refer to [41, 42]. Then, one
can design a ESO based on the reconstructed system
equation (6). Comparing the reconstructed methodol-
ogy with the traditional one, the reconstructed one can
take the equivalent disturbance model into account, thus
one can take full advantage of prior information of the
system. By appropriate assumptions, and with the help
of Lyapunov stability results, the stability of the general-
ized ESO is guaranteed and the error of both the control
system and observer is bounded.

The generalized ESO based composite disturbance re-
jection control scheme has been shown in Fig. 2. Zhang
et al. [40] takes advantage of this approach to deal with
the attitude tracking control of an aircraft, which sub-
jected to sinusoidal disturbance. The results show that
the generalized ESO based approach can successfully
eliminate the periodic tracking error for the time-varying
desired attitude, while the traditional one cannot. How-

ever, in practice, we cannot model the composite distur-
bances in advance, i.e., the differential homeomorphism
transformation in equation (4) is no longer satisfied, and
we cannot obtain the reconstructed generalized system
as equation (6). The internal model principle also cannot
be applied. Under this circumstance, how to design sat-
isfied ESO to eliminate composite disturbance is a big
challenge in practice.

Fig. 2 Generalized ESO based motion control system.

3 ADRC in uncalibrated visual servoing
with nonholonomic constraints

Vision-based navigation for mobile robot has received
a significant amount of attention in the service robots
field [43]. The external visual sensor is widely used in
the robot system for its advantage of non-contacting, in-
formativeness and inexpensiveness. Meanwhile, it can
help the wheeled mobile robot to avoid the dead reckon-
ing problem. Wheeled mobile robot is a kind of typical
nonholonomic system which has been widely recog-
nized with the velocity or acceleration constraints that
are non-integrable [44]. Without loss of generality, we
use a set of generalized coordinates q = {x, y, θ} to de-
scribe the mobile robot configurations, where x, y de-
note the position of the center of the rear axis and θ
denotes the heading angle measured from the x-axis.
The kinematic constraint is expressed by analytical re-
lations between the generalized coordinates and their
time derivatives, which arises from the assumption that
the wheels do not slide.

A(q)q̇ = 0, (7)

where A(q) = [sinθ,− cosθ, 0]T. Then the basis for the
right null space of the constraint matrix A(q) can be used
to develop the following drift-free nonlinear control sys-
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tems, which are the kinematics of the mobile robot.
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = v cosθ,
ẏ = v sinθ,
θ̇ = w,

(8)

where v,w denote the translational velocity and angular
velocity of the mobile robot, respectively.

Due to the nonholonomic constraints, both the linear
control theory and standard nonlinear control methods
are failed in the driftless control system. According to
the Brockett’s necessary condition [47], nonholonomic
systems cannot be stabilized via a smooth static-state
feedback law. In [46], the problem has been addressed
from two points of view. One is motion planning which
is considered as an open loop control problem. By find-
ing a group of bounded control sequence to steer the
system from an initial state to a final one over a given fi-
nite time interval. Since there does not exist a set of
independent generalized coordinates to describe the
nonholonomic system, not every motion is feasible in
the coordinate space. Motion planning for the nonholo-
nomic system should be performed with constraint. An-
other close-loop strategy is that an equilibrium of the
closed-loop system is exponentially stable or asymptot-
ically stable by a feedback control law. The lineariza-
tion of nonholonomic systems about any equilibrium is
uncontrollable. Consequently, linear stabilization meth-
ods cannot be used even locally. The approaches for
stabilization of the nonholonomic system can be clas-
sified as discontinuous time-invariant stabilization [45],
smooth time-varying stabilization [48], and hybrid sta-
bilization [49].

In addition to the system control problem caused by
the nonholonomic constraints, the system uncertainties
arising from uncalibrated camera parameters (includ-
ing internal and external parameters), unknown image
depth, robot modelling errors and environmental dis-
turbance should also be considered. The former two
are introduced by vision sensors. The dynamics of the
vision-based mobile robot system can be expressed as

⎧
⎪⎪⎨
⎪⎪⎩

Ṡ = J(q)U,

q̇ = G(q)U,
(9)

where S ∈ Rn denotes a set of image features, U =
(v,w)T is the velocity vector of the mobile robot system,
J(q) ∈ Rn×2 is the Jacobian matrix which contains the
whole system uncertainties. equation (9) describes the

differential change of features in the image caused by
the differential movements of the mobile robot in the
robotic coordinate system.

In general, the image features are redundant. Without
loss of generality, considering point features as an exam-
ple. At least two points which are neither coplanar with
the optical axis nor perpendicular to the motion plane
should be chosen. That means the number of inputs
is less than system states which makes the Jacobian
matrix non-square. The inverse of the singular matrix
cannot be applied directly which prevents application of
the traditional model based control strategies. There are
two points of view to deal with the problem. 1) Recon-
structing image feature to reduce the dimension of the
system state. An existing example has been indicated
by [50]. 2) Adding control dimension by changing the
vision model such as a pan-tilt camera. Furthermore,
in the perspective of ADRC, the essential problem is to
analyze the observability of the uncertainties in the non-
square Jacobian matrix which is still an open problem.

4 ADRC in eye-hand-torque coordination
In fact, eye-hand coordination with torque con-

straints have been widely studied in the last decades.
Raibert [51] proposed torque-position hybrid control
scheme, due to the orthogonality between the torque
space and motion space in some tasks. Hogan [52] pro-
posed impedance control, which adjusted the position
and speed based on the error of torque. Chung [53]
designed adaptive control mechanism by learning the
force of friction, gravity and acting force in real-time. In
all above cases, the torque space and the motion control
space are not strongly coupled. While in some cases, like
acupuncture therapy in Chinese medical diagnoses [54]
as shown in Fig. 3, which is totally different from the
above, where the torque space and the motion control
space are strongly coupled, i.e., the coupling between
torque and eye and the coupling between torque and
hand should also be considered. Just as in the “Manip-
ulating the needle” stage, the eye-torque coordination
should be carefully conducted with the help of eye-hand
coordination. And in the “Retaining and withdrawing the
needle” stage, the hand-torque coordination should be
carefully conducted with the help of eye-torque coordi-
nation. This also comes when using robot writing Chi-
nese Calligraphy [55].
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Fig. 3 A typical procedure of acupuncture therapy.

In a robot eye-hand-torque coordination system, with
the introduction of torque requirements in conventional
eye-hand coordination system, the three pairs of map-
pings, i.e., eye-hand coordination, eye-torque coordi-
nation and hand-torque coordination, generally, cannot
be specified accurately in advance. Taking acupuncture
therapy as an example, it is hard to locate the acu-
points since it is difficult to model the mechanical char-
acteristics for tissues, and there is huge difference be-
tween different individuals compared with the size of
the acupuncture needle. Then, the needle is not rigid
body, some extent of buckling exist during the acupunc-
ture procedure. In addition, the uncertainties in sensors
and unmodeled dynamics for robot will also degenerate
the performance largely. Therefore, it is really a chal-
lenge for the eye-hand-torque coordination system with
performance guaranteed.

In practice, if we regard the three unknown mappings
and uncertainties as unknown dynamics, then the phi-
losophy of ADRC is shown to be consistent with the
characteristics of robotic eye-hand-torque coordination.
Supposing the unknown eye-hand-torque relationship
f (·) can be represented as

P = f (W), (10)

where W = (wx,wy,wz)T is the hand position in the
robotic coordinate system. P = (px, py,T)T is the hand
position in image space with torque T. The target posi-
tion and torque is P∗ = (p∗x, p∗y,T∗). Differentiation of the
both sides of equation (10) leads to

⎧
⎪⎪⎨
⎪⎪⎩

Ẇ = U,

Ṗ = g(W) ·U, (11)

where U is the velocity vector in the robotic coordi-
nate system, which is the system control. g(W) is the
Jacobian matrix of f (W). In practice, g(W) can only be
estimated. Thus, taking the estimation error and external
disturbance into account, we obtain

⎧
⎪⎪⎨
⎪⎪⎩

Ẇ = U,

Ṗ = ĝ(W)U + A(t),
(12)

where ĝ(W) is the estimation of g(W), and we can just
simply choose the mean or mid-value during the pro-
cedure of task realization in practical applications. And
A(t) = (g(W) − ĝ(W))Ẇ + ξ(t), is the total disturbance
of the systems encountered. Thus, equation (12) gives
an ADRC oriented eye-hand-torque coordination model.
Following the principle of ADRC, we can formulate the
control system.

However, it is still unclear the specific meaning of
torque in the eye-hand-torque coordination system,
since torque is not a physical entity like “eye” and
“hand”. How to effectively design an eye-hand-torque
coordinator, and how can we guarantee the stability of
the eye-hand-torque coordination system with ADRC
based on equation (12) are still open problems.

5 ADRC in simultaneous localization and
mapping (SLAM)

A typical visual SLAM procedure is shown in Fig. 4
[56,57]. First, sequence of images are captured by cam-
eras,

Ii = C(e), (13)
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Fig. 4 A typical SLAM procedure.

where Ii denotes the ith image, C represents the im-
age process with environment e. While coming a new
image, there comes the features extraction stage and
obtains key points,

ki = E(Ii), (14)

where E means the feature extraction algorithms, and
kis are the key points obtained from image Ii.

After obtaining enough key point pairs, one can com-
pute the pose and position changes ρ following the key
point matching algorithms M,

ρ = G(M(ki, kj)), (15)

where G is the relationship between the pose and po-
sition and the matched key point pairs. Thereafter, one
can further improve its localization and mapping accu-
racy by solving a nonlinear optimization problem,

min Err = F(ρ, f (k), δ), (16)

where f (k) means the estimation of the coordinate of
the key point k under camera coordinate system or the
world coordinate system. δ is a noise term. Finally, the
localization and mapping performance can be further
improved by loop closing detection.

During the above procedure, one would be usually
confronted with large distortion, such as Fisheye cam-
era, which makes it hard to be calibrated precisely in
equation (13). It is almost impossible to extract features
ki that can be robust to any arbitrary environment, such
as changing illumination, occlusion, etc. The estimation
error in equation (15) will deteriorate the localization
and mapping performance severely. Although these un-
certainties have been recognized widely and been ad-
dressed from different perspectives in the last decades,
it is not yet clear what the best method is. We think that,

for service robot localization and mapping, the SLAM
performance degeneration may be caused by different
aspects of uncertainties from different stages as stated
above, and we cannot explicitly clarify the uncertainty
source and model it, what we can do is to estimate the
total influence caused by all uncertainties, then com-
pensation mechanism can be designed to eliminate the
influence, which is just the idea of ADRC. However,
as presented before, the uncertainties during the SLAM
procedure are usually described through probabilistic
approaches. It is still an open problem for how to de-
scribe ADRC with the help of probabilistic methods, es-
pecially Beyesian methods. Therefore, these challenges
propels us that the idea of ADRC should be studied
deeply and broadly, so that ones can break through the
general framework, i.e., double integrator based ESO,
TD and NLSEF, and more diverse descriptions devel-
oped by mathematicians can be easily applied to solve
different problems from different domains.

6 ADRC in human-robot interaction
through network

Network induced imperfections have been intensively
studied in networked control systems (NCS) [28–30]. It
is shown that, for a particular NCS, the different types of
imperfections listed in Introduction part may not occur
simultaneously in practice, and the effects of some im-
perfections in certain network may be minor, e.g., the
time delay can be ignored in a real-time network, and
the quantization errors are negligible in high bandwidth
Ethernet. For Internet based service robot human-robot
interaction, it is shown that time delays and packet loss
impact the performance more severely [58].

A typical approach for dealing with time delays is to
regard an NCS as a traditional input-delay system, e.g.,
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in linear cases, as
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + Bu(t),

u(t) = Kx(t − τsc(t) − τca(t)),

x(t) = ϕ(t), t ∈ {−d̄, −d̄ + 1, . . . },
(17)

where K is the state feedback controller gain, τsc and τca

are the time-varying delay in the feedback channel and
forward channel, respectively, with 0 � τsc + τca � d̄.
ϕ(t) is the initial condition. Then constructing an ap-
propriate Lyapunov-Krasovskii functional and derive the
condition for system stability, performance, controller
design and filter design.

The packet dropouts in both feedback channel and
forward channel are usually modeled via a stochastic
process, that is

⎧
⎪⎪⎨
⎪⎪⎩

uck = α (k) xk,

uk = β (k) uck,
(18)

where {α(k)} and {β(k)} model the packet loss phe-
nomenon as independent Bernoulli process, for the
feedback and forward channel, respectively. It is as-
sumed that {α(k)} and {β(k)} obey the probability distri-
bution, Pr{α(k) = 1} = E{α(k)} = ᾱ, Pr{α(k) = 0} = 1−ᾱ,
and Pr{β(k) = 1} = E{β(k)} = β̄, Pr{β(k) = 0} = 1 − β̄,
where {α(k) = 1} and {α(k) = 0} denote the success and
failure in the packet transmission, respectively, which
also holds for {β(k)}. Thus, we have uk = α(k)β(k)Kxk.

Although network induced imperfections have been
addressed widely in the last decades. It is rarely effec-
tive in practice, since it is very hard to specify the time-
varying delays in the feedback and forward channels in
equation (17). The assumption of Bernoulli process in
equation (18) may deviate from real situations largely.
We think that, for service robot human-robot interac-
tion, it is hard to guarantee the performance for just
taking only a part of network induced imperfections into
account. Since, generally, various types of imperfections
lead to the results jointly. What is worse is that we can-
not even figure out which kind of imperfections leads
to the undesired results. Therefore, there is no doubt
that the above stated methods would not be effective in
some practical applications.

In addition, the aforementioned methods aim to con-
trol the robot directly following user’s commands, which
usually need intensive interactions. Under this circum-
stance, network induced imperfections may be aggra-
vated due to the huge amounts of data transmission.

Thus, it is essential to seek solutions by resorting to
the autonomy of the robot. Additional specially as-
signed intelligence might be embedded into the robot,
so that the robot could understand the user’s com-
mand and execute the assigned task autonomously with-
out frequent interactions with user. Following this idea,
Su [58] presents user intention modelling based net-
worked robot control scheme, which aims to infer the
state of user intention, given robot state sequence and
commands that the robot has received. In this way, the
inferred intention model, instead of the user, issues the
command to control the robot to perform the user’s
desire action as long as the true intention is captured.
Hence, communication between the robot and the user
is minimized, and so is the impact of network induced
imperfections upon system performance.

However, given complex tasks under uncertain envi-
ronments, there needs huge amounts of data for suc-
cessfully inferring the user intention. Furthermore, this
data-driven based user intention modelling scheme re-
lies heavily on high quality data. While in the networked
environment, network induced imperfections will re-
duce the data quality severely, and so is the success
rate of intention modelling. Therefore, it is a big chal-
lenge for how to successfully infer user intention under
network induced imperfections.

As stated above, the unacceptable impacts caused by
network induced imperfections in the service robot sys-
tem are that they will cause performance deterioration
or even endanger the system stability. While in the per-
spective of ADRC, we can regard all the imperfections
as total disturbances, then an extended state observer
can be constructed. Thus, by the principle of ADRC,
we can eliminate the impact of imperfections. However,
how to deploy in practice is still an open problem, since,
it is difficult to formulate the networked control system
into double-integral-chain model, such as describing the
Bernoulli processes in the framework of ADRC, and then
integrating the Bayesian filtering technique into ADRC.
Therefore, there is a long way for us to deal with network
induced imperfections during HMI for service robot un-
der the framework of ADRC.

7 Conclusions
In this paper, we focused on presenting the problems

and challenges from five aspects, i.e., motion control
with unknown composite disturbance, uncalibrated vi-
sual servoing subjected to nonholonomic constraints,
eye-hand-torque coordination, simultaneous localiza-
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tion and mapping and network based human-robot in-
teraction, which would be encountered when dealing
with intelligence evolution for service robot when apply-
ing ADRC. For convenience, the challenges and related
works are summarized in Table 1. By analysis, we think
that, some physical properties should be reconsidered
in the perspective of ADRC, such as nonholonomic con-
straints. The idea of ADRC should be studied deeply and
more diverse mathematical tools should be introduced

to deal with more problems, such as SLAM and network
induced imperfections. In addition, more troublesome
applications, such as uncalibrated visual servoing with
nonholonomic constraints and eye-hand-torque coordi-
nations, should be considered under the framework of
ADRC. By doing so, we hope that more researchers will
join us to enrich the research of ADRC by developing
new theories and mathematical tools, and promote the
application of ADRC to more challenging problems.

Table 1 Summary of challenges and related works.

Topics Challenges Related works

Motion control Godbole et al. [39],– Composite disturbance rejection without prior knowledge;
Zhang et al. [40]

– Observability of the generalized ESO; Bai et al. [41], Chen et al. [42]

Uncalibrated – Uncalibrated visual servoing subjected to nonholonomic constraints; Desouza et al. [43], Brockett [47]
visual servoing – Observability of the uncertainties in the non-square Jacobian matrix; Su et al. [32,33]

Eye-hand-torque – Understand the meaning of torque in accordance with “eye” Raibert et al. [51], Hogan [52]
coordination and “hand” in the system; Chung et al. [53]

– Formulate an effective eye-hand-torque coordinator; Sun et al. [55]

SLAM Xiang et al. [19], Kendall et al. [20]
– Describe ADRC with the help of probabilistic methods; Castellanos et al. [23],

Blanco et al. [24]

HMI Wang et al. [25], Alur et al. [26]
– HMI subjected to network induced imperfections;

Zhang et al. [27], Su et al. [58]

References
[1] M. Tan, S. Wang. Research progress on robotics. Acta Automatica

Sinica, 2013, 39(7): 1119 – 1128.

[2] A. Graeser. Intelligent environment for complexity reduction and
robustness enhancement of service robots. International Journal
of Assitive Robotics and Mechatronics, 2005, 6(1): 46 – 56.

[3] C. Breazeal. Emotion and sociable humanoid robots. International
Journal of Human-computer Studies, 2003, 59(1/2): 119 – 155.

[4] G. J. Silva, A. Datta, S. P. Bhattacharyya. New results on the
synthesis of PID controllers. IEEE Transactions on Automatic
Control, 2002, 47(2): 241 – 252.

[5] K. Zhou, J. C. Doyle, K. Glover. Robust and Optimal Control.
Upper Saddle River: Prentice hall, 1996.

[6] K. J. Åström, B. Wittenmark. Adaptive Control. North Chelmsford:
Courier Corporation, 2013.

[7] K. J. Åström. Introduction to Stochastic Control Theory. North
Chelmsford: Courier Corporation, 2012.

[8] V. Utkin, J. Guldner, J. Shi. Sliding Mode Control in Electro-
mechanical Systems. Boca Raton: CRC Press, 2017.

[9] C. C. Lee. Fuzzy logic in control systems: fuzzy logic controller –
Part II. IEEE Transactions on Systems Man and Cybernetics, 1990,

20(2): 419 – 435.

[10] F. Lewis, S. Jagannathan, A. Yesildirak. Neural Network Control
of Robot Manipulators and Non-linear Systems. Boca Raton: CRC
Press, 1998.

[11] Z. Gao. On the centrality of disturbance rejection in automatic
control. ISA Transactions, 2014, 53(4): 850 – 857.

[12] J. Su. Robotic uncalibrated visual serving based on ADRC. Control
and Decision, 2015, 30(1): 1 – 8 (in Chinese).

[13] N. Andreft, R. Horaud, B. Espiau. Robot hand-eye calibration
using structure-from-motion. International Journal of Robotics
Research, 2001, 20(3): 228 – 248.

[14] C. Scheering, B. Kersting. Uncalibrated hand-eye coordination
with a redundant camera system. IEEE International Conference
on Robotics and Automation, New York: IEEE, 1998: 2953 – 2958.

[15] J. Qian, J. Su. Online estimation of image jacobian matrix by
kalman-bucy filter for uncalibrated stereo vision feedback. IEEE
International Conference on Robotics and Automation, New York:
IEEE, 2002: 562 – 567.

[16] H. Hashimoto, T. Kubota, M. Sato, et al. Visual control of robotic
manipulator based on neural networks. IEEE Transactions on
Industrial Electronics, 1992, 39(6): 490 – 496.

[17] J. Su, Y. Xi, U. D. Hanebeck, et al. Nonlinear visual mapping model



334 G. Xiang et al. / Control Theory Tech, Vol. 16, No. 4, pp. 324–335, November 2018

for 3-D visual tracking with uncalibrated eye-in-hand robotic
system. IEEE Transactions on Systems Man and Cybernetics – Part
B: Cybernetics, 2004, 34(1): 652 – 659.

[18] Z. Ying, G. Li, G. Tan. An illumination-robust approach for
feature-based road detection. IEEE International Symposium on
Multimedia, New York: IEEE, 2016: 278 – 281.

[19] L. Xiang, Z. Ren, M. Ni, et al. Robust graph SLAM in dynamic
environments with moving landmarks. IEEE/RSJ International
Conference on Intelligent Robots and Systems, Hamburg: IEEE,
2015: 2543 – 2549.

[20] A. Kendall, V. Badrinarayanan, R. Cipolla. Bayesian SegNet. arXiv,
2015: arXiv:1511.02680.

[21] C. Geyer, K. Daniilidis. A unifying theory for central panoramic
systems and practical implications. European Conference on
Computer Vision, Berlin: Springer, 2000: 445 – 461.
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