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Abstract
In this paper, we design consensus algorithms for multiple unmanned aerial vehicles (UAV). We mainly focus on the control

design in the face of measurement noise and propose a position consensus controller based on the sliding mode control by using
the distributed UAV information. Within the framework of Lyapunov theory, it is shown that all signals in the closed-loop multi-
UAV systems are stabilized by the proposed algorithm, while consensus errors are uniformly ultimately bounded. Moreover, for
each local UAV, we propose a mechanism to define the trustworthiness, based on which the edge weights are tuned to eliminate
negative influence from stubborn agents or agents exposed to extremely noisy measurement. Finally, we develop software for
a nano UAV platform, based on which we implement our algorithms to address measurement noises in UAV flight tests. The
experimental results validate the effectiveness of the proposed algorithms.
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1 Introduction

Cooperative control of multiple unmanned aerial vehi-
cles (UAVs) that share a global task has recently drawn
a lot of attention. The last decades have witnessed a
rapid development of micro UAVs and the idea of multi-
agent UAV systems performing tasks grew with it. This

is due to the fact that a group of simple individual vehi-
cles may facilitate the execution of a complex task with
higher robustness to potential technical faults. More-
over, multi-agent systems also have an economical and
logistical advantage, simply because the failure of a sin-
gle agent does not put the whole mission into jeopardy.
That makes a single agent in the system expendable and
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its design requirements less rigorous. Those advantages
are widely recognized in research literature [1–3].

We are interested in the consensus control of multiple
UAVs, especially quadcopters. It is shown in [4] that a
two-loop nonlinear scheme using input-output lineari-
sation technique can be employed to satisfy the tracking
performance. Moreover, a neural network based back-
stepping design for UAV is provided in [5], where an
inverse kinematics solution is applied akin to that in the
manipulator control such as [6]. Nonlinear models of
UAV and linearization procedure is covered in [7, 8].
New control techniques have been proposed to allow
multiple vehicles to work cooperatively (see [9–14]).
Specific problem of UAV formation control in terms of
position and attitude was addressed in [15–17]. Finally,
more intricate nonlinear approach to control design for
multi-agent system was covered in [18,19].

More recently, further work is considered to quantify
the performances of the whole multi-UAV system and
the local UAV. Its formulation falls into a category of
cooperative optimal control and game theory. In partic-
ular, reference [20] uses linear quadratic regulator based
optimal control to achieve the synchronization of linear
systems. Non-zero-sum games are studied for multiple
players in [21–23], where the adaptive algorithm learns
online the solution of coupled Riccati equations and cou-
pled Hamilton-Jacobi equations. Even though good re-
sults were obtained, little research has been carried out
to handle the measurement noise imposed on each local
UAV.

Note that when the noise is injected into the measure-
ment signals of each local UAV, the imperfect informa-
tion propagates through distributed control protocols,
which makes the multi-UAV system vulnerable to un-
certainties and thus severely degrades the cooperative
performance. Due to the fact that this paper considers
actual implementation of the system in the lab environ-
ment, it is of great importance to treat the poor informa-
tion quality in the control law accordingly. To address
that problem, [24] proposed an adaptive stabilization
control for cyber-physical systems against measurement
noises. Moreover, a distributed adaptive leaderless con-
trol for multi-agent systems was proposed in [25]. How-
ever, current results in [24,25] require that the measure-
ment noises are restricted to certain simple types. More
importantly, these papers only theoretically analyzed the
measurement noise problem in the cooperative control,
but few results have been experimentally validated.

In this paper, we aim to design the cooperative control

of multiple UAVs under measurement noises with theo-
retical analysis and physical experiments. To do this, we
first model the dynamics of each individual UAV and its
measurement noises. Based on the sliding mode con-
trol design, we propose a distributed control protocol
that stabilizes all signals in the closed-loop multi-UAV
systems and ensures that the consensus errors are uni-
formly ultimately bounded. Moreover, we use local in-
formation to define the trustworthiness [26–28], based
on which we tune the edge weights to compensate for
the negative effect from noisy measurements. In addi-
tion, we bridge the gap between the theoretical frame-
work and the physical experiment and implement our
results by using Crazyflie 2.0 platform. In our experi-
ments, we utilize the motion capture system (VICON)
to coordinate UAVs through the communication topol-
ogy based on a master-slave model. Furthermore, a hi-
erarchical motion control state machine is designed in
a distributed fashion and implemented as a software
solution based on robot operating system environment
(ROS). To ensure low latency and smooth control loop,
data pipeline is implemented as a multi-threaded routine
specifically tailored for the high-speed control require-
ments of dynamically rich UAVs. Several experiments
are designed to validate the effectiveness of our algo-
rithms.

The remaining parts of this paper are outlined as fol-
lows. In Section 2, some preliminaries on graph theory
are provided. In Section 3, the dynamics of UAV are
detailed. In Section 4, the controller for coordinating
UAVs is proposed, and its stability analysis is carried
out. In Section 5, the trustworthiness based approach is
proposed to tune the edge weight. The experimental en-
vironment is detailed in Section 6, and the experimental
results are given in Section 7. Finally, the conclusion is
contained in Section 8.

2 Preliminaries on graph theory

In this section, we briefly give some preliminaries on
graph theory that will be used in our analysis and exper-
iments.

Definition 1 Let graph G be the pair

G = (V,E), (1)

where V denotes vertices (nodes) of a graph and E de-
notes the edges of a graph. In that context V can be
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represented as

V = {v1, v2, . . . , vN}, (2)

where vi is vertex (node) i of a graph. Nodes are con-
nected by links (edges). Edge E is defined as

E = (vi, vj), ∀i, j ∈ [0,N], i � j, (3)

which is a connection between two nodes i and j.
If edges are not directed (which means that they are

bidirectional), then the graph is said to be undirected.
Each edge has a weight that can model the strength of
the connection between the nodes. The number of edges
that enter a node is called in-degree, while the number
of edges that exit a node is called out-degree. The graph
can be presented in the form of a matrix where column
index corresponds to a source of an edge and row index
to a sink of an edge. Matrix element aij indicates the
weight of the corresponding edge in the graph. Matrix
constructed of elements aij is called adjacency matrix
A. A is very convenient as it enables analysis of graph
theory from the perspective of linear algebra. Structural
properties of the graph are embedded in matrix A and

can be extracted by examining that matrix. di =
n∑

i=1
aij

is a row sum of A and it is introduced for convenience
in the future analysis. MatrixD is diagonal matrix of in-
degrees, D = diag{di}. Therefore, the Laplacian matrix
is formulated as L = D−A.

3 Quadrotor dynamics

When dealing with UAVs, states used for expressing
dynamics are position ξi, velocity ξ̇i, attitude ηi and
angular rate η̇i. Quadrotor dynamics are expressed as
follows

mξ̈i = Fg + Fd(ηi), (4)
J(ηi)η̈i = C(ηi, η̇i) + τi, (5)

where Fg is a gravitational force, and Fd is a nonlinear
input that depends on the attitude, η are rotational states
(roll, pitch and yaw), and τ is the torque generated by
propellers.

Note that the focus of this paper is on efficiency of
the cooperative control policy rather than the design of
effective dynamical controller for a single UAV. Without
the loss of generality, certain simplifications are used.
UAVs that we worked with are very lightweight (27 g)

which permits us to linearize the dynamical system.
Consensus controller will be tested only in the x-y plane.
After the linearization around the equilibrium point (sim-
ilar to [29]), systems (4) and (5) can be reduced to the
following form:

ẍi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ̈x,i

ξ̈y,i

ξ̈z,i

η̈r,i

η̈p,i

η̈y,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−gηp,i

gηr,i

− fT,i/m

τx,i/Ix

τy,i/Iy

τz,i/Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where the system state xi is given as

xi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξx,i

ξy,i

ξz,i

ηr,i

ηp,i

ηy,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where Ix, Iy and Iz denote the idealized moments of
inertia for each axis and m is the mass of the UAV. Af-
ter separating the input terms from the state transition
matrix, we can change (6) into

ẍi = Axi + Bvi, (8)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −g 0

0 0 0 g 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

− 1
m

0 0 0

0
1
Ix

0 0

0 0
1
Iy

0

0 0 0
1
Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)
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and the control input is

vi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fT,i
τx,i

τy,i

τz,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Considering that there are N UAVs in this paper, we
present the system dynamics in a global form as

ẍ = (IN ⊗ A)x + (IN ⊗ B)v. (12)

To model the group of agents with distributed infor-
mation we use the graph theory. In the light of that,
every link of the graph represents communication capa-
bility between connected agents, while nodes represent
dynamical agents. The objective of this paper is to make
the follower quadrotors in the graph G track the desired
trajectory based on the distributed information, where
the trajectory is generated by the leader.

4 Position consensus controller

We introduce Δi as a displacement of UAV i from the
center of the formation. Different combinations of Δi

can now be used to encode various formations. x0 is the
agent leader and is directly linked to those agents that
have non-zero pinning gain gi. The reference is gener-
ated by the leader and is effectively transmitted to the
whole system through the distributed communication
network.

The neighbourhood error is defined as

ei =
∑

j∈Ni

aij(xj − Δ j − xi + Δi) + gi(x0 − xi + Δi), (13)

and neighbourhood time derivative of the error

ėi =
∑

j∈Ni

aij(ẋ j − Δ̇ j − ẋi + Δ̇i) + gi(ẋ0 − ẋi + Δ̇i). (14)

If we assume that the position of the leader (x0) and
the relative positions between the agents (Δi,∀i) are not
changing during the experiment then

ėi =
∑

j∈Ni

aij(ẋ j − ẋi) + gi(−ẋi). (15)

The alias of ideal positions displaced by Δi is introduced

xa
i = xi − Δi, (16)

for i = 1, 2, . . . ,N. From (16), position errors between
the two agents are given as

δi j = xa
j − xa

i . (17)

From (17), the neighbourhood error defined in (13) now
has the form

ei =
∑

j∈Ni

aij(xa
j − xa

i ) + gi(x0 − xa
i ), (18)

ėi =
∑

j∈Ni

aij(ẋ j − ẋi) + gi(−ẋi). (19)

Define 1N = [1, 1, . . . , 1]T
R

N with all N elements ones.
The global forms of (18) and (19) are now expressed as

e = − ((L +G) ⊗ In)(xa − 1N ⊗ x0), (20)
ė = − ((L +G) ⊗ In)ẋ. (21)

In order to further develop the discussion on that hy-
pothesis, the second order error dynamics is first calcu-
lated

ë = −((L +G) ⊗ In)ẍ. (22)

Plugging (12) in (22) gives

ë = − ((L +G) ⊗ In)[(IN ⊗ A)x + (IN ⊗ B)v]
= − ((L +G) ⊗ In)(Agx + Bgv), (23)

where Ag = IN ⊗ A, and Bg = IN ⊗ B. Without the loss
of generality, further simplification is introduced

ë = −((L +G) ⊗ In)(Agx + u), (24)

where u = Bgv is defined as the global vector of inputs.
To drive both position and velocity to zero, we use

the sliding mode control and define the sliding mode
error as

r = ė + Λe, (25)

where Λ is positive definite. From [30], e is bounded
as long as r is bounded. Let λ = diag{λi} be N di-
mensional diagonal matrix with λi on the diagonal, each
corresponding to one agent. Then Λ = λ⊗ In. Taking the
time derivative of (25) yields

ṙ =ë + Λė
= − ((L +G) ⊗ In)(Agx + u)
− Λ((L +G) ⊗ In)ẋ. (26)
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By using Kronecker rule (A⊗B)(C⊗D) = (AC)⊗(BD) (un-
der the assumption that dimensions of A,B,C,D allow
multiplications AC and BD), we introduce the following
for convenience

Z = ((L +G) ⊗ In) (27)
ZA = ((L +G) ⊗ In)Ag = ((L +G) ⊗ A)
Zλ = (λ ⊗ In)((L +G) ⊗ In) = ((λ(L +G)) ⊗ In).

Rewrite (26) as

ṙ = −ZAx − Zλẋ − Zu. (28)

Based on the undirected graph topology, we make some
assumptions useful for the control design.

Assumption 1 L is irreducibly diagonally dominant
matrix.

Assumption 2 G has at least one diagonal entry.

It is not restrictive to make Assumptions 1 and 2,
since many practical multi-agent systems fall under that
category.

We introduce the control law locally and globally as

ui = u1i + Kiri, (29)
u = u1 + (IN ⊗ Ki)r = u1 + Kr, (30)

where matrix Ki = Kj,∀i, j is used for control design.
Assume that u1 cancels first two terms in (28). u1 is
specified later in the theorem. Under that assumption
rewrite (28) in the global form

ṙ = −((L +G) ⊗ Ki)r = −ZKr. (31)

Lemma 1 Let Assumptions 1 and 2 hold. If we define

W = diag{wi} = diag
{1

q i

}
, (32)

where

q = (L +G)−11N, (33)

then, both W and Q =W(L+G)+(L+G)TW are positive
definite. Additionally, if Q is positive definite then Q⊗ In

is also positive definite. Q =W(L +G) + (L + G)TW.

Proof The first assertion follows the results in
[9, 31]. For the second assertion, we obtain that eigen-
values of a matrix generated by Kronecker product are
cross-products of all possible combinations of eigenval-
ues from matrix Q and In. Both Q and In are positive

definite and corresponding eigenvalues all positive. This
completes the proof. �

Assumption 3 Let x̄ be the measurement of ideal
state vector x

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̄ = x + μ1,

˙̄x = ẋ + μ2,

x̄0 = x0 + μ0,

(34)

then define the bound on sensor noise
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

||μ1|| < μ1,B,

||μ2|| < μ2,B,

||μ0|| < μ0,B,

(35)

where μ0,B denotes the measurement error of leader’s
position.

Sliding mode error injected with noises is

r̄i = ˙̄ei + λiēi, (36)

where

ēi =
∑

j∈Ni

aij(x̄ j − Δ j − x̄i + Δi) + gi(x̄0 − x̄i + Δi), (37)

˙̄ei =
∑

j∈Ni

aij( ˙̄xj − ˙̄xi) + gi(− ˙̄xi). (38)

The global form of noisy error is

r̄ = ˙̄e + Λē, (39)

where

ē = − ((L +G) ⊗ In)(x̄a − 1N ⊗ x̄0)
= − ((L +G) ⊗ In)(xa + μ1 − 1N ⊗ x0 − 1N ⊗ μ0)
= − ((L +G) ⊗ In)(μ1 − 1N ⊗ μ0) + e,
= − Z(μ1 − 1N ⊗ μ0) + e, (40)

˙̄e = − Zμ2 + ė, (41)
¨̄e = − (Agx̄ + u) = −ZAgμ1 + ë. (42)

Extracting the ideal sliding mode error from the mea-
sured error gives

r̄ =r − ΛZ(μ1 − 1N ⊗ μ0) − Zμ2. (43)

Substituting (42) and (41) into (26) yields

˙̄r = ṙ − ZAgμ1 − ΛZμ2. (44)
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Definition 2 The signal z(t) is said to be uniformly
ultimately bounded (UUB) with the ultimate bound b,
if given positive constants b and c, for every d ∈ (0, c),
there exists T(d, b), independent of t0, such that

‖z(t0)‖ � d⇒ ‖z(t)‖ � b, ∀t � t0 + T. (45)

Here, we propose our distributed consensus control
for UAVs in the following theorem.

Theorem 1 Let Assumptions 1–3 hold. Define the
sliding mode error dynamics as (26). Select the control
policy for the local agent as

ui = Kir̄i − Ax̄i − λi ˙̄xi. (46)

Assume that λi = λ j,∀i, j, (46). Consider the error dy-
namics (31) and design matricesQ andR. Pick following
control gain

Ki = R−1P, (47)
K = (IN ⊗ Ki), (48)

where P is the unique positive definite solution of con-
trol algebraic Riccati equation

0 = Q − PR−1P. (49)

The control law (46) with the gain (47) guarantees
asymptotic stability for (31). Moreover it stabilizes the
system (12) and makes the ideal tracking error (13) UUB.

Proof Let eigenvalues of (L +G) be νi = αi + jβi.
Matrix L +G has αi > 0 because of Assumption 1 and
2. System (31) is asymptotically stable if matrices −νiKi

are asymptotically stable (see [9]). Since P > 0, R > 0
and αi > 0 it follows that matrix −νiKi is Hurwitz and
(31) is asymptotically stable. From Lyapunov theory, the
stability condition for (31) is equivalent to

(−ZK)TP + P(−ZK) = Q, (50)

where Q < 0 and P > 0, PT = P, and K from (48). (50)
is equivalent to

PZK = −1
2
Q. (51)

To prove stability in the presence of noisy measure-
ments, consider following Lyapunov function candidate
for multi-agent systems in global form

V =
1
2

rTPr. (52)

Differentiating (52) with respect to (26) yields

V̇ =rTPṙ
=rTP[((L +G) ⊗ In)(−Λẋ − Agx − u)]
=rTP[((L +G) ⊗ In)(−Λẋ − Agx − Kr̄
+ Agx̄ + Λ ˙̄x]
=rTPΛ((L +G) ⊗ In)μ2

+ rTP((L +G) ⊗ In)Agμ1

− rTP((L +G) ⊗ In)Kr̄. (53)

For brevity, we use (27). Combined with (43) gives

V̇ =rTPZλμ2 (54)
+ rTPZAμ1

− rTPZK[r − Zλ(μ1 − 1N ⊗ μ0) − Zμ2]
= − rTPZKr + rTP(Zλ + ZKZ)μ2

+ rTP(ZA + ZKZλ)μ1

− rTPZKZλ(1N ⊗ μ0). (55)

Note that the upper bound on V̇ can be found through
the norm algebra and the bounds that are previously
assumed to limit the measurement noise vectors. To be
specific, from (54), we have

V̇ � −min{||PZK|| · ||r||2}
+max{||r|| · ||P(ZA + ZKZλ)|| · ||μ1||}
+max{||r|| · ||P(Zλ + ZKZ)|| · ||μ2||}
+max{||r|| · ||PZKZλ|| · ||1N ⊗ μ0||}, (56)

based on which (56) is changed into

V̇ � − σmin{PZK} · ||r||2
+ ||r|| · σmax{P(ZA + ZKZλ)} · μ1,B

+ ||r|| · σmax{P(Zλ + ZKZ)} · μ2,B

+ ||r|| · σmax{PZKZλ} · μ1,0,B, (57)

where σmax(M) and σmin(M) denote maximum and min-
imum eigenvalue of matrix M. From (57), it is clear that
V̇ is always negative for

||r|| >σmax{P(ZA + ZKZλ)}
σmin{PZK} μ1,B

+
σmax{P(Zλ + ZKZ)}
σmin{PZK} μ2,B

+
σmax{PZKZλ}
σmin{PZK} μ1,0,B. (58)

Moreover, if r is outside the bounding set given in (58),
our controller will eventually drag the error inside the
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set. In other words, the sliding mode error r is bounded
to a set which makes all the signals in the closed-loop
multi-agent system UUB. �

The controller drags all aliases xa
i for i = 1, . . . ,N

to the center of the formation. If all aliases are in the
center of the formation, no action from the controller
is required. Neighbourhood errors quantify the spatial
disharmony of the formation. The controller determines
an action ui of the agent i such that it recovers con-
sensus. Λ is a tuning parameter. As given, controller
resembles well known standard PD controller.

5 Modifying edge weights based on trust

In this section, it is shown how UAVs in the graph can
distributively modify the graph weights based on their
measure of trustworthiness of the neighbors. The pur-
pose is to maintain the consensus by eliminating neg-
ative influence of stubborn agents or extremely noisy
measurement imposed on the local agent.

The trust that agent i has for agent j can be calcu-
lated as deviation from the intended average state of
neighboring agents

τi j =
θi j

‖x̄a
j −

1
Ni + 1

(x̄a
i +
∑

j∈Ni

x̄a
j )‖ + θi j

, (59)

where θi j is a certain positive constant that serves as
a threshold value. From (59), when the local agent j
approaches the average of the neighbourhood agents,
the trust value τi j approaches one; otherwise, τi j ap-
proaches zero. With this trust metric, we further pro-
pose a mechanism to modify the graph weights. To this
end, we use the differential equation

ḋi j = −ηdij + ητi j, (60)

where η is a certain positive constant. To take into ac-
count the trust value calculated for neighbors, the con-
troller (46) is now revisited by weighting all edge weights
aij by dij. That is all occurrences of aij in (46) are replaced
by dijaij.

6 Experimental environment

Fig. 1 shows an entire system designed at UTA Re-
search Institute for testing distributed controllers on
UAVs. Basic four elements are VICON, Crazyflie 2.0

UAVs, and the workstation that runs master program.
Master is implemented as ROS package and it handles
consensus controller calculation as well as local manip-
ulation over UAVs.

As already mentioned, Crazyflie 2.0 is used as UAV
and it communicates with master workstation using ra-
dio transceiver. In order to have reliable feedback infor-
mation, we use motion capture system VICON. Data is
transmitted to master through wireless local area net-
work. Such communication architecture enables con-
sensus controller to send the control commands to
UAVs at 200 Hz, which is more than sufficient.

Fig. 1 Motion capture and communication topology based on
master-slave model architecture.

6.1 Crazyflie 2.0

Crazyflie 2.0 is a commercially available UAV suitable
for research and development. It is created by Bitcraze
AB. We use their hardware and modify the firmware to
implement our control laws. IMU data collection, four
motors with corresponding PWM modules and commu-
nication with radio (nRF51822) is all handled by micro-
controller (STM32F405). Attitude controller is imple-
mented on firmware side rather than on master/server.
It uses inputs from outer control loop (commanded ve-
locities in all three dimensions and commanded yaw
rate) and IMU data to stabilize UAV and to drive it to
the desired position. Desired values are received from
nRF51822, previously sent from the master. The output
of attitude controller are signals that determine PWM
cycle duty and eventually produce propeller thrusts and
torques. For more hardware and construction details, as
well as for a simplified mathematical model of Crazyiflie
2.0 refer to the official website [32].
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6.2 Master workstation

Fig. 2 shows the software architecture that is executed
on the master workstation. The master controller is a
ROS node that manages general control of all UAVs.
Each UAV is controlled by individual outer loop con-
troller.

The master controller is, in fact, a mission planner. It
commands different tasks to UAVs by communicating
with corresponding position controller. It also listens
to external user input to allow manual task switching,
manual take off, manual landing, and manual emergency
landing. State machine seems to be a plausible design
solution for master controller, considering its current
function of switching states. As Fig. 3 clearly shows,
there are three different states in state machine. In way-
point tracking state, master controller simply sets way-
points to position controllers. Consensus controller is
slightly more complex, as generalized formation error
for each UAV has to be recalculated at every iteration.
The idle state is active when all Crazyflies are off. It is
important to notice that user has the control over whole
state machine which is a security requirement.

Fig. 2 Distributed multi-threaded software architecture with
data pipeline.

The described procedure can be broken down into
the following main steps:

Step 1 Check the link quality. If link quality is low
proceed to Step 7. Otherwise continue to Step 2.

Step 2 Collect data from VICON, distribute infor-
mation to agents according to adjacency matrix.

Step 3 Update trust values and apply them to mod-
ify adjacency matrix.

Step 4 Call local distributed controllers. Send cal-
culated roll, pitch, yaw and thrust commands to each
agent.

Step 5 Calculate PWM locally on each agent and
generate forces.

Step 6 If no user interrupt, go back to Step 1. Oth-
erwise go to Step 7.

Step 7 Start landing sequence. Land.

Fig. 3 Distributed hierarchical motion control state machine.

7 Flight tests

Three flight tests shown in Fig. 4 are carried out in this
section, where different adjacency matrices are picked.
For each experiment, we show two plots, x position and
y position for all three UAVs. The desired reference is
set (0, 0, 0.7) and disturbance is applied to one of three
UAVs to test the behaviour of the group. To be specific,
we push the UAV away from the point of global equilib-
rium imposed by consensus controller. Displacements
from the desired reference are Δ1 = (−0.5, 0.5, 0.0),
Δ2 = (0.5, 0.5, 0.0), and Δ3 = (−0.5,−0.5, 0.0). Note that
in the experiment, we define the virtual input u as

u = (IN ⊗ B)v = Bgv. (61)
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Technical control vector v can now be calculated from
virtual inputs u through

u = (IN ⊗ B)v, (62)

vi = BT(BBT)−1ui. (63)

In fact, the ability to calculate v is not only a matter of
convenience, but rather a necessity, since v is the com-
mand vector that is transmitted to UAV agents. ui is a
distributed control signal (46). In the first 5 seconds, al-
titude control is applied to take off UAVs, and after that
our consensus controller is activated.

Fig. 4 Photograph of the experiment during consensus.

7.1 Experiment 1

In this case, we define the adjacency matrix as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2

0 0 3

2 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(64)

and the pinning gains as g2 = 3 and g1 = g3 = 0. Af-
ter applying our controller, the experimental results are
presented in Figs. 5 and 6, where UAVs 1–3 are labelled
in red, blue, and green. Here, UAV 1 is the agent that
is injected with disturbances. In this experiment, UAV
1 moves away from the consensus due to disturbances,
while UAVs 2 and 3 try to follow. From (64), UAV 3
strictly follows movements of agent 1 in order to keep
consensus, since it has direct link to agent 1. Note that
UAV 2 is less responsive to position change of agent 1
due to the fact that agent 2 is connected to the leader.

Fig. 5 Experiment 1, positions x of UAVs.

Also notice that UAV 1 is first sent way out of desired
position at around 9th second. At the very peak, when
UAV 1 is more than 0.5 m away from desired position,
UAV 3 does not follow UAV 1 to the extreme deviation
because it has lost trust in UAV 1 (a13 was close to 0).
The fact that trajectories of UAVs 1 and 3 have slightly
different shapes at that point confirms that (Fig. 6). As
UAV 1 returns and distance between UAVs 1 and 3 is
back as expected, trust increases and consensus is re-
established.

Fig. 6 Experiment 1, positions y of UAVs.

7.2 Experiment 2

Here, we define the adjacency matrix as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 2

2 0 3

2 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(65)
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and the pinning gains as g2 = 3 and g1 = g3 = 0. Adding
a direct link between agents 1 and 2 makes UAV 2 a bit
more responsive. Formation control in Figs. 7 and 8 is
better compared to that in the previous experiment.

Fig. 7 Experiment 2, positions x of UAVs.

Fig. 8 Experiment 2, positions y of UAVs.

7.3 Experiment 3

In the final experiment, the adjacency matrix is de-
signed as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1

1 0 1

1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(66)

and pinning gains are given as g1 = g2 = g3 = 1. Com-
pared to the previous experiments, (66) gives the best
performance, as shown in Figs. 9 and 10. Such results
are expected because the graph is dense and weights
are not giving preference to any neighbouring agent.

Fig. 9 Experiment 3, positions x of UAVs.

Fig. 10 Experiment 3, positions y of UAVs.

8 Conclusions

Consensus control design introduced in this paper is
effective in keeping a group of UAVs in the formation.
Confirmation is given by using Lyapunov theory to prove
the stability of the group and later in the experimental
environment on the system of multi UAVs.

It is shown that the robustness of consensus depends
highly on the graph topology. In that aspect, fully con-
nected graphs will provide better basis for firm con-
sensus control. Unfortunately, it is often the case that
practical multi-agent network topology is inherent to the
system to which control is applied. In other words, while
designing controller, graph is predefined and cannot be
changed in favor of better control. However, one thing
we can do is to update the values of the links that are
present based on the trustworthiness of a neighbouring
agent. Our approach achieves that.
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Due to certain practical assumptions about dynamics
of the nano UAV and by restricting experiments to a slow
flight, we were able to make some reasonable simplifica-
tions on the dynamical model of the UAV. That allowed
for more transparent design of the consensus controller
in the light of measurement noises imposed on the sys-
tem. Future work should extend current design to the
domain of non-linear control, allowing for dynamically
rich experiments and treat the measurement noise with
advanced tools such as distributed Kalman filter.
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