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Abstract
This paper investigates consensus of flocks consisting of n autonomous agents in the plane, where each agent has the same

constant moving speed vn and updates its heading by the average value of the kn nearest agents from it, with vn and kn being two
prescribed parameters depending on n. Such a topological interaction rule is referred to as kn-nearest-neighbors rule, which has
been validated for a class of birds by biologists and verified to be robust with respect to disturbances. A theoretical analysis will be
presented for this flocking model under a random framework with large population, but without imposing any a priori connectivity
assumptions. We will show that the minimum number of kn needed for consensus is of the order O(log n) in a certain sense. To
be precise, there exist two constants C1 > C2 > 0 such that, if kn > C1 log n, then the flocking model will achieve consensus for
any initial headings with high probability, provided that the speed vn is suitably small. On the other hand, if kn < C2 log n, then
for large n, with probability 1, there exist some initial headings such that consensus cannot be achieved, regardless of the value
of vn.
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1 Introduction

Collective behavior, which is widely observed in phys-
ical, chemical, social, and biological systems, does not
seem to have global information transfer among the
components of the system, but the overall can display

some highly ordered behavior. From a scientific point
of view, how locally interacting rules lead to ordered
phenomena is a basic and challenging issue to be un-
derstood. In recent years, much attempt has been made
to observe, describe and model the collective behavior
ranging from molecules to groups of animals, trying to
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find the mechanism behind these phenomena [1–24]
etc. To mimic the flock of birds, Reynolds proposed
a Boid model which employs three simple local inter-
action rules: flocking cohesive, collision avoidance and
velocity alignment [1]. These rules have been realized
by (discrete or continuous) dynamical systems [2, 3].
To carry out a theoretical study on Boid model, the au-
thors of [3,4] constructed some collective potential func-
tions to characterize the attraction and repulsion among
agents, adopted consensus algorithm to achieve veloc-
ity consensus, and provided the corresponding stability
analysis. Note that in many practical systems, the ve-
locities of the neighboring individuals tend to become
parallel to each other, and such motion seems to be
safe, stable and collision-free [5]. Consequently, the ve-
locity alignment or consensus problem has drown wide
attention from researchers in recent years. In particu-
lar, Vicsek et al. proposed a simplified Boid model [6],
which consist of n autonomous agents moving in the
plane with the same constant speed and with the head-
ing of each being updated by the average of its geomet-
ric neighbors’. This model has also been generalized to
other forms together with numerical simulations, see,
e.g., [7] and [8]. To analyze the so-called Vicsek’s model
introduced in [6], Jadbabaie et al. [9] further simplified
the Vicsek model, and initiated a theoretical study by re-
sorting to some connectivity assumptions on the system
dynamics, followed by many researchers, see, e.g., [10]
and [11]. Another typical flocking model is the so-called
Cucker-Smale model [12], in which the interaction be-
tween two agents is a monotonously decreasing func-
tion with respect to their distance. Some variants of this
model can be found in e.g., [13], and the convergence
time of flocks has been studied in-depth in [14].

We would like to point out that, in most of the local
interaction-based flocking models studied in the exist-
ing literature, the “neighbor” is often defined via the
geometrical distance, that is, each agent’s neighbors are
defined as the ones within a prescribed geometric dis-
tance from it, as can be seen from the models mentioned
above. However, the geometric distance cannot cover
all the interesting situations either practically or theoret-
ically.

Take a group of animals for instance, as pointed out
by [25], under the geometric interaction rule, once the
inter-individual distance became larger than the pre-
scribed geometric distance, there would be no interac-
tion and stragglers would “evaporate” from the aggre-
gation, and so, the cohesion in the case of strong per-

turbations or predators invasion cannot be kept. Hence,
whether the practical interaction is indeed determined
by a geometric distance remains to be a question.

In fact, a group of scientists has carried out an ex-
perimental observation for starlings within flocks, with
a significant finding that the starlings in huge flocks in-
teract with a fixed number (6 or 7) of nearest individuals
(i.e., “topological distance”) [25], instead of those within
a given geometric distance. Moreover, they have also
made comparisons with the geometric distance based
rules via numerical simulations, and revealed that the
topological interaction significantly outperforms the ge-
ometrical interaction towards maintaining the connec-
tivity of the flocks. Based on this, they claimed that
“topological interaction is the only mechanism granting
the robust cohesion with higher biological fitness” [25].
Such interaction have also been valided in [26] through
establishing a maximum entropy model to empirical
data. Furthermore, Ballerini et al. [25] also discussed
why the neighbor’s number is 6 or 7, which may be
explained as follows: on one hand, birds cannot distin-
guish and track too many individuals due to the limited
visual capacity and this has been validated in trained pi-
geons [27] and shoaling fish [28]. On the other hand,
the number of 6–7 is the result of some optimization.
In [29], the authors showed that the flock interaction
networks with 6–7 neighbors optimizes the trade-off be-
tween group cohesion and individual effort.

It is worth mentioning that the topological interaction
has also been studied in wireless networks, where nodes
are located randomly on the plane according to a Pois-
son point process and each node is connected to a fixed
number of nearest ones. In order to conserve energy
and reduce disturbance from communication noise, it is
meaningful to find the minimum number of neighbors
that each node should link to, so that the overall network
becomes connected. To address this issue, [30] pio-
neered the investigation of the connectivity of a random
topological graph denoted by G(n,mn) with n nodes and
mn neighbors, and successfully proved that there exist
two constants 0 < c1 < c2 such that G(n, c1 log n) is
disconnected and G(n, c2 log n) is connected with high
probability. This result has later been refined in [31].

Hereinafter, the topological interaction rule or the “k-
nearest-neighbor rule” will be used exclusively in the
paper. We will investigate the consensus property of
flocks in the following scenario: n autonomous agents
move in the plane with the same constant speed vn and
with heading of each agent updated according to the av-
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eraged direction of its kn nearest neighbors. This model
is obviously related to but different from those with
geometric distance based rules, including the above-
mentioned Vicsek’s model and its variations.

We remark that, to the best of our knowledge, there
are few theoretical results on the flocking model with
k-nearest-neighbor rule, although there is a vast litera-
ture on the related geometric distance based flocking
models, see, e.g., [3, 4], [9–11]and [18–21]. The theo-
retical difficulties in the current paper lie at least in the
following two aspects: one is that some kind of con-
nectivity is required in the theoretical investigation of
consensus which is also adopted as a basic assumption
in [3, 4] and [9–11]. This is a well-known “bottleneck”
problem, because the topology of the flocks is time-
varying and state-dependent, and thus, how to sidestep
or verify the connectivity conditions turns out to be a dif-
ficult and challenging mathematical problem. Another
difficulty is that the underlying topological graphs are
directed due to the k-nearest-neighbor rule, and there-
fore a lot of nice properties with beauty of symmetry for
undirected graphs are lost, which brings a big difference
from the undirected case as in Vicsek’s model. There-
fore, the results and methods used in [19–21] for flocks
with undirected graphs cannot be directly applied here,
and new methods in analyzing nonlinearly coupled dy-
namical flocks with directed position graphs should be
developed. This constitutes one new contribution of the
paper, with parts of the results presented in [22].

Next, since the neighbors number kn can be treated
as a parameter of the system, then how kn affects the or-
dering phenomenon on earth? It is obvious that if kn = 0,
the system cannot achieve consensus in general what-
ever the speed is, but if kn = n, then consensus would be
achieved immediately. Thus, it is nontrivial to ask “dose
a critical neighbor number kn, or at least a critical order
exist for the emergence of consensus?” From an engi-
neering viewpoint, the critical number of neighbors also
plays an important role in designing distributed coopera-
tive control or communication networks. Recall that for a
static random k-nearest-neighbor graph with n nodes to
be asymptotically connected, the order Θ(log n) neigh-
bors are kind of necessary and sufficient [30]. We would
then naturally expect and will actually prove that for the
current nonlinear dynamical system, similar consensus
results can also be established, under some conditions
on the speed and initial settings. This will constitutes
another original contribution of the work, with parts of
the results presented in [23] without full proof.

The rest of this paper is organized as follows: some
notations used in the paper are defined in Section 2. In
Section 3, we will present the formulation of the problem
and the main results, with their detailed proofs given in
Section 4 and the Appendix. A simulation example will
be showed in Section 5, followed by the concluding re-
marks in Section 6.

2 Some basic definitions
Graph theory plays an important role in the research

of dynamical network and some basic notations and
concepts deserve to point out first. A directed graph (di-
graph) G = {V,E} is composed of a vertex (or node) set
V = {1, 2, . . . , n} and an edge set E = {(i, j) ⊆ V × V},
where (i, j) ∈ E is a directed edge from i to j, and also
means that j is a neighbor of i. If vice versa, then G is
undirected. For any vertex i ∈ V, if (i, i) ∈ E, then it is
called a loop of G. A path of length l in G that joins ver-
texes i and j means that there is a sequence of vertexes
i1, i2, . . . , il such that (im, im+1) ∈ E, 0 � m � l with i0 = i,
il+1 = j. A digraph is called strongly connected if for any
two different vertexes i and j, there always exists a path
from i to j. If a strongly connected graph is undirected,
then it is called connected. A digraph is said to have a
spanning tree if and only if there exists a vertex i ∈ V ,
called root, such that there is a path from i to any other
vertex. The adjacency matrix M = (mij)n×n of graph G is
a 0 − 1 matrix, where mij = 1 if and only if (i, j) ∈ E.

In this article, we use the following standard nota-
tions. The symbol := denotes definition. The set of real
numbers is denoted by R and the set of non-negative
integers is denoted by Z+. For a set U, |U| denotes the
cardinality of U. Given t ∈ R, we write �t� for the value
of t rounded down to the nearest integer, and �t� for
the value of t rounded up to the nearest integer. For

integers n � m � 1, Cm
n :=

n!
m!(n −m)!

. Hereinafter, all

logarithms are base e.
Suppose {an}n�1 and {bn}n�1 are sequences of pos-

itive real numbers with bn > 0 for all n. We write

an = O(bn) if lim sup
n→∞

an

bn
< ∞, and write an = o(bn) if

lim sup
n→∞

an

bn
= 0. We write an = Θ(bn) if both an = O(bn)

and bn = O(an).
For all x ∈ Rd with x := (x1, . . . , xd), the so-called lp

norms of x, ‖ · ‖ p, are defined for 1 � p < ∞ by

‖(x1, . . . , xd)‖ p := (
d∑

i=1
|xi|p)1/p. (1)
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The l2 norm is also denoted by the Euclidean norm. Let
B(x, r) := {y ∈ R2 : ‖x − y‖2 � r} denotes the ball cen-
tered at x with radius r. The following notation is quite
important in our paper, we highlight it.

Definition 1 We say that a sequence of events En,
n � 1 occur with high probability (w.h.p.) if lim

n→∞Pr[En]

= 1. Moreover, we say En occur with probability 1 for
large n if almost surely Ec

n, n � 1 only happen finite
times in terms of n.

3 Model and main results

3.1 Model

Let us assume that n autonomous agents move in
the plane with the same speed vn (vn > 0) but with
different headings. At any time t ∈ Z+, the position
and heading of agent i are denoted by Xi(t) (∈ R2)
and θi(t) (∈ (−π, π]) respectively. The distance between
agents i and j is denoted by dij(t) := ‖Xi(t) − Xj(t)‖2. For
any agent i (1 � i � n), the neighbors of i are defined
as the nearest kn individuals from it, where kn is a pre-
scribed value depending on n, and the neighbor set of i
at t is denoted by Ni(t). If at time t, there is more than
one agents who are eligible to be the kn-th nearest one
from agent i, then i chooses one randomly among them.
In particular, we define that each agent is a neighbor of
itself. For arbitrary t ∈ Z+ and 1 � i � n, the position’s
updating rule for i is as follows:

Xi(t) = Xi(t − 1) + vn(cosθi(t), sinθi(t)) (2)

with θi(t) updated by

θi(t) =
1

|Ni(t − 1)|
∑

j∈Ni(t−1)
θ j(t − 1). (3)

Since |Ni(t)| ≡ kn, then we can rewrite (3) as follows:

θi(t) =
1
kn

∑
j∈Ni(t−1)

θ j(t − 1). (4)

This paper will mainly investigate the consensus prop-
erty of the model (2)–(4). Following Tang and Guo [19],
we give the definition of “consensus”.

Definition 2 If there exists a constant θ̄ ∈ (−π, π]
such that lim

t→∞θi(t) = θ̄, ∀1 � i � n, then we say the
model (2)–(4) achieve consensus.

3.2 Main results

For t ∈ Z+, let

Xn(t) := {X1(t),X2(t), . . . ,Xn(t)}
be the set including the positions of n agents at t. To
analyze the consensus behavior, we will use the follow-
ing graph sequence {G(t), t = 0, 1, . . . } to describe the
relationship among neighbors. For t ∈ Z+, define

G(t) = Gn,kn (t) := G(Xn(t),E(t))

to be the position graph of the model at t, where
(i, j) ∈ E(t) if and only if j ∈ Ni(t). Note that (i, i) ∈ E(t)
for all 1 � i � n, since self-loop is contained. It worth
mentioning that the graphs formed in this way are di-
rected. Denote P(t) = Pn,kn (t) as the average matrix of
the graph G(t), i.e.,

(P(t))i j =

⎧⎪⎪⎨⎪⎪⎩
1/kn, if (i, j) ∈ E(t),

0, else,
∀i, j = 1, 2, . . . ,n.

It can be seen immediately that P(t) is a stochastic ma-
trix. Set θ(t) := (θ1(t), θ2(t), . . . , θn(t))τ, then the iter-
ation rule of the model based on (2) and (4) can be
rewritten as the following compact matrix form:

⎧⎪⎪⎨⎪⎪⎩
θ(t) = P(t − 1)θ(t − 1),

Xi(t) = Xi(t − 1) + vn(cosθi(t), sinθi(t)).
(5)

We will proceed our analysis under the assumption
that the initial positions {Xi(0) ∈ R2, 1 � i � n} are inde-
pendently and uniformly distributed in the unit square
[0, 1]2 with the initial headings {θi(0) ∈ R2, 1 � i � n}
arbitrarily distributed in (−π, π]. Then the position graph
at the initial time instant G(0) is the random kn-nearest
neighbor graph, which has been investigated in [30]
and [31], etc.

Theorem 1 For the flocking model (2)–(4), suppose
that the initial positions of n agents are uniformly and in-
dependently distributed in the unit square [0, 1]2. Then
there exist some constants 0 < C2 < C1 and C ∈ (0, 1),
such that the following two assertions are true:

i) If kn > C1 log n and vn = O(C
√

n
kn ), then the sys-

tem will achieve consensus w.h.p. for arbitrary initial
headings.

ii) If kn � C2 log n, then for large n with probability
1, there exist some initial headings’ configurations such
that the flocking model cannot achieve consensus for
any speed vn � 0.
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Remark 1 The precise value of the constants
C1,C2,C can be found from the proof of Theorem 1
in the next section. Here, we just mention that some
calculations can give rough estimates for C1 and C2 as
50 and 0.1360, respectively.

4 Proof of Theorem 1

Theorem 1 consists of two parts whose proof will be
proceeded in Section 4.1 and 4.2, respectively.

4.1 Analysis of Theorem 1 i)

Throughout the proof, all analysis will be carried out
under the assumption that the positions of all the agents
are independently and uniformly distributed in [0, 1]2,
then the initial random kn-nearest-neighbor graph will
have some nice properties.

Let [0, 1]2 be divided equally into Mn,K :=
⌈√ n

Kkn

⌉2

small squares whose side length is defined as an,K :=

1/
⌈√ n

Kkn

⌉
and set Ln,K :=

⌈ 1
an,K

⌉
=
⌈√ n

Kkn

⌉
, as de-

picted in Fig. 1, where K > 0 is a tunable parameter. We
label the small squares as Si

n,K, i = 1, 2, . . . ,Mn,K, from
left to right, and from bottom to top. Denote by Ni

n,K,
the number among the n agents, that fall into the square
Si

n,K. Then the following estimation for Ni
n,K holds.

Fig. 1 The unit square [0, 1]2 is equally divided to M
⌈√ n

Kkn

⌉2

small squares which are labeled as Si
n,K, i = 1, 2, . . . ,Mn,K, from

left to right, and from bottom to top.

Lemma 1 Assume that Kkn >
log n

log(4/e)
, and let

μ0 ∈ (0, 1) be the sole root of the equation

−μ + (1 + μ) log(1 + μ) =
log n
Kkn

(6)

with respect with μ. Then for any μ > μ0:

max
i
|Ni

n,K − Kkn| � μKkn w.h.p. (7)

Proof This result can be obtained by the method
of the proof of Lemma 3.1 in [30] with slight adjust-
ment. �

Before proceeding further, define the large deviations
rate function H : [0,∞)→ R by H(0) = 1 and

H(a) = 1 − a + a log a, a > 0. (8)

Note that H(1) = 0 and the unique turning point of H is
the minimum at 1. Also H(a) is increasing on (1,∞).

For any fixed agent i, the following lemma estimates
the number of agents falling into a ball centered at i, see
Fig. 2.

Fig. 2 The ball with red boundary represents B(Xi(0), (1+

η)rn,K) and rK,η =
1

1 − η
√

5an,K.

Lemma 2 Suppose rn (n � 1) is a positive real num-
ber sequence satisfying πnr2

n � 2 log n. Then with prob-
ability 1,

max
i
|Xn(0) ∩ B(Xi(0), rn) | � annπr2

n(1 + o(1)) (9)

for large n, where an is the solution to the following
equation:

H(a) =
log n
πnr2

n
, a > 1.

Proof This result can be deduced directly from The-
orem 6.14 of [32]. �
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Lemma 3 Pick arbitrary 0 < η < 1 and define

rK,η = rn,K,η :=

√
5Kkn

n
/(1 − η). If kn > C1 log n with

C1 = (5π × 1.23)/ log(4/e), then we can find some K

and η such that Kkn >
log n

log(4/e)
and the following asser-

tion is true:

max
i
|Xn(0) ∩ B(Xi(0), (1 + η)rK,η)|

� kn w.h.p. (10)

Proof The relationship among an,K, rK,η and (1 +
η)rK,η can be seen in Fig. 2.

Let kn � C1 log n and set K = 1/(5π × 1.23), then

by the value of C1, we have KC1 >
1

log(4/e)
, which is

followed by Kkn >
log n

log(4/e)
.

By computing, we have

nπ[(1 + η)rK,η]2 = 5πK
(1 + η
1 − η

)2
kn > 2 log n,

then the condition of Lemma 2 is satisfied. Applying
Lemma 2 directly, we can obtain that w.h.p.

max
i
|Xn(0) ∩ B(Xi(0), rK,η)| � 5πK

(1 + η
1 − η

)2
ankn, (11)

where an is a root of H(an) = log n/(5πK
(1 + η
1 − η

)2
kn).

Again by the value of K and C1, we have H(an) <
log(4/e)

5π
, and we can also verify that H(1.23) >

log(4/e)
5π

. Since H(a) is monotonously increasing on

a ∈ (1,∞), we can get 1 < an < 1.23, then there always

exists some 0 < η < 1 such that 5πK
(1 + η
1 − η

)2
an = 1.

Combing this with (11), we have

max
i
|Xn(0) ∩ B(Xi(0), rK,η) | � kn, w.h.p. �

From now on, when we refer to rK,η, it means the
same as that in Lemma 3. Next, we define a new graph
based on the agents’ initial positions.

Definition 3

GK = Gn,kn,K := G(Xn(0),EK),

where

EK = En,kn,K

:= {(i, j) : Xj(0) ∈ Xn(0) ∩ B(Xi(0), (1 − η)rK,η)}.

Remark 2 Evidently, GK is undirected. By the con-
struction of rK,η, it can be seen that (1 − η)rK,η =√

5Kkn

n
=
√

5an,K, which is equal to the diagonal line

length of two adjacent small squares as depicted in
Fig. 2. We also provide an example of GK with n =
21, kn = 5 in Fig. 3.

Fig. 3 Here is an example of G(0) and GK with n = 21 and
kn = 5. We use arrows (both red and blue dotted arrows)to
represent edges in E(0), which are defined according to the
5-nearest-neighbor rule, where double arrows represent the
mutual neighbor relationship and one-way arrows represent
the unidirectional neighbor relationship. When two agents’
distance is smaller than

√
5an,K, then there is a red double

arrow between them which belong to EK.

Throughout the sequel, let kn > C1 log n. Fix K∗ =
1/(5π · 1.23) and η∗ such that Lemma 3 holds. For this
K∗, we can also find some μ∗ ∈ (0, 1) such that Lemma 1
holds. And the variables Ln,K∗ , rK∗,η∗ are as defined in the
above. The following Lemmas 4-8 are all based on this
premise.

Lemma 4 Suppose that kn > C1 log n, then w.h.p.
GK∗ ⊂ G(0) and GK∗ is connected.

Proof According to Lemma 3, we obtain that w.h.p.

∀i, |Xn(0) ∩ B(Xi(0), (1 + η∗)rK∗,η∗ ) | � kn.

Then by kn-nearest-neighbor rule, we have w.h.p.

∀i, Xn(0) ∩ B(Xi(0), (1 + η∗)rK∗,η∗) ⊂ Ni(0). (12)

Pick arbitrary (i, j) ∈ EK∗ , by the construction of EK∗ , it
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can be seen that

dij(0) = ‖Xi(0) − Xj(0)‖2 �
√

5an,K∗

= (1 − η∗)rK∗,η∗ < (1 + η∗)rK∗,η∗ . (13)

Combining (13) with (12), we can obtain that w.h.p. for
arbitrary i, j,

j ∈ Ni(0),

which means

(i, j) ∈ E(0).

Then we have EK∗ ⊂ E(0) w.h.p., which is followed by
GK∗ ⊂ G(0) w.h.p.

Now we prove the connectivity ofGK∗ . Notice thatGK∗

is actually a standard random geometric graph with ra-

dius
√

5an,K∗ =

√
5K∗kn

n
=

√
5K∗πkn − log n + log n

πn
.

And it has been proved in [33] that the random geomet-

ric graph with radius
√

cn + log n
πn

will be connected

w.h.p., if and only if cn → ∞. Hence, GK∗ is connected
w.h.p., by the fact that K∗kn > 1/ log(4/e). �

Lemma 5 Assume that there exists a virtual vertex
vi

n,K∗ in the center of each square Si
n,K∗ , i = 1, 2, . . . ,Mn,K∗ ,

and a virtual edge (vi
n,K∗ , v

j
n,K∗) if either i = j or ‖vi

n,K∗−
vj

n,K∗ ‖2 = an,K∗ . Then for arbitrary i, j, the number of vir-
tual undirected paths with length 2(Ln,K∗ −1) joining vi

n,K∗

and vj
n,K∗ is not smaller than CLn,K∗

2(Ln,K∗ −1).

The proof of Lemma 5 is given in the appendix.
Let MK∗ be the adjacency matrix of the graph GK∗ , we

have:
Lemma 6 Suppose that kn � C1 log n, then

(MK∗)2(Ln,K∗ −1)

� CLn,K∗
2(Ln,K∗ −1)((1 − μ∗)K∗kn)2(Ln,K∗ −1)−111τ, w.h.p.

where 1 is all 1’s vector.

Proof For any i, j, (MK∗)
2(Ln,K∗ −1)
i j represents the to-

tal number of paths from agent i to agent j in GK∗

with length 2(Ln,K∗ − 1). Assume that i and j locate in
Sli

n,K∗ and Slj

n,K∗ , respectively. From Lemma 5, the total
number of virtual undirected path from vli

n,K∗ to vlj

n,K∗

with length 2(Ln,K∗ − 1) is at least CLn,K∗
2(Ln,K∗ −1). And by

Lemma 1, each virtual directed path can be substituted

by ((1−μ∗)K∗kn)2(Ln,K∗ −1)−1 real paths inGK∗ w.h.p., which
derives Lemma 6 immediately. �

Lemma 7 Suppose that kn > C1 log n. If GK∗ ⊂ G(s)
on s ∈ Z+ ∩ [t + 1, t + 2(Ln,K∗ − 1)], then w.h.p.,

P(t + 2(Ln,K∗ − 1)) × . . . × P(t + 1)

� CLn,K∗
2(Ln,K∗ −1) ×

1
kn

((1 − μ∗)K∗)2(Ln,K∗ −1)−111τ.

Proof By the assumption that GK∗ ⊂ G(s), we have
M(t) � MK∗ on s ∈ Z+ ∩ [t + 1, t + 2(Ln,K∗ − 1)].
Then Lemma 7 can be derived immediately noting that

P(t) =
1
kn

M(t). �

Corollary 1 Under the same condition of Lemma 7,
the following inequality holds w.h.p.:

P(t + 2(Ln,K∗ − 1)g) × . . . × P(t + 1) �
1
kn

C
√

n
kn ,

where C ∈ (0, 1) is a computable constant only depend-
ing on K∗, η∗, μ∗.

Proof As n → ∞, Ln,K∗ = Θ
(√ n

log n

)
→ ∞, there-

fore CLn,K∗
2(Ln,K∗ −1) � 2(Ln,K∗ −1). Plus the fact that Ln,K∗ =√

n
K∗kn

, the inequality can be obtained immediately. �

Lemma 8 Suppose that kn > C1 log n. If for any i � j
and t ∈ [0,T] ∩Z+, the following inequality holds:

| dij(t) − dij(0) |< η∗rK∗,η∗ , (14)

then w.h.p. GK∗ ⊂ G(t) for all t ∈ [0,T] ∩Z+.
The proof of Lemma 8 is similar to that of Lemma 3.3

in [22], so we omit it due to space limitation.
Now we are ready to prove Theorem 1 i).
Proof of Theorem 1 i) Set Δt := max

i, j
{θi(t) − θ j(t)}.

By the heading iteration (4), it can be seen immediately
that Δt is monotonously decreasing with respect to t.
Now we prove that w.h.p. Δt is exponentially decreas-
ing, that is,

∀s, Δs·2(Ln,K∗ −1) �
(
1 − n

kn
C
√

n
kn

)s
Δ0, w.h.p., (15)

where C ∈ (0, 1) is defined in Corollary 1.
The main idea to prove (15) is that once vn is mod-

erately small, GK∗ , as a subgraph of G(0), can be main-
tained as the associated dynamical position graphs G(t)
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evolve, therefore a generic “convergence factor” of the
corresponding stochastic matrices can be estimated only
with respect to GK∗ , then the convergence speed of Δt

can be computed. To this end, we need not only to ver-
ify the connectivity of position graphs but also to prove
the headings’ consensus at the same time on a bounded
period of time and then repeat the process again and
again. Similar proof line has been presented in [22], and
we omit the details for saving space. �

4.2 Analysis of Theorem 1 ii)

In this part we will give the proof of Theorem 1 ii).
To achieve this, we still focus on investigating the initial
position graph G(0) and try to find moderately small kn

such that G(0) is disconnected.
Some new notations are introduced first. In subse-

quent paper, letL(A) denote the area for the set A ⊂ R2.
For a point x ∈ R2 and a set S ⊂ R2, the distance and
the biggest distance between x and S are denoted by
d(x,S) := inf

y∈S
‖x − y‖2 and dia(x, S) := sup

y∈S
‖x − y‖2, re-

spectively. Pick λ > 0 arbitrarily, we write Po(λ) for
any Poisson random variable with parameter λ. Define
a Poisson point processPλ byPλ := {Y1,Y2, . . . ,YPo(λ)},
where {Y1,Y2, . . . } is the set of points independently and
uniformly distributed in [0, 1]2 and Pλ is independently
of {Y1,Y2, . . . }. For a set A ⊂ [0, 1]2, |Pλ∩A|, the number
of points lying in A is a Poisson random variable with
parameter λL(A). For any two sets A1,A2 ⊆ [0, 1]2,
if L(A1 ∩ A2) = 0, then the random variables |Pλ ∩ A1|
and |Pλ∩A2| are mutually independent. This property is
called spatial independence of a Poisson point process.

The following lemma will be useful.
Lemma 9 [31] Let A1, . . . ,Ar be disjoint regions

of R2 and ρ1, . . . , ρr � 0 be real numbers such that
ρiL(Ai)λ ∈ Z+, where λ > 0. Then the probability that a
Poisson process with intensity λ has precisely ρiL(Ai)λ
points in each region Ai is

exp{ r∑
i=1

(ρi − 1 − ρi logρi)λL(Ai)

+O(r log+
∑
λρiL(Ai))},

with the convention that 0 log 0 = 0, and log+ x =
max(log x, 1).

We redivide [0, 1]2 as followes: let [0, 1]2 be divided

equally into Mn,K :=
⌈√ n

K log n

⌉2
small squares with

side length

an,K =

√
K log n

n
and Ln,K =

⌈ 1
an,K

⌉
=
⌈√ n

K log n

⌉
,

where K > 0 is a tunable parameter. The small squares
are labeled as Si

n,K, i = 1, 2, . . . ,Mn,K, from left to right,
and from bottom to top. Now we construct some spe-
cial position configurations, whose uses will be showed
later.

Definition 4 (Trapεr0
) We call the configuration in

Fig. 4 a Trapεr0
. It is a semi-disk D with center on x-axis

and radius 5r0, which is located in one of the bottom
squares, i.e., some Si

n,K, where i = 1, . . . ,Ln,K, r0 is pend-
ing. Inside D, A1 is a concentric semi-disk with radius
r0, and A2 is a concentric semi-annulus with radii r0 and
3r0. The remaining region of D is denoted by A, which
is divided into N − 2 small regions, i.e., A =

⋃
3�i�N

Ai,

with each Ai of diameter at most εr0.

Fig. 4 A Trapεr0
is a semi-disk D with center on x-axis and

radius 5r0. Inside D, A1 is a concentric semi-disk with radius
r0, and A2 is a concentric semi-annulus with radii r0 and 3r0.
The remaining region of D is denoted by A, which is divided
into N − 2 small regions, i.e., A =

⋃
3�i�N

Ai, with each Ai of

diameter at most εr0.

Definition 5 (the smallest cover in Trapεr0
) For any

region D′ ⊂ A, define

AD′ =
⋃

3�i�N,Ai∩D′�∅
Ai (16)

as D′’s smallest cover in Trapεr0
, see Fig. 5.
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Remark 3 It can be deduced immediately that
L(AD′ ) =

∑
Ai⊂AD′

L(Ai) and L(D′) � L(AD′ ). See Fig. 5.

Fig. 5 ADx∩A is the region with the red boundary, which is
composed of all the Ai intersecting with Dx ∩ A.

Definition 6 (k-filling event) We say a k-filling event
occurs in Trapεr0

if i) |A1 ∩Xn(0)| � k, ii) |A2 ∩Xn(0)| = 0
and iii) for arbitrary point x ∈ A, |ADx∩A ∩ Xn(0)| � k,
where Dx := B(x, r − (1 + ε)r0) and r is the distance
between x and the center of D. See Fig. 6.

Fig. 6 A k-filling event occurs in Trapεr0
if (i) |A1 ∩ Xn(0)| � k,

(ii) |A2 ∩ Xn(0)| = 0 and (iii) for arbitrary point x ∈ A,
|ADx∩A ∩ Xn(0)| � k, where Dx := B(x, r − (1 + ε)r0) and r
is the distance between x and the center of D.

Remark 4 Intuitively, (iii) guarantees that the points
in A are relatively uniform with the “average density” in
each ball Dx being larger than k.

Lemma 10 For some ε and r0, if a kn-filling event
occurs in a Trapεr0

, then under kn-nearest-neighbor rule,
G(0) is disconnected.

Now for the bottom row squares of [0, 1]2: {Si
n,K, i =

1, 2, . . . ,Ln,K}, where K >
1

log(4/e)
, define the event

Ei
n :={Si

n,K contains a Trapεr0
, in which

a kn-filling event occurs}

and another event

Ẽi
n :={Si

n,K contains a Trapεr0
, in which

|A1 ∩ Xn(0)| = 2ρL(A1) � kn, |A2 ∩ Xn(0)| = 0,
|Ai ∩ Xn(0)| = ρL(Ai), 3 � i � N}.

Intuitively, 2ρ and ρ represent a kind of “densities” in
A1 and A, respectively, and the value of ρ can be chosen
arbitrarily. Then we have

Lemma 11 For small enough ε, the following asser-
tion holds:

Ẽi
n ⊂ Ei

n.

Set λn
1 := n−n

3
4 and λn

2 := n+n
3
4 . LetPλn

1
andPλn

2
de-

note Poisson point processes in [0, 1]2 with parameters
λn

1 , λ
n
2 , respectively. Define the event

Fi
n :={Si

n,K contains a Trapεr0
, in which

|A1 ∩ Pλn
1
| = 2ρL(A1) � kn, |A2 ∩ Pλn

2
| = 0,

|Ai ∩ Pλn
1
| = ρL(Ai), 3 � i � N}.

Then we can get the following two lemmas:
Lemma 12

Pr(
Ln,K⋃
i=1

Ẽi
n) � Pr(

Ln,K⋃
i=1

Fi
n) − 2e−n1/4

. (17)

Lemma 13 If kn < C2 log n with C2 = (2(log
25
9
+

8 log
25
18

))−1, then for n large enough,
⋃

1�i�Ln,K

Ei
n happens

with probability 1.

The proofs of Lemma 10-Lemma 13 are given in the
appendix.

Proof of Theorem 1 ii) In Lemma 13, we have
proved that under the condition kn < C2 log n and n
large enough, at least one of the bottom row squares
contains a Trapεr0

, in which a kn-filling event occurs.
Hence, we set the initial headings of the agents in A1 to
be −π

2
, and the others to be π

2
. For such case, the sys-

tem cannot achieve consensus regardless of the value
of vn, which completes the proof. �

Remark 5 The idea stems from [21] but has a key
difference rooted in the different interaction rules, and
a much more complicated way is needed in our case to
construct the disconnected component. The design of
the kn-filling event is partially inspired by [31], however
we demand the configuration occur along the border of
the [0, 1]2 due to the headings’ specific configuration,
while [31] does not, which makes construction design,
connectivity analysis and probability computation quite
different.
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5 Simulations

In this section, we provide a simulation example.
Here, we take the population as n = 5000, and set the
neighbors number kn = 80 log n. The initial positions
and headings of the n agents are mutually indepen-
dent, with positions and headings uniformly and inde-
pendently distributed in [0, 1]2 and (−π, π], respectively.
Fig. 7 shows how the probability of consensus changes
with moving speed. From this simulation, we see that
if the speed is small, the system can achieve consensus
with high probability, and the probability of consensus
will tend to small as the speed increases.

Fig. 7 Simulation example.

6 Conclusions

Most of the existing literature on flocks is concerned
with interaction rules that are based on geometric dis-
tance in nature. In this paper, we have investigated a
rather different class of flocks with k-nearest-neighbor
rule. Such a topological distance-based interaction rule
has been validated by biologists and verified to be robust
with respect to disturbances.By overcoming the math-
ematical difficulties concerning with connectivity of the
underlying nonlinear flocking dynamical systems, and
with non-symmetry of the underlying dynamical topol-
ogy resulted from the used directed k-nearest-neighbor
rule, we are able to establish that the minimum number
of neighbors kn needed for consensus is of the order
O(log n) for large population with size n. It goes with-
out saying that this nice result may have meaningful
implications in many related fields including biology,
communication and social networks. For further inves-
tigation, it is desirable to shrink the “gap” between the
two constants in our main theorem, and to extend the
results to more complicated anisotropic updating rules.
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Appendix
Proof of Lemma 5 In the following proofs, we will get rid

of the subscripts from all the variables vi
n,K∗ , Si

n,K∗ ,Ln,K∗ for the
sake of convenience.

For arbitrary two virtual vertices vj and vk, we can construct
an undirected path with length 2(L−1) joining vj and vk. With-
out loss of generality, assume that vj lies on the left of vk as

illustrated in Fig. a1. We begin from vj and select virtual edges
on the straight line from left to right until we arrive at right
above or below vk, then we select virtual edges on the straight
line from top to bottom or bottom to top. By such method,
the length of the virtual path from vj to vk is not larger than
2(L − 1). If the length is strictly smaller than 2(L − 1), then we
add a number of loops (vk, vk) to lengthen it. It worth men-
tioning that the loops play an important role in the proof to
be seen later. Now we prove the number of such undirected
paths is not smaller than CL

2(L−1) in two situations:

Fig. a1 The construction of virtual vertexes and edges.

i) vj and vk lie in the opposite corners of [0, 1]2 respectively,
for example, vj lies in the bottom-left square and vk lies in
the top-right square. We use a walk sequence from vj to vk to
represent a path. In order to arrive at vk exactly at the 2(L−1)-
th walk, each walk has to be either from left to right or from
bottom to top, denoted as “→” and “↑”, respectively, and a
path is determined only by the order of→ and ↑ ( For example,
“→→ · · · ↑↑” and “→↑ · · · →↑” represent different paths). For
the walk sequence in demand, the number of → should be
(L − 1), and so is the number of ↑. As a result, we can choose
(L− 1) walks as→ among the total walks and the others as ↑,
with the combinatorial number CL−1

2(L−1).
ii) vj and vk do not lie in the opposite corners of [0, 1]2.

Assume that their coordinates are ( j1a − 1
2

a, j2a − 1
2

a), (k1a −
1
2

a, k2a − 1
2

a) respectively, where a is the side length of the
square Si. Then from the construction of virtual vertices,
we can deduce that |k1 − j1|, |k2 − j2| are both integers and
min{|k1 − j1|, |k2 − j2|} < L − 1. In such case, in order to arrive
at vk at exactly the 2(L− 1)-th walk, each walk may have more
choices to move, not only to right and top but also to left,
bottom and itself, denoted as “←”, “↓” and “�” respectively.
For convenience, we denot →,← as ↔, and ↑, ↓ as �. Now
assume that L − 1 is even without loss of generality:
� If j1 − k1 and j2 − k2 are both even, then let the walk se-

quence from vj to vk contain exactly (L − 1)↔ and (L − 1) �,
therefore the combinatorial number is CLn−1

2(Ln−1). Now the prob-
lem is converted into a new one that whether vj can arrive at
vk through exactly L−1↔ and L−1 �. Since L−1 is also even,
such a walk sequence can be constructed easily: it first takes
k1 − j1 → from vj to vp, and then L − 1 − (k1 − j1) walks from
vp to vp with → and ← alternating, next takes k2 − j2 ↑ from
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vp to vk, and finally L − 1− (k2 − j2) walks from vk to vk with ↑
and ↓ alternating, See Fig. a1.
� If j1 − k1 is even and j2 − k2 is odd, let the walk sequence

contain exactly (L − 1)↔ and (L − 1) � and�, then the com-
binatorial number is CL−1

2(L−1) as expected. Such path can be
constructed similarly to the design above: it takes L − 1 ↔
from vj to vp just the same as above, and then take L − 2 �
from vp to vk because L−1 is odd, finally we can add a� from
vk to vk.
� If j1 − k1 is odd while j2 − k2 is even, then the combina-

torial number of the walk sequences is CL−1
2(L−1) using the same

analysis as above.
� If j1 − k1 and j2 − k2 are both odd, let the walk sequence

contain exactly L ↔ and (L − 2) �, then the combinatorial
number is CL

2(L−1). �

Proof of Lemma 10 For any x ∈ A with distance r
from D’s center, d(x,A1) = r − r0. Now we claim that
dia(x,ADx∩A) < r − r0. Pick arbitrary Ai ⊂ ADx∩A, if Ai ⊂ Dx,
then from the construction of Dx, we have dia(x,Ai) �
r − (1 + ε)r0 < r − r0 immediately; If Ai � Dx, then a por-
tion of Ai is outside Dx, since the diameter of Ai(3 � i � N)
is at most εr0, then dia(x,Ai) < r − (1 + ε)r0 + εr0 < r − r0.
Hence, the points in ADx∩A are closer to x than the points in
A1. Since |ADx∩A ∩Xn(0)| � kn by (iii), then the neighbors of x
all lie inADx∩A ⊂ A. Notice that |A1∩Xn(0)| � kn, then for any
point in A1, its neighbors all lie in A1 itself, which makes no
edge between A1 and A, therefore G(0) is disconnected. �

Proof of Lemma 11 By the definition of Ẽi
n, it is obvious

that the conditions i) and ii) of Definition 6 are satisfied, and
it remains to check condition iii) of Definition 6.

Pick any x with r = 3r0 and ε small enough, thenL(Dx∩A) �
(1/2 + δ)L(Dx) for some δ > 0, independent of ε. Hence for
sufficiently small ε,

L(Dx ∩A) � (
1
2
+ δ) · 1

2
π[(2 − ε)r0]2 >

1
2
πr2

0 � 2L(A1). (a1)

If we move the point x radially outwards from the center of D,
the regions Dx form a nested family. ThusL(Dx∩A) � 2L(A1)
for all x.

FromADx∩A ⊃ Dx ∩A and |Ai ∩X(0)| � ρL(Ai), 3 � i � N,
we have

|ADx∩A ∩ X(0)| = ∑
Ai⊂ADx∩A

|Ai ∩ X(0)| � ρL(Dx ∩ A)

� ρ · 2L(A1) � kn,

which satisfies condition iii) of Definition 6. �

Proof of Lemma 12 Using Lemma 1.4 in [32], for large n
we can get

Pr(Xn(0) ⊆ Pλn
2
) � Pr(Po(λn

2) � n) = 1 − e−n1/4
,

Pr(Pλn
1
⊆ Xn(0)) � Pr(Po(λn

1) � n) = 1 − e−n1/4
.

Then by these two inequalities,

Pr(
Ln,K⋃
i=1

Ẽi
n)

� Pr(
Ln,K⋃
i=1

Fi
n,Pλn

1
⊂ Xn(0),Xn(0) ⊂ Pλn

2
)

� Pr(
Ln,K⋃
i=1

Fi
n) + Pr(Pλn

1
⊂ Xn(0))

+ Pr(Xn(0) ⊂ Pλn
2
) − 2

> Pr(
Ln,K⋃
i=1

Fi
n) − 2e−n1/4

.

�
Proof of Lemma 13 Now we fix the value of ρ as ρnλn

1

with ρn =
25
18
+

8
9

n3/4

n − n3/4 , then the number of points in D of
a Trapεr0

is as expected, i.e.,

2ρnλ
n
1L(A1) + 0 · L(A2) +

∑
3�i�N

ρnλn
1L(Ai)

= λn
1

∑
i�2
L(Ai) + λn

2L(A2).

Suppose that for 3 � i � N, ρnλn
1L(Ai) ∈ Z (for large enough

n and suitable ε, r0, this can be realized) and exactly ρnλn
1L(Ai)

points lie in each Ai for i � 2 , then from Lemma 9 and the
spatial independence of the Poisson point process,

Pr(Fi
n)

� Pr{|Pλn
1
∩ A1| = 2ρnλ

n
1L(A1) = kn, |Pλn

2
∩ A2| = 0,

|Pλn
1
∩ Ai| = ρnλ

n
1L(Ai), 3 � i � N}

= exp{(− log 2ρn − 8 logρn)2ρnλ
n
1L(A1)

+O(N log (2ρnλ
n
1L(A1)))}

= exp{{− log (
50
18
+

16
9

n3/4

n − n3/4 )

−8 log (
25
18
+

8
9

n3/4

n − n3/4 )}kn

+7O(N log (2ρnλ
n
1L(A1)))}

:= exp{−cnkn +O(N log kn)}, (a2)

where cn monotonously decreases and satisfies lim
n→∞ cn := c =

log
25
9
+ 8 log

25
18

.

Note that under the condition kn <
1
2c

log n = C2 log n,
there always exists some M > 0 such that for n > M,

kn <
1

2cM
log n and cn < cM. Again using the spatial inde-

pendence of the Poisson point process, we have for n >M,

Pr{( ⋃
1�i�Ln,K

Fi
n)c}

= Pr(
⋂

1�i�Ln,K

(Fi
n)c) =

∏
1�i�Ln,K

[1 − Pr(Fi
n)]

= exp(
∑

1�i�Ln,K

log[1 − Pr(Fi
n)])

� exp(− ∑
1�i�Ln,K

Pr(Fi
n))
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� exp(−
√

n
K log n

exp{− cn

2cM
log n})

� exp(− n
1
2−

cn

2cM√
K log n

),

where we have used the inequality log(1−x) � −x for x ∈ (0, 1)
and (a2). Combing this with Lemmas 11 and 12,

Pr{( ⋃
1�i�Ln,K

Ei
n)c} � Pr{( ⋃

1�i�Ln,K

Ẽi
n)c}

� Pr{( ⋃
1�i�Ln,K

Fi
n)c} + 2 exp(−n1/4)

� exp(− n
1
2− cn

2cM√
K log n

) + 2 exp(−n1/4),

which is followed by

∞∑
n=M

Pr{( ⋃
1�i�Ln,K

Ei
n)c} < ∞. (a3)

From Borel-Cantelli theorem, (a3) means that

Pr{( ⋃
1�i�Ln,K

Ei
n)c happens infinitely often} = 0,

which completes the proof of Lemma 13.
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