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Abstract
In this paper, a bias-eliminated subspace identification method is proposed for industrial applications subject to colored

noise. Based on double orthogonal projections, an identification algorithm is developed to eliminate the influence of colored
noise for consistent estimation of the extended observability matrix of the plant state-space model. A shift-invariant approach is
then given to retrieve the system matrices from the estimated extended observability matrix. The persistent excitation condition
for consistent estimation of the extended observability matrix is analyzed. Moreover, a numerical algorithm is given to compute
the estimation error of the estimated extended observability matrix. Two illustrative examples are given to demonstrate the
effectiveness and merit of the proposed method.
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1 Introduction

Owing to the convenience of using a state space
model to describe a multivariable system, increasing at-
tentions [1, 2] have been devoted to state space model
identification. The state space identification methods
(SIMs) have been increasingly explored in the past two
decades owing to the robust properties and relatively
low computational complexities [1, 3, 4]. A few sub-
space identification methods have been widely recog-

nized for engineering applications with white noise, e.g.,
the canonical variate analysis (CVA) approach [5], the
multiple-input-multiple-output error state space model
identification (MOESP) method [6], the numerical sub-
space state space identification (N4SID) algorithm [7],
and the instrumental variable method (IVM) [8]. It was
pointed out [9] that the aforementioned SIMs differ from
each other by using different weighting matrices to con-
struct the instrumental variables (IVs) for consistent esti-
mation of the extended observability matrix of the plant
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state-space model. The asymptotic properties of these
identification algorithms were analyzed in [10,11].

Since there are industrial systems likely subject to col-
ored noise, e.g., harmonic signals are usually involved
with industrial electric circuits and mechanical systems,
identification of these systems with colored noise have
therefore received increasing attentions [12–14] in the
recent years. Although the existing SIMs can guarantee
consistent estimation in the presence of white noise,
biased estimation may be obtained when these SIMs
are applied to these systems due to the autocorrela-
tion between sampled output data arising from colored
noise. A feasible approach to eliminate the estimation
bias is the use of the IV technique. By taking the past
input sequence as the IV to eliminate the influence of
noise to the system output, an extended SIM named PI-
MOESP was proposed in [15] to guarantee consistent
estimation. By projecting the observed data onto the
past input sequence, an orthogonal subspace identifica-
tion method named ORT-CN was developed in [16] to
eliminate the influence of colored noise. However, this
method requires the input excitation to be a zero-mean
uncorrelated stationary sequence to ensure identifica-
tion accuracy.

In this paper, a subspace identification method based
on double orthogonal projections is proposed to realize
consistent estimation of the extended observability ma-
trix in the presence of colored noise, by projecting the
observed data onto the orthogonal complement of the
future input sequence to eliminate the influence from the
future input, and then projecting the data onto the past
input sequence to eliminate the noise effect. Compared
to the existing SIMs, e.g., PI-MOESP and ORT-CN, an im-
portant merit of the proposed method is that there is no
limit on the input correlation as long as the persistent ex-
citation condition is satisfied. Consistency analysis of the
proposed algorithm is given with a proof. Moreover, an
explicit formula of the estimation error of the extended
observability matrix is derived, which can be easily used
to evaluate the estimation errors of the system matri-
ces. Two illustrative examples are given to demonstrate
the effectiveness of the proposed method. The paper is
organized as follows. The identification problem is in-
troduced in Section 2. Section 3 gives a brief review of
the IV-4SID algorithm and then presents the proposed
method. Furthermore, the asymptotic properties of the
proposed method are analyzed in Section 4. Two illus-
trative examples are given in Section 5. Finally, some
conclusions are drawn in Section 6.

2 Problem description

Consider the following linear discrete-time invariant
state-space model:

S :

⎧⎪⎪⎨⎪⎪⎩
x(t + 1) = Ax(t) + Bu(t) + w(t),

y(t) = Cx(t) +Du(t) + v(t),
(1)

where x(t) ∈ Rnx , u(t) ∈ Rnu ,and y(t) ∈ Rny denote the
system state, input, and output vectors, respectively.
The process noise w(t) ∈ Rnu and measurement noise
v(t) ∈ Rnu are assumed to be colored noise with un-
known variance. The system matrices are denoted by
(A,B,C,D) with appropriate dimensions. The following
assumptions are considered in the paper.

A1) The system is asymptotically stable, i.e., all the
eigenvalues of A lie inside the unit circle.

A2) The pair (A,C) is observable and the pair (A,B) is
reachable.

A3) The noises w(t), v(t) and system input are statis-
tically independent of each other, i.e.,

E

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(i)

v(i)

u(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(i)

v(i)

u(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rw 0 0

0 Rv 0

0 0 Ru

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where E( · ) is the expectation operator, and where

Ru = Ē(u(t)uT(t)) = lim
N→∞

1
N

N∑
t=1

E[u(t)u(t)T]

denotes the autocorrelation matrix.
The objective of this paper is to propose a new SIM

method to estimate the system matrices based on the
measured input and output data.

Denote by p and f the past and future horizons, re-
spectively. For convenience, we assume p = f (p > nx).
Denote the stacked future and past output vectors by
yp(t) = [y(t − p)T · · · y(t − 2)T y(t − 1)T]T and y f (t) =
[y(t)T · · · y(t + f − 2)T y(t + f − 1)T]T, respectively.
Similar definitions are given for wp(t), wf (t), vp(t), v f (t),
up(t) and uf (t). By iterating the state-space model in (1),
we have

x(t − p) = Apx(t − 2p) + L1up(t − p) + L2wp(t − p), (2)
x(t) = Apx(t − p) + L1up(t) + L2wp(t), (3)
yp(t) = Γx(t − p) +Hup(t) + Gwp(t) + vp(t), (4)
y f (t) = Γx(t) +Huf (t) + Gwf (t) + v f (t), (5)
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where Γ = [CT · · · (CAf−1)T]T is the extended ob-
servability matrix. L1 = [Af−1B · · · AB B], L2 =

[Af−1 · · · A I] are the extended controllability matrices.
The lower triangular Toeplitz matrices are, respectively,

Hf =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D

CB
. . .

0
...
. . . D

CAf−2 · · · CB D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Gf =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

C
. . .

0
...
. . . 0

CAf−2 · · · C 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Suppose that there are N + p + f − 1 sampled data
and introduce the output block Hankel matrices Yp =

[yp(t) · · · yp(N)] and Yf = [y f (t) · · · y f (N)]. Simi-
lar definitions are given for Wp, Wf , Vp, Vf , Up and
Uf . Denote Xp = [x(t − p) · · · x(t − p + N − 1)] and
Xf = [x(t) · · · x(t + N − 1)]. It follows from (4) and (5)
that

Yp = ΓXp +HUp + GWf + Vp, (6)
Yf = ΓXf +HUf + GWf + Vf . (7)

3 Orthogonal projection based identifica-
tion method

First, a brief review of the well recognized IV-4SID
method is presented to explain why most of existing
SIMs are biased in the presence of colored noise. Then
the proposed identification method is given accordingly.

3.1 Brief review of the IV-4SID algorithm

The key idea of IV-4SID is to estimate the range space
of Γ. For this purpose, it eliminates both effects of the
future input and future noise from Yf . The first step is
to annihilate the input term in (7) by projecting the data
onto the orthogonal complement of Uf , i.e.,

YfΠ
⊥
Uf
= ΓXfΠ

⊥
Uf
+ GWfΠ

⊥
U f
+ VfΠ

⊥
Uf
, (8)

where Π⊥Uf
= IN −UT

f (Uf UT
f )−1Uf , and UfΠ⊥Uf

= 0.
Then, the following IV is used to annihilate the noise

term in (8),

P = [YT
p UT

p ]T. (9)

It follows that

YfΠ
⊥
Uf

PT = (ΓXfΠ
⊥
Uf
+ GWfΠ

⊥
U f
+ VfΠ

⊥
Uf

)PT. (10)

Accordingly, the range space of Γ is estimated by

performing a singluar calue decomposition (SVD) on
YfΠ⊥Uf

PT. The conditions for using the IV-4SID to guar-
antee consistent estimation for systems subject to white
noise are that lim

N→∞(GWf +Vf )Π⊥U f
PT = 0 (which means

that lim
N→∞(GWf + Vf )Π⊥Uf

PT → 0 with probability 1

(w.p.1) as N → ∞) and rank( lim
N→∞XfΠ⊥Uf

PT) = nx, as
studied in the literature [9]. However, these conditions
are not satisfied for systems with colored noise, due to
the correlation between the IV and colored noise. The
reason is analyzed as below.

The noise part in (10) can be asymptotically expressed
as

lim
N→∞(GWf + Vf )Π⊥Uf

PT

= G(rwp − rwu f R
−1
u f

ru f p) + rvp − rvuf R
−1
v f

rvp, (11)

where rvp = Ē(v f (t)pT(t)) denotes the correlation matrix
between p(t) and v f (t), where p(t) = [yT

p uT
p ]T. Similar

notations hold for rwp, rwu f , ruf p and rvuf .
If the input is a persistent excitation of order f , which

means that Ruf is positive definite [10], we have

lim
N→∞(GWf + Vf )Π⊥Uf

PT = Grwp − rvp. (12)

Substituting (2) into (4) yields

yp(t) = Γ[Apx(t − 2p) + L1up(t − p) + L2wp(t − p)]
+Hup(t) + Gwp(t) + vp(t). (13)

Then, substituting (13) into (12) yields

rwp = Ē

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wf (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t − 2p)

up(t − p)

up(t)

wp(t − p)

wp(t)

vp(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Ap]TΓT

LT
1Γ

T

HT

LT
2Γ

T

GT

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Due to the autocorrelation property of colored noise,
there are Ē(wf (t)wT

p (t)) � 0, Ē(wf (t)wT
p (t − p)) � 0,

Ē(v f (t)vT
p (t)) � 0, and Ē(v f (t)vT

p (t − p)) � 0, which indi-
cate that lim

N→∞(GWf + Vf )Π⊥Uf
PT � 0. This is the reason

why IV-4SID gives biased estimation in the presence of
colored noise.
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3.2 Proposed method

The noise effect can be removed from (10) to ob-
tain consistent estimation by projecting YfΠ⊥Uf

onto the
column space of Up, i.e.,

YfΠ
⊥
Uf
ΠUp = (ΓXf + GWf + Vf )Π⊥Uf

ΠUp , (15)

where ΠUp = UT
p (UpUT

p )−1Up denotes an orthogonal
projection matrix of Up.

Correspondingly, the noise part in (15) can be asymp-
totically expressed as

lim
N→∞(GWf + Vf )Π⊥Uf

ΠUp

= G(rwup + rvup )R−1
up

up

−G(rwu f + rvuf )R
−1
u f

ruf up R−1
up

up. (16)

If the input is a persistent excitation of order max(p, f ),
then lim

N→∞(GWf + Vf )Π⊥Uf
ΠUp = 0. We have

YfΠ
⊥
Uf
ΠUp = ΓXfΠ

⊥
Uf
ΠUp . (17)

Performing an SVD for the left-hand side of (17), we
obtain

YfΠ
⊥
Uf
ΠUp = [Û1 Û⊥1 ]

⎡⎢⎢⎢⎢⎢⎣
Σ̂1 0

0 Σ̂2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

V̂T
1

(V̂⊥1 )T

⎤⎥⎥⎥⎥⎥⎦ , (18)

where Û1 is the first nx eigenvalues of (18).
The range space of extended observability matrix Γ is

therefore obtained as

Γ̂ = Û1. (19)

With the estimated Γ̂, the estimations of Â and Ĉ can
be extracted as

Â = (J1Γ̂)†J2Γ̂, (20)
Ĉ = J3Γ̂, (21)

where J1 = [I( f−1)ny 0( f−1)ny×ny ], J2 = [0( f−1)×ny I( f−1)ny ]
and J1 = [Iny 0ny×( f−1)ny ].

The last step is to estimate B and D. By post-
multiplying (Uf )† and pre-multiplying Γ̂⊥ to both sides
of (7) and using Γ̂⊥Γ = 0, we have

Γ̂⊥Yf U†f = Γ̂
⊥H + Γ̂⊥(GWf + Vf )U†f . (22)

If the input is a persistent excitation of order f , there
is lim

N→∞ Γ̂
⊥(GWf + Vf )U†f = 0.

For abbreviation, denote

M = Γ̂⊥Yf U†f = [M1 · · · Mf ], (23)

L = Γ̂⊥ = [L1 · · · Lf ], (24)

where Mk ∈ R( f ny−nx)×nu , Lk ∈ R( f ny−nx)×ny and Γ̂⊥ = Û⊥1 .
The estimation of B and D can be extracted by

⎡⎢⎢⎢⎢⎢⎣
D̂

B̂

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1
...

Mf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 · · · Lf−1 Lf

L2 · · · Lf 0
...

...
...

Lf · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
I 0

0 J1Γ̂

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

†

. (25)

Hence, the proposed double orthogonal projections
based subspace identification method, named as 2ORT-
SIM, can be summarized as follows:

1) Eliminate the influence of the future input and col-
ored noise to the future output by using (15).

2) Calculate the SVD of the projection matrix in (18).
3) Extract the estimates of system matrices Â and Ĉ

from (20) and (21).
4) Extract the estimates of system matrices B̂ and D̂

from (25).
Remark 1 The PI-MOESP method [15] extracted

the range space of Γ by performing an SVD for
YfΠ⊥U f

PT. By reformulating YfΠ⊥Uf
ΠUp (YfΠ⊥U f

ΠUp )T =

YfΠ⊥U f
PTW1(YfΠ⊥Uf

PTW1)T where W1 = R−1/2
up

, the pro-
posed 2ORT-SIM is equivalent to PI-MOESP with the
column weighting matrix W1. As discussed in the liter-
ature [17–19], using the column weighting matrix im-
proves the estimation accuracy.

Remark 2 The ORT-SIM method [16] extracted the
range space of Γ by performing an SVD for YfΠUp .
When the input sequence is a zero-mean uncorre-
lated stationary sequence, the influence of the fu-
ture input and colored noise can be eliminated, i.e.,
lim

N→∞(HUf + GWf + Vf )ΠUp = 0, such that the estima-
tion of Γ is consistent. However, if the input sequence
is an autocorrelated sequence, the influence of the fu-
ture input cannot be eliminated, i.e., lim

N→∞HUfΠUp � 0,
leading to biased estimation of Γ.

4 Asymptotic properties

The asymptotic properties including consistency and
asymptotic error for estimating the extended observabil-
ity matrix are studied below.
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4.1 Consistent estimation

The following theorem is given for consistent estima-
tion of the extended observability matrix by using the
proposed method.

Theorem 1 Under the assumptions A1)–A3), the
proposed 2ORT-SIM algorithm gives consistent estima-
tion on Γ̂ if the input is a persistent excitation of order
p + f , i.e., there exists a non-singular matrix T with di-
mension nx × nx such that lim

N→∞ Γ̂ = ΓT.

Proof It can be seen from (17) and (18) that a con-
sistent estimate of Γ̂ can be obtained if

rank( lim
N→∞XfΠ

⊥
Uf
ΠUp ) = nx. (26)

It can be derived from (3) that

lim
N→∞XfΠ

⊥
Uf
ΠUp

= lim
N→∞(ApXp + L1Up + L2Wp)Π⊥U f

ΠUp . (27)

If p is sufficiently large and the input is a persistent
excitation of order max(p, f ), it follows

lim
N→∞(ApXp + L2Wp)Π⊥Uf

ΠUp = 0. (28)

Therefore, we have

lim
N→∞XfΠ

⊥
Uf
ΠUp = lim

N→∞ L1UpΠ
⊥
Uf
ΠUp . (29)

According to the assumptions of A1) and A2), we are
sure that L1 is a full row rank matrix. Hence, the rank
condition in (26) is equivalent to

lim
N→∞UpΠ

⊥
U f
ΠUp > 0. (30)

Note that

UpΠ
⊥
U f
ΠUp

= [UpUT
p −UpUT

p (UpUT
p )−1UpUT

p ](UpUT
p )−1Up. (31)

If the input is a persistent excitation of order p, there
stands lim

N→∞(UpUT
p )−1Up > 0, so the consistent estima-

tion condition in (30) is equivalent to

lim
N→∞[UpUT

p −UpUT
p (UpUT

p )−1UpUT
p ] > 0, (32)

which is equivalent to

lim
N→∞

⎡⎢⎢⎢⎢⎢⎣
UpUT

p UpUT
f

U f UT
p Uf UT

f

⎤⎥⎥⎥⎥⎥⎦ > 0. (33)

In fact, it holds that

lim
N→∞

⎡⎢⎢⎢⎢⎢⎣
UpUT

p UpUT
f

U f UT
p Uf UT

f

⎤⎥⎥⎥⎥⎥⎦ = Ē
{ ⎡⎢⎢⎢⎢⎢⎣

up(t)

uf (t)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

up(t)

uf (t)

⎤⎥⎥⎥⎥⎥⎦
T }
. (34)

If the input is a persistent excitation of order p+ f , the
condition in (30) can surely be satisfied. This completes
the proof. �

4.2 Estimation error

The true estimation of Γ can be computed from an
SVD as following,

ΓXfΠ
⊥
Uf
ΠUp = [U1 U⊥1 ]

⎡⎢⎢⎢⎢⎢⎣
Σ1 0

0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

VT
1

(V⊥1 )T

⎤⎥⎥⎥⎥⎥⎦ . (35)

Obviously, it can be simply taken as

Γ = U1. (36)

Since the estimated extended observability matrix Γ̂ is
computed from YfΠ⊥U f

ΠUp as shown in (17), it follows
from (18) that

YfΠ
⊥
Uf
ΠUp = Û1Σ̂1V̂T

1 + Û⊥1 Σ̂2(V̂⊥1 )T. (37)

Postmultiplying V̂1 to both sides of (37) and using
(V̂⊥1 )TV̂1 = 0 and V̂T

1 V̂1 = I, we obtain

YfΠ
⊥
U f
ΠUp V̂1 = Û1Σ̂1. (38)

Premultiplying (Û⊥1 )T to both sides of (38) and using
(15) and (Û⊥1 )TΓXfΠ⊥Uf

ΠUp = 0, we have

(Û⊥1 )TYfΠ
⊥
U f
ΠUp V̂1

= (Û⊥1 )T(GWf + Vf )Π⊥Uf
ΠUp V̂1, (39)

(Û⊥1 )TÛ1Σ̂1

= (Û⊥1 )T(U1 + δU1)Σ̂1 = (Û⊥1 )TδU1Σ̂1, (40)

where δU1 = Û1 −U1.
It follows from (38)–(40) that

(Û⊥1 )T(GWf + Vf )Π⊥Uf
ΠUp V̂1 = (Û⊥1 )TδU1Σ̂1. (41)

Substituting ÛT
1 = UT

1 + δU
T
1 and Σ̂1 = Σ1 + δΣ1 into

(41) yields

(Û⊥1 )T(GWf + Vf )Π⊥Uf
ΠUp [V1 + δV1]

= (Û⊥1 )TδU1(Σ1 + δΣ1). (42)
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Therefore,

(Û⊥1 )T(GWf + Vf )Π⊥Uf
ΠUp V1

= (Û⊥1 )TδU1Σ1 + (Û⊥1 )TδU1δΣ1

− (Û⊥1 )T(GWf + Vf )Π⊥Uf
ΠUpδV1. (43)

By omitting the second term of ((GWf +Vf )Π⊥Uf
ΠUp )2

at the right-hand side of (43), we have

δU1 = (GWf + Vf )Π⊥U f
ΠUp V1Σ

−1
1

+o((GWf + Vf )Π⊥U f
ΠUp )2), (44)

where o((GWf + Vf )Π⊥Uf
ΠUp )2) is infinitesimal when

N→∞.
Since Γ̂ = Û1 and Γ = U1, the difference between Γ̂

and its true value can be computed by

δΓ = Γ̂ − Γ = δU1. (45)

After the asymptotic error of the estimated extended
observability matrix is computed, the asymptotic errors
of the system matrices can be computed using the nu-
merical methods given in the references [20, 21]. Then
the asymptotic error of the plant transfer function matrix
can be easily computed [22].

5 Illustration

Two examples are used to demonstrate the effec-
tiveness and merit of the proposed method. One is a
benchmark example studied in the reference [23], and
the other is an injection molding process in the refer-
ence [24].

Example 1 Consider a benchmark example studied
in [23],

S :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x(t + 1) =

⎡⎢⎢⎢⎢⎢⎣
0.393 2.022

−0.208 −0.685

⎤⎥⎥⎥⎥⎥⎦ x(t)+

⎡⎢⎢⎢⎢⎢⎣
0.95

1

⎤⎥⎥⎥⎥⎥⎦u(t)+w(t),

y(t) =
[
0.326 −0.743

]
x(t) + 0.95u(t) + v(t),

where w(t) and v(t) are colored noises, which are in-
dependently generated by (1 − 0.75q−1 − 2.5q−2)/(1 −
1.5q−1 + 0.8q−2)e1(t), where e1(t) is a white noise with
variance of 0.05. For illustration, the input excitation is
taken as u(t) = ((1 − 0.8q−1 + 0.6q−2)e2(t)) where e2(t) is
a white noise with variance of 5.

One thousand Monte Carlo (MC) tests are carried
out with a data length of N = 3000 and the past and

further horizons p = f = 10. For comparison, the pro-
posed 2ORT-SIM together with PI-MOESP [15], ORT-
SIM [16] and N4SID [7] are used to estimate the sys-
tem matrices. Denote the true transfer function matrix
(TFM) by G(ejw) = C(zI − A)−1B + D and the identified
model transfer function matrix in the ith test of MC by
Ĝ(ejw) = Ĉ(zI − Â)−1B̂ + D̂. The averaged TFM magni-
tude plots are shown in Fig. 1. Fig. 2 shows the standard
deviation (Std) of model errors (i.e., G(ejw) − Ĝ(ejw) ).

Fig. 1 Magnitude plot of the identified transfer function matrix
for Example 1.

Fig. 2 Plot of the standard deviation of model error for Exam-
ple 1.

It is seen that both the proposed 2ORT-SIM and PI-
MOESP give consistent estimations, while the proposed
method gives an improved accuracy compared to PI-
MOESP. Note that the N4SID and ORT-SIM give biased
estimation. Note that the ORT-SIM can only be used to
obtain consistent estimation when the input excitation
is a zero-mean uncorrelated stationary sequence.

Furthermore, to assess the accuracy of proposed
method for estimating the asymptotic error of the ex-
tended observability matrix, the estimated errors of
(δA, δC) are computed directly from δΓ through a linear
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operation as [25],

δA = − [(J1Γ)TJ1Γ]−1[(J1Γ)TJ1δΓ + (J1δΓ)TJ1Γ]A

+ [(J1δΓ)TJ2Γ + (J1Γ)TJ1δΓ],

δC =J3δΓ.

Tables 1 shows the mean values along with the Std of
(δA, δC) by using the proposed asymptotic error estima-
tion method. The true values obtained by using the true
plant model to compute the estimation errors are also
listed in Table 1, which demonstrates the effectiveness
of the proposed estimation of asymptotic error.

Example 2 Consider an injection molding process
studied in the reference [24],

S :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x(t + 1) =

⎡⎢⎢⎢⎢⎢⎣
1.582 −0.592

1 −0

⎤⎥⎥⎥⎥⎥⎦ x(t) +

⎡⎢⎢⎢⎢⎢⎣
1

0

⎤⎥⎥⎥⎥⎥⎦ u(t) + w(t),

y(t) = [1.69 1.419]x(t) + 0.95u(t) + v(t).

Using the same input excitation as Example 1, one
thousand MC tests are carried out for model identifica-
tion. The above four methods are used again for com-
parison. The averaged TFM magnitude plots are shown
in Fig. 3. It is seen that both the proposed 2ORT-SIM and
PI-MOESP give consistent estimations, while the pro-
posed method gives an improved accuracy compared
to PI-MOESP. In contrast, the N4SID and ORT-SIM give
biased estimation. Fig. 4 shows the Stds of model errors
by using the proposed 2ORT-SIM and PI-MOESP. The

mean values along with the Stds of (δA, δC) are listed
in Table 2, well demonstrating the effectiveness of the
proposed estimation of asymptotic error.

Fig. 3 Magnitude plot of the identified transfer function matrix
for Example 2.

Fig. 4 Plot of the standard deviation of model error for Exam-
ple 2.

Table 1 Estimation error of δA and δC by using the proposed 2ORT-SIM for Example 1.

Identification errors δA δC

Proposed method

⎡⎢⎢⎢⎢⎢⎣
0.0001 ± 0.0086 0.0004 ± 0.0265

0.0002 ± 0.0121 −0.0001 ± 0.0457

⎤⎥⎥⎥⎥⎥⎦ [0.0000 ± 0.0066 0.0010 ± 0.0311]

True

⎡⎢⎢⎢⎢⎢⎣
0.0010 ± 0.0041 −0.0009 ± 0.0210

−0.0002 ± 0.0100 0.0145 ± 0.0382

⎤⎥⎥⎥⎥⎥⎦ [0.0000 ± 0.0047 0.0030 ± 0.0068]

Table 2 Estimation error of δA and δC by using the proposed 2ORT-SIM for Example 2.

Identification errors δA δC

Proposed method

⎡⎢⎢⎢⎢⎢⎣
0.0028 ± 0.0015 0.0184 ± 0.0107

0.0068 ± 0.0016 0.0153 ± 0.0171

⎤⎥⎥⎥⎥⎥⎦ [0.0004 ± 0.0006 0.0004 ± 0.0094]

True

⎡⎢⎢⎢⎢⎢⎣
−0.0007 ± 0.0010 0.0176 ± 0.0068

0.0009 ± 0.0012 0.0293 ± 0.0134

⎤⎥⎥⎥⎥⎥⎦ [−0.0002 ± 0.0001 0.0060 ± 0.0022]
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6 Conclusions

A bias-eliminated subspace identification method has
been proposed for industrial applications subject to col-
ored noise, to overcome the deficiency of existing SIMs
that could not provide consistent estimation. An iden-
tification algorithm based on double orthogonal projec-
tions is developed by using the past input sequence
rather than the output sequence to eliminate the influ-
ence of colored noise, such that consistent estimation of
the extended observability matrix can be obtained. The
persistent excitation condition for consistent estimation
of the extended observability matrix is analyzed with a
strict proof. Moreover, a numerical algorithm is given
to compute the asymptotic error of the estimated ex-
tended observability matrix, which can be easily applied
to compute the estimation errors of the system matri-
ces. The applications to two illustrative examples have
well demonstrated the effectiveness and good accuracy
of the proposed identification method.
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