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Abstract
This paper studies the leader-following consensus problem for a class of second-order nonlinear multi-agent systems subject

to linearly parameterized uncertainty and disturbance. The problem is solved by integrating the adaptive control technique and the
adaptive distributed observer method. The design procedure is illustrated by an example with a group of Van der Pol oscillators
as the followers and a harmonic system as the leader.
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1 Introduction

In the past few years, the cooperative control prob-
lems for multi-agent systems have attracted extensive
attention due to their applications in sensor networks,
robotic teams, satellite clusters, unmanned air vehicle
formations and so on. The consensus problem is one of
the basic cooperative control problems, whose objec-
tive is to design a distributed control law for each agent
such that the states (or outputs) of all agents synchronize
to a common trajectory [1–4]. Depending on whether
or not a multi-agent system has a leader, the consen-
sus problem can be divided into two classes: leaderless
and leader-following. The leaderless consensus problem
does not specify the common trajectory [2,3], while the

leader-following consensus problem requires the states
(or outputs) of all agents to track a desired trajectory
generated by a so-called leader system [4–7].

An important class of multi-agent systems is the
second-order nonlinear multi-agent systems. Recently,
considerable efforts have been made to handle the
leader-following consensus problem for various second-
order nonlinear multi-agent systems [8–13]. For exam-
ple, references [8–10] studied the leader-following con-
sensus problem for some second-order nonlinear multi-
agent systems under the assumption that the nonlinear
functions satisfy the global Lipschitz condition or global
Lipschitz-like condition. The system studied in refer-
ence [11] contains disturbance but no uncertainty. The
systems considered in [12, 13] allow both disturbance

†Corresponding author.
E-mail: jhuang@mae.cuhk.edu.hk; Tel.: +852-39438473; Fax: +852-26036002.
This work was supported by the Research Grants Council of the Hong Kong Special Administration Region (No. 14202914).

© 2016 South China University of Technology, Academy of Mathematics and Systems Science, CAS, and Springer-Verlag Berlin Heidelberg



280 W. Liu, J. Huang / Control Theory Tech, Vol. 14, No. 4, pp. 279–286, November 2016

and uncertainty, but the boundary of the uncertainty is
known.

In this paper, we will further consider the leader-
following consensus problem for a class of second-
order nonlinear multi-agent systems subject to linearly
parameterized uncertainty and disturbance. Compared
with [8–10], we do not impose the global Lipschitz con-
dition or the global Lipschitz-like condition on the non-
linear functions. Compared with [8–11], the nonlinear
multi-agent system here contains both linearly parame-
terized uncertainty and disturbance. Finally, compared
with [12, 13], our uncertainty can be arbitrarily large,
and we do not assume the uncontrolled system has an
equilibrium point at the origin.

Our distributed control law is based on a combina-
tion of the adaptive control technique and the adaptive
distributed observer method developed in [14]. It turns
out that such a control law is quite effective in dealing
with the problem studied in this paper.

The rest of this paper is organized as follows. In Sec-
tion 2, we will give our problem formulation and some
preliminaries. In Sections 3, we will give our main result.
In Section 4 we will provide an example to illustrate our
design. Finally, in Section 5, we will finish the paper with
some conclusions.

Notation For any column vectors ai, i = 1, . . . , s,
denote col(a1, . . . , as) = [aT

1 · · · aT
s ]T. ⊗ denotes the Kro-

necker product of matrices. ‖x‖ denotes the Euclidean
norm of vector x. ‖A‖ denotes the induced norm of ma-
trix A by the Euclidean norm.

2 Problem formulation

Consider a class of second-order nonlinear multi-
agent systems as follows:

⎧
⎪⎨
⎪⎩

q̇i = pi,

ṗi = f T
i (qi, pi)θi + di(w) + ui, i = 1, . . . ,N,

(1)

where qi, pi ∈ Rn are the states, ui ∈ Rn is the input,
fi(qi, pi) ∈ Rm×n is a matrix with every element being
known continuous function, θi ∈ Rm is an unknown
constant parameter vector, di(w) ∈ Rn denotes the dis-
turbance with di( · ) being some C1 function, and w is
generated by the following linear exosystem

ẇ = Sbw (2)

with w ∈ Rnw and Sb ∈ Rnw×nw . It is assumed that the
reference signal is generated by the following linear ex-

osystem

ẋ0 = Sax0, (3)

where Sa =

⎡
⎢⎢⎢⎢⎢⎣

0n×n In

Sa1 Sa2

⎤
⎥⎥⎥⎥⎥⎦ ∈ R2n×2n and x0 = col(q0, p0)

with q0, p0 ∈ Rn. Let v = col(x0,w) ∈ Rnv and S =
diag(Sa,Sb) ∈ Rnv×nv with nv = 2n + nw. Then we can
put (2) and (3) together and get the following exosystem

v̇ = Sv. (4)

System (1) and the exosystem (4) together can be viewed
as a multi-agent system of (N+ 1) agents with (4) as the
leader and the N subsystems of (1) as N followers.

Next, we introduce some graph notation which can
also be found in [15]. A digraph G = (V,E) consists
of a finite set of nodes V = {1, . . . ,N} and an edge
set E ⊆ V × V. An edge of E from node i to node j
is denoted by (i, j), where node i and j are called the
parent node and the child node of each other. Define
Ni = { j |( j, i) ∈ E}, which is called the neighbor set of
node i. The edge (i, j) is called undirected if (i, j) ∈ E im-
plies ( j, i) ∈ E. The digraphG is called undirected if every
edge in E is undirected. If the digraph G contains a se-
quence of edges of the form (i1, i2), (i2, i3), . . . , (ik, ik+1),
then the set {(i1, i2), (i2, i3), . . . , (ik, ik+1)} is called a path
of G from node i1 to node ik+1 and node ik+1 is said to be
reachable from node i1. A digraph is called connected if
there exists a node i such that any other nodes are reach-
able from node i. The weighted adjacency matrix of the
digraph G is a nonnegative matrix A = [aij] ∈ RN×N

where aii = 0 and aij > 0 ⇔ ( j, i) ∈ E, i, j = 1, . . . ,N.
On the other hand, given a matrix A = [aij] ∈ RN×N

satisfying aii = 0 and aij � 0 for i, j = 0, 1, . . . ,N, we can
always define a digraph G such that A is the weighted
adjacency matrix of the digraphG. We callG the digraph
ofA.

With respect to the plant (1) and the exosystem
(4), we can define a digraph Ḡ = (V̄, Ē) with V̄ =
{0, 1, . . . ,N} and Ē ⊆ V̄ × V̄, where the node 0 is as-
sociated with the leader system (4) and the node i, i =
1, . . . ,N, is associated with the ith subsystem of system
(1). For i = 1, . . . ,N, j = 0, 1, . . . ,N and i � j, ( j, i) ∈ Ē
if and only if ui can use the information of the jth sub-
system for control. Let Ā = [āi j] ∈ R(N+1)×(N+1) be the
weighted adjacency matrix of Ḡ. Let N̄i = { j, ( j, i) ∈ Ē}
denote the neighbor set of agent i.
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We describe our control law as follows:
⎧
⎪⎨
⎪⎩

ui = hi(qi, pi, ζi, qj, pj, ζ j, j ∈ N̄i),
ζ̇i = li(qi, pi, ζi, qj, pj, ζ j, j ∈ N̄i), i = 1, . . . ,N,

(5)

where hi and li are some nonlinear functions. A control
law of the form (5) is called a distributed control law,
since ui only depends on the information of its neighbors
and itself. Our problem is described as follows.

Problem 1 Given the multi-agent system (1), the
exosystem (4) and a digraph Ḡ, design a control law of
the form (5), such that, for any initial states qi(0), pi(0),
ζi(0) and v(0), qi(t) and pi(t) exist for all t � 0, and satisfy
lim

t→+∞(qi(t) − q0(t)) = 0 and lim
t→+∞(pi(t) − p0(t)) = 0.

Remark 1 Note that, like in [12, 13], here we as-
sume that the reference signal and the disturbance are
generated by a linear exosystem (4) called the leader.
Indeed, this formulation is more general than the case
that the disturbance di(w) is generated by an individual
exosystem for each follower.

To solve our problem, we make two assumptions as
follows.

Assumption 1 The exosystem (4) is neutrally stable,
i.e., all the eigenvalues of S are semi-simple with zero
real parts.

Assumption 2 Every node i = 1, . . . ,N is reachable
from the node 0 in the diagraph Ḡ.

Remark 2 Assumption 1 is standard and has been
used in [12]. Under Assumption 1, the exosystem (2)
can generate arbitrarily large constant signals and some
sinusoidal signals with arbitrary initial phases and ampli-
tudes, and the exosystem (3) can generate sinusoidal sig-
nals with arbitrary initial phases and amplitudes. What’s
more, under Assumption 1, given any compact set V0,
there exists a compact set V such that, for any v(0) ∈ V0,
the trajectory v(t) of the exosystem (4) remains in V for
all t � 0.

Remark 3 Assumption 2 is also a standard as-
sumption and has been used in many literatures on
cooperative control problems of multi-agent systems
[12–14, 16]. Note that Assumption 2 allows the net-
work to be directed and thus is less restrictive than that
in [11,17].

3 Main result

In this section, we will consider the leader-following
consensus problem for system (1) and exosystem (4).

We first recall the concept of the distributed observer
for the leader system developed in [16] as follows:

˙̂vi = Sv̂i + μ0

N∑

j=0
āi j(v̂ j − v̂i), i = 1, . . . ,N, (6)

where v̂0 = v, v̂i ∈ Rnv for i = 1, . . . ,N, μ0 is any
positive constant. By Theorem 1 and Remark 4 of [16],
under Assumptions 1 and 2, we have lim

t→+∞(v̂i − v) = 0,
i = 1, . . . ,N. That is why we call (6) the distributed
observer for (4).

However, a drawback of (6) is that the matrix S is used
by every follower which may not be realistic in some
applications. To overcome this drawback, an adaptive
distributed observer was further proposed in [14] as fol-
lows:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ṡi = μ1

N∑

j=0
āi j(Sj − Si),

˙̂vi = Siv̂i + μ2

N∑

j=0
āi j(v̂ j − v̂i), i = 1, . . . ,N,

(7)

where S0 = S, v̂0 = v, Si ∈ Rnv×nv , v̂i ∈ Rnv , i = 1, . . . ,N,
μ1 and μ2 are any positive constants. The adaptive
distributed observer (7) is more realistic than the dis-
tributed observer (6), since here Ṡi depends on S at the
time t iff the leader is the neighbor of the ith follower at
time t, while the matrix S is used by every follower in
(6).

Let ṽi = v̂i−v and S̃i = Si−S for i = 0, 1, . . . ,N. Then,
for i = 1, . . . ,N,

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̃Si = μ1

N∑

j=0
āi j(S̃j − S̃i),

˙̃vi = S̃iv̂i + Sṽi + μ2

N∑

j=0
āi j(ṽ j − ṽi).

(8)

Let ṽ = col(ṽ1, . . . , ṽN), v̂ = col(v̂1, . . . , v̂N), S̃ =

col(S̃1, . . . , S̃N), and S̃d = blockdiag{S̃1, . . . , S̃N}. Then
(8) can be put into the following compact form

⎧
⎪⎪⎨
⎪⎪⎩

˙̃S = −μ1(H ⊗ Inv )S̃,
˙̃v = (IN ⊗ S − μ2(H ⊗ Inv ))ṽ + S̃dv̂,

(9)

where H = [hij]N
i, j=1 with hij = −āi j for i � j and

hii =
N∑

j=0
āi j. Then we introduce the following lemma.

Lemma 1 (Lemma 2 of [14]) Under Assumptions 1
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and 2, we have

lim
t→+∞ S̃(t) = 0 (10)

exponentially and

lim
t→+∞ ṽ(t) = 0 (11)

exponentially.

Remark 4 Let ξi = Dv̂i with D = [In 0n×(n+nw)] and

ṽdi � μ2

N∑

j=0
āi j(v̂ j − v̂i). Then, by Lemma 1, we have

lim
t→+∞ ṽdi(t) = 0, (12)

lim
t→+∞(ξi(t) − q0(t)) = lim

t→+∞Dṽi(t) = 0, (13)

lim
t→+∞(ξ̇i(t) − q̇0(t)) = lim

t→+∞D ˙̃vi(t) = 0. (14)

To synthesize our control law, let

pri = DSiv̂i − α(qi − ξi), (15)

where α is a positive constant, and

si = pi − pri. (16)

Then, our control law is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui = − f T
i (qi, pi)θ̂i − di(ŵi) − kisi + ṗri,

˙̂θi = fi(qi, pi)si,

Ṡi = μ1

N∑

j=0
āi j(Sj − Si),

˙̂vi = Siv̂i + μ2

N∑

j=0
āi j(v̂ j − v̂i), i = 1, . . . ,N,

(17)

where ki is some positive constant , ŵi = [0nw×2n Inw ]v̂i,
and

ṗri = D(Ṡiv̂i + Si ˙̂vi) − α(q̇i − ξ̇i). (18)

The closed-loop system composed of (1) and (17) is
as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇i = pi, i = 1, . . . ,N,
ṗi = − f T

i (qi, pi)θ̃i + d̃i(w̃i,w) − kisi + ṗri,
˙̂θi = fi(qi, pi)si,

˙̃Si = μ1

N∑

j=0
āi j(S̃j − S̃i),

˙̃vi = S̃iv̂i + Sṽi + μ2

N∑

j=0
āi j(ṽ j − ṽi),

(19)

where θ̃i = θ̂i − θi, w̃i = ŵi − w and d̃i(w̃i,w) =
di(w) − di(ŵi). It is easy to see that d̃i(0,w) = 0 for all
w ∈ Rnw . Under Assumption 1, by Remark 2, we know
that w ∈ W for all t � 0 withW being some compact
subset of Rnw . Then, by Lemma 7.8 of [18], there ex-
ists some smooth function d̄i(w̃i) � 1 such that, for all
w ∈ W,

‖d̃i(w̃i,w)‖2 � d̄i(w̃i)‖w̃i‖2. (20)

Now we give our result as follows.
Theorem 1 Under Assumptions 1 and 2, the leader-

following consensus problem for the system composed
of (1) and (4) is solvable by the distributed control law
(17).

Proof Let

V =
1
2

N∑

i=1
(sT

i si + θ̃T
i θ̃i). (21)

Then the time derivative of V along the trajectory of the
closed-loop system (19) is given by

V̇ =
N∑

i=1
(sT

i ṡi + θ̃T
i

˙̃θi)

=
N∑

i=1
(sT

i (ṗi − ṗri) + θ̃T
i

˙̂θi)

=
N∑

i=1
(sT

i (− f T
i (qi, pi)θ̃i + d̃i(w̃i,w) − kisi)

+ θ̃T
i fi(qi, pi)si)

=
N∑

i=1
(sT

i d̃i(w̃i,w) − kisT
i si)

�
N∑

i=1
(
1
4
‖si‖2 + ‖d̃i(w̃i,w)‖2 − ki‖si‖2)

�
N∑

i=1
(−(ki − 1

4
)‖si‖2 + d̄i(w̃i)‖w̃i‖2). (22)

Choosing ki �
5
4

gives

V̇ �
N∑

i=1
(−‖si‖2 + d̄i(w̃i)‖w̃i‖2) (23)

and thus

V(t) =
� t

0
V̇(τ)dτ + c0

�
� t

0

N∑

i=1
d̄i(w̃i)‖w̃i‖2dτ + c0, (24)
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where c0 is some constant. Since, by Lemma 1, un-
der Assumptions 1 and 2, lim

t→+∞ ṽi(t) = 0 exponen-
tially which implies lim

t→+∞ w̃i(t) = 0 exponentially. Thus

lim
t→+∞

� t

0

N∑

i=1
d̄i(w̃i)‖w̃i‖2dτ exists and hence lim

t→+∞V(t) ex-

ists and is finite since d̄i( · ) is smooth and lim
t→+∞ w̃i(t) = 0

exponentially. Thus, V(t) as well as si and θ̃i, i = 1, . . . ,
N, is bounded for all t � 0. By (16) and (18), si(t) is
differentiable for all t � 0 and so is V̇(t). By (15) and
(16), we have

q̇i + αqi = si +DSiv̂i + αξi. (25)

(25) can be viewed as a stable first order linear system
in qi with a bounded input since si, Si, v̂i and ξi are all
bounded, both qi and q̇i are bounded. Therefore, from
(15) and (18), pri and ṗri are both bounded. From the
second equation of (19), ṗi is bounded. Thus ṡi = ṗi− ṗri

is also bounded. Note that

V̈ =
N∑

i=1
(sT

i (
∂d̃i(w̃i,w)
∂w̃i

˙̃wi +
∂d̃i(w̃i,w)
∂w

ẇ)

+ ṡT
i d̃i(w̃i,w) − 2kisT

i ṡi). (26)

Since si, ṡi, w, ẇ, w̃i and ˙̃wi are all bounded, we can
conclude that V̈(t) is bounded for all t � 0. Then, by
Barbalat’s Lemma, lim

t→+∞ V̇(t) = 0 and thus, from (23),
we have lim

t→+∞ si(t) = 0 for i = 1, . . . ,N. Next, by (7), (15)
and (16), we have

q̇i − ξ̇i + α(qi − ξi) = pi −D ˙̂vi + α(qi − ξi)
= si +DSiv̂i −D ˙̂vi

= si −Dṽdi. (27)

From Remark 4, under Assumptions 1 and 2, by Lemma
1, we know that lim

t→+∞ ṽdi(t) = 0. Note that equation (27)
can be viewed as a stable first order differential equation
in qi − ξi with si − Dṽdi as the input, and this input is
bounded for all t � 0 and tends to zero as t→ +∞, then
we conclude that both qi − ξi and q̇i − ξ̇i are bounded
for all t � 0 and tend to zero as t→ +∞. Together with
(13), (14) and the following equations

⎧
⎪⎨
⎪⎩

qi − q0 = (qi − ξi) + (ξi − q0),
pi − p0 = (q̇i − ξ̇i) + (ξ̇i − q̇0),

(28)

our proof is thus completed. �

4 An example

Consider the leader-following consensus problem for
a group of Vol del Pol systems as follows:

⎧
⎪⎨
⎪⎩

q̇i = pi, i = 1, 2, 3, 4,
ṗi = −θ1iqi + θ2ipi(1 − q2

i ) + di(w) + ui,
(29)

where qi, pi ∈ R, w = [w1 w2]T, d1(w) = w2
1, d2(w) = w2

2,
d3(w) = w1w2 and d4(w) = w2

1+w2
2. Clearly, system (29)

is in the form of (1) with f T
i (qi, pi) = [−qi pi(1− q2

i )] and
θi = [θ1i θ2i]T.

The exosystem is in the form of (4) with Sa =

⎡
⎢⎢⎢⎢⎢⎣

0 1

−1 0

⎤
⎥⎥⎥⎥⎥⎦

and Sb =

⎡
⎢⎢⎢⎢⎢⎣

0 0.5

−0.5 0

⎤
⎥⎥⎥⎥⎥⎦. Clearly, Assumption 1 is satisfied.

The communication graph is described by Fig. 1
where the node 0 is associated with the leader and the
other nodes are associated with the followers. Clearly,
every node i = 1, 2, 3, 4 is reachable from the node 0 in
the diagraph Ḡ and thus Assumption 2 is satisfied. From
Fig. 1, we obtain that the adjacency matrix of Ḡ is

Ā = [āi j]4
i, j=0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 1

0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

Then, by Theorem 1, we can design a distributed control
law as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui = − f T
i (qi, pi)θ̂i − di(ŵi) − 4si + ṗri,

˙̂θi = fi(qi, pi)si,

Ṡi =
N∑

j=0
āi j(Sj − Si),

˙̂vi = Siv̂i + 10
N∑

j=0
āi j(v̂ j − v̂i), i = 1, 2, 3, 4,

(31)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f T
i (qi, pi) = [−qi pi(1 − q2

i )],

ŵi = col(ŵ1i, ŵ2i) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ v̂i,

d1(ŵ1) = ŵ2
11, d2(ŵ2) = ŵ2

22,

d3(ŵ3) = ŵ13ŵ23, d4(ŵ4) = ŵ2
14 + ŵ2

24.

(32)
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si and ṗri are defined as in (16) and (18) with D =

[1 0 0 0] and α = 1.

Fig. 1 Communication graph Ḡ.

Simulation is performed with

⎧
⎪⎨
⎪⎩
θ1 = [3 4]T, θ2 = [1 3]T,

θ3 = [2 5]T, θ4 = [4 2]T (33)

and the following initial conditions:

[q1(0) p1(0)] = [4 − 3], [q2(0) p2(0)] = [3 4],
[q3(0) p3(0)] = [−2 1], [q4(0) p4(0)] = [1 − 2],
v(0) = [1 − 1 2 0]T,

v̂1(0) = [−1 2 1 − 3]T, v̂2(0) = [5 1 − 1 4]T,

v̂3(0) = [4 − 2 5 3]T, v̂4(0) = [−3 − 4 3 − 1]T,

S1(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 0 0

−1 2 0 0

0 0 2 −3

0 0 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, θ̂1(0) = [−1 2]T,

S2(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0

2 1 0 0

0 0 3 −2

0 0 5 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, θ̂2(0) = [1 − 1]T,

S3(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −2 0 0

1 −2 0 0

0 0 −2 0

0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, θ̂3(0) = [−2 1]T,

S4(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0

−2 3 0 0

0 0 2 −1

0 0 3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, θ̂4(0) = [2 − 1]T.

Fig. 2 shows the states of the leader system which are
bounded for all time t � 0. Figs. 3–6 show the estima-
tion errors of the observer for each follower. It can be
seen that all four estimations of leader’s states converge
to the leader’s states as t→ +∞.

Fig. 2 States of leader system: v = col(q0, p0,w1,w2).

Fig. 3 Estimation errors: v̂1i − q0.

Fig. 4 Estimation errors: v̂2i − p0.
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Fig. 5 Estimation errors: v̂3i − w1.

Fig. 6 Estimation errors: v̂4i − w2.

Figs. 7 and 8 further show the tracking performance
of qi and pi. As expected, the states of all followers ap-
proach the states of the leader asymptotically.

Fig. 7 Tracking errors: qi − q0.

Fig. 8 Tracking errors: pi − p0.

5 Conclusions

In this paper, we have studied the leader-following
consensus problem for a class of second-order nonlin-
ear multi-agent systems subject to linearly parameter-
ized uncertainty and disturbance. We have solved the
problem by integrating the adaptive control technique
and the adaptive distributed observer method. It is in-
teresting to further consider the case where the network
topology is switching and satisfies the jointly connected
condition.
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