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Abstract
Recently, an approach for the rapid detection of small oscillation faults based on deterministic learning theory was proposed

for continuous-time systems. In this paper, a fault detection scheme is proposed for a class of nonlinear discrete-time systems
via deterministic learning. By using a discrete-time extension of deterministic learning algorithm, the general fault functions (i.e.,
the internal dynamics) underlying normal and fault modes of nonlinear discrete-time systems are locally-accurately approximated
by discrete-time dynamical radial basis function (RBF) networks. Then, a bank of estimators with the obtained knowledge of
system dynamics embedded is constructed, and a set of residuals are obtained and used to measure the differences between
the dynamics of the monitored system and the dynamics of the trained systems. A fault detection decision scheme is presented
according to the smallest residual principle, i.e., the occurrence of a fault can be detected in a discrete-time setting by comparing
the magnitude of residuals. The fault detectability analysis is carried out and the upper bound of detection time is derived. A
simulation example is given to illustrate the effectiveness of the proposed scheme.
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1 Introduction

The design and analysis of fault detection and isola-
tion (FDI) for nonlinear systems are important issues
in modern engineering systems. In complex nonlinear

systems, the faults are often hidden among the mod-
eling uncertainties. For nonlinear systems with struc-
tured modeling uncertainties, in which the faults gen-
erated from nonlinear structure and cannot be decou-
pled from the unknown inputs. For diagnosis of non-
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linear systems with unstructured modeling uncertain-
ties and nonlinear faults, the issue is much challenging
since the faults cannot be decoupled from the unstruc-
tured modeling uncertainties. Over the past decades,
much progress has been achieved for FDI of nonlin-
ear continuous-time systems with structured and un-
structured modeling uncertainties [1–14]. In particular,
adaptive threshold approaches using neural networks
have recently received much attention for FDI of non-
linear systems with unstructured modeling uncertain-
ties [10–14]. However, only limited results has been
obtained for fault diagnosis of nonlinear discrete-time
systems [15–19]. On the other hand, due to the in-
creasing popularity of applying digital computers in en-
gineering, discrete-time systems can be more veritable
to describe practical problem in control systems than
continuous-time systems. The analysis and synthesis of
fault detection (FD) for nonlinear discrete-time systems
should be received more attention. Specifically, in [16],
based on a parametric model of the faults, compensa-
tion of the fault effect on the state prediction is achieved
via an adaptive discrete-time approach. A solution for
fault isolation and identification is also proposed by us-
ing postfault analysis. In [18], an online approximation
based fault detection and diagnosis scheme for multiple
state or output faults was proposed for a class of non-
linear multiple-input-multiple-output (MIMO) discrete-
time systems. The faults considered could be incipient
or abrupt, and were modeled using input and output sig-
nals of the system. In [19], a distributed fault detection
and isolation approach based on adaptive approxima-
tion was proposed for nonlinear uncertain large-scale
discrete-time systems. Local and global FDI schemes
were provided due to the utilization of specialized fault
isolation estimators and a global fault diagnoser.

In adaptive approximation based fault detection and
isolation of general nonlinear systems, however, con-
vergence of the employed neural network (NN) weights
to their optimal values and accurate neural network ap-
proximation of nonlinear fault functions were less inves-
tigated. Recently, a deterministic learning theory was
proposed for identification, control and recognition of
nonlinear dynamical systems exhibiting periodic or re-
current trajectories [20–22]. By using localized RBF neu-
ral networks, it is shown that almost any periodic or re-
current trajectory can lead to the satisfaction of a partial
persistent excitation (PE) condition, which in turn yields
accurate neural network approximation of the system
dynamics in a local region along the periodic or recur-
rent trajectory. Further, rapid recognition of a test dy-
namical pattern from a set of training dynamical patterns

is achieved by using the locally accurate neural network
approximation of system dynamics [21, 22]. Based on
deterministic learning theory, in [23] a FD scheme was
proposed for rapid detection of small oscillation faults
generated from nonlinear continuous-time systems. The
modeling uncertainty and nonlinear fault functions are
firstly accurately approximated via deterministic learn-
ing, and then the knowledge is utilized to achieve rapid
detection of small oscillation faults.

In this paper, a fault detection scheme is proposed
for a class of nonlinear discrete-time systems based
on deterministic learning theory. First, the internal dy-
namics underlying normal and fault modes of nonlin-
ear discrete-time systems are locally-accurately approx-
imated by discrete-time dynamical RBF networks via a
discrete-time extension of deterministic learning algo-
rithm. Second, by utilizing the knowledge of system dy-
namics obtained through deterministic learning, a bank
of estimators is constructed for the training normal and
fault modes, and by comparing the set of estimators
with the monitored system, a set of residuals are ob-
tained and used to measure the differences between the
dynamics of the monitored system and the dynamics of
the trained systems. Finally, when the monitored sys-
tem is in normal mode, the estimator corresponding to
the normal mode will yield the smallest residual. When
the monitored system is in one of the fault modes, the
residual of the fault estimator corresponding to this fault
mode will become small and the residual of the normal
estimator will become large. This means that the occur-
rence of a fault can be detected in a discrete-time setting
according to the smallest residual principle. The fault de-
tectability analysis is carried out and the upper bound
of detection time is derived. Compared with existing
results on FD for nonlinear discrete-time systems, the
main feature of this paper is that with locally-accurate
approximation of the general fault functions of nonlinear
discrete-time systems achieved via deterministic learn-
ing, the detection sensitivity to small faults of nonlinear
discrete-time systems is increased substantially.

The rest of this paper is organized as follows. Section 2
begins with the introduction of deterministic learning
theory, followed by the formulation of the problem in
Section 3. In Section 4, the modeling and representation
of the general fault function via deterministic learning
for normal and fault modes is presented. On this basis,
the detection scheme is given according to the small-
est residual principle. Simulation results are included in
Section 5. Section 6 concludes the paper.
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2 Deterministic learning theory

In this section, we briefly review deterministic learn-
ing theory, which is developed for NN identification,
recognition and control of nonlinear dynamical systems
undergoing periodic or recurrent trajectory [21, 22]. In
deterministic learning theory, identification of system
dynamics of general nonlinear systems is achieved ac-
cording to the following elements: i) employment of
localized RBF networks; ii) satisfaction of a partial PE
condition; iii) exponential stability of the adaptive sys-
tem along the periodic or recurrent orbit; and iv) locally-
accurate NN approximation of the unknown system dy-
namics.

The presented deterministic learning theory, espe-
cially the approach for identification and rapid recog-
nition of dynamical patterns, provides a solution for
the problem of rapid detection and isolation of oscil-
lation faults generated from uncertain nonlinear sys-
tems [22, 23]. The result may be further applied to
the analysis of practical problems. For instance, in [24],
an approach for approximately accurate modeling and
rapid detection of stall precursors based on determinis-
tic learning and dynamical pattern recognition was de-
veloped. The studies on Mansoux model based on low-
speed axial compressor of Beihang University were con-
ducted to show the effectiveness of the approach. Zeng
and Wang [25, 26] presented an algorithm to eliminate
the effect of walking speed for efficient gait recognition
in the lateral view. Then human gait dynamics under-
lying different individuals’ gaits across different walk-
ing speeds were locally accurately approximated using
deterministic learning. A method for electrocardiogram
(ECG) pattern modeling and recognition via determinis-
tic learning theory was also presented in [27].

2.1 RBF network and PE condition

The RBF networks can be described by

fnn(Z) =
N∑

i=1
wisi(Z) =WTS(Z), (1)

where Z ∈ ΩZ ⊂ Rq is the input vector with q be-
ing the NN input dimension, W = [w1 · · · wN]T ∈ RN

is the weight vector, N is the NN node number, and
S(Z) = [s1(‖Z − ξ1‖) · · · sN(‖Z − ξN‖)]T, with si( · ) be-
ing a radial basis function, and ξi (i = 1, . . . ,N) be-
ing distinct points in state space. The Gaussian function

si(‖Z−ξi‖) = exp[
−(Z − ξi)T(Z − ξi)

η2
i

] is one of the most

commonly used RBF, where ξi = [ξi1 · · · ξiN]T is the
center of the receptive field and ηi is the width of the
receptive field. The Gaussian function belongs to the
class of localized radial basis functions in the sense that
si(‖Z − ξi‖)→ 0 as ‖Z‖ → ∞.

It has been shown in [20–22] that for any continuous
function f (Z) : ΩZ → R where ΩZ ⊂ Rq is a compact
set, and for the NN approximator, where the node num-
ber N is sufficiently large, there exists an ideal constant
weight vector W∗ (W∗ = [w∗1 · · · w∗N]T ∈ RN), such that
for each ε∗ > 0, f (Z) =W∗TS(Z)+ε(Z), ∀Z ∈ ΩZ, where
|ε(Z)| < ε∗ is the approximation error. Moreover, for any
bounded trajectory Zζ(t) within the compact set ΩZ,
f (Z) can be approximated by using a limited number of
neurons located in a local region along the trajectory ϕζ:

f (Z) =W∗T
ζ Sζ(Z) + εζ, (2)

where Sζ(Z) = [sj1 (Z) · · · sjζ(Z)]T ∈ RNζ , with Nζ < N,
|sji | > ι ( ji = j1, . . . , jζ), ι > 0 is a small positive constant,
W∗
ζ = [w∗j1 · · · w∗jζ]

T, and εζ is the approximation error,
with

∣∣∣ |εζ| − |ε|
∣∣∣ being small.

Based on previous results on the PE property of RBF
networks [21], it is shown that for a localized RBF net-
work WTS(Z) whose centers are placed on a regular
lattice, almost any recurrent trajectory Z(t) can lead to
the satisfaction of the PE condition of the regressor sub-
vector Sζ(Z) [22].

The following definition of persistency of excitation
(PE) in discrete form provided by [28] is utilized.

Definition 1 A sequence S(k) ∈ Rn is said to be per-
sistently exciting (in N steps), if there exists N ∈ Z+, α >
0 such that

t0+N−1∑

k=t0

S(k)ST(k) � αI (3)

uniformly in t0.

2.2 Deterministic learning of discrete-time systems

The deterministic learning theory is extended to mod-
eling and control of nonlinear discrete-time systems
in [29–31].

A nonlinear discrete-time system in the following form
is considered:

X(k) = F(X(k − 1), . . . ,X(k −m); p), (4)

where X = [x1 · · · xn]T ∈ Rn is the state of the system,
which is measurable, p is a system parameter vector,
and different p will in general produce different dynami-
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cal patterns, F( · ; p) = [ f1( · ; p) · · · fn( · ; p)]T is a smooth
but unknown nonlinear vector field.

By using the following dynamical RBF network, spa-
tially localized learning for discrete-time systems is
achieved.

X̂(k) = −A(X(k − 1) − Z(k − 1)) + ŴT(k)Sk, (5)
Z(k) = −A(X(k − 1) − Z(k − 1)) + ŴT(k + 1)Sk,

where X̂(k) = [x̂1(k) · · · x̂n(k)]T ∈ Rn is the estima-
tion of state vector, X(k) is the state of system (4),
A = diag{a1, . . . , an} is diagonal matrix, |ai| < 1 is the
design constant, and ŴT(k)Sk is a RBF networks used
to approximate the unknown nonlinearity F( · ; p) of (4),
Sk = S(X(k−1), . . . ,X(k−m)), Ŵ(k) = [Ŵ1(k) · · · Ŵn(k)]
is the weight estimate, and Ŵi is updated by

Ŵi(k + 1) = Ŵi(k) + ΓiSkυi(k), (6)

where Γi = ΓT
i > 0, υi(k) =

xi(k) − x̂i(k)
1 + ST

k ΓiSk
.

The identification scheme [22] describes a method of
adjusting the NN weights Ŵ in (6) in order to satisfy

lim
k→∞

Ŵ(k) =W∗. (7)

A constant vector of neural weights is chosen as

W̄ =
1

kb − ka + 1

kb∑

k=ka

Ŵ(k) (8)

with {ka, . . . , kb} representing a time segment after the
transient process. We have that locally-accurate approx-
imation of system dynamics along the tracking orbit ϕζ
can be obtained as follows [22]:

F( · ; p) =W∗TS(ϕζ) + ε∗

= ŴTS(ϕζ) + ε1 = W̄TS(ϕζ) + ε2, (9)

where ε∗ is the ideal approximation error, ε1 is the prac-
tical approximation error for using ŴTS(ϕζ), and ε2 is
the practical approximation error for using W̄TS(ϕζ). In
deterministic learning, both convergence of partial neu-
ral network weights to their optimal values and locally-
accurate approximation of system dynamics can be
achieved. This implies that either ŴTS(ϕζ) or W̄TS(ϕζ)
is indeed capable of approximating the system dynam-
ics to the desired error level ε∗, i.e., ε1 = O(ε∗) and
ε2 = O(ε1) = O(ε∗), which ensure that ε1 and ε2 are
close to ε∗.

3 Problem formulation

Consider the following class of uncertain nonlinear
discrete-time system:

x(k + 1) = f (x(k),u(k)) + η(x(k),u(k))
+ β(k − k0)φs(x(k),u(k)), k = 0, 1, . . . , (10)

where x(k) = [x1(k) · · · xn(k)]T ∈ Rn is the state vec-
tor of the system, u(k) = [u1(k) · · · um(k)]T ∈ Rm is
the control input vector, k is the discrete-time instant.
f (x(k),u(k)) = [ f1(x(k),u(k)) · · · fn(x(k),u(k))]T is un-
known smooth nonlinear vector field representing the
dynamics of the normal model, η(x(k),u(k)) stands for
the uncertainties including external disturbances, mod-
eling errors and possibly discretization errors. The fault
β(k − k0)φs(x(k),u(k)) is the deviation in system dynam-
ics due to fault s (s = 1, . . . ,M), and β(k− k0) represents
the fault time profile, with k0 being the unknown fault
occurrence time. When k � k0, β(k − k0) = 0, and when
k � k0, β(k − k0) = 1.

The system state is assumed to be observable, and the
system input is usually designed as a function of the sys-
tem states. An assumption regarding the state and input
of nonlinear discrete-time system is given as follows.

Assumption 1 The system states x(k) are bounded
for both normal and fault modes.

The state sequence (x(k))∞k=0 of (10) with initial con-
dition x(0) is defined as the system trajectory. The tra-
jectory in normal mode is denoted as ϕ0(x(0)) or ϕ0 for
conciseness of presentation, and the trajectory in fault
mode s is denoted as ϕs(x(0)) or ϕs for conciseness of
presentation.

Assumption 2 The system trajectories for both nor-
mal and fault modes are recurrent trajectories.

Remark 1 A recurrent trajectory represents a large
set of periodic and period-like trajectories generated
from nonlinear dynamical systems, which includes peri-
odic, quasi-periodic, almost-periodic, and even chaotic
trajectories [32]. Roughly speaking, a recurrent trajec-
tory is characterized as follows [33]: given a vector
ς > 0, there exists a T(ς) > 0 such that the trajec-
tory returns to the ς-neighborhood of any point on the
trajectory within a time not greater than T(ς). A re-
markable feature of the recurrent trajectories is that,
regardless of the choice of the initial condition, for any
given ς-neighborhood the whole trajectory lies in the
-neighborhood of the segment of the trajectory corre-
sponding to a bounded time interval T(ς).
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Recurrent trajectories are common types of behaviors
for nonlinear dynamical systems, which comprise the
most important types (though not all types) of trajecto-
ries generated from nonlinear dynamical systems. Many
practical dynamical systems, such as rotating machiner-
ies [34], electronic systems [35], power systems [36],
[37], communication network [38], ECG systems [39],
etc., can exhibit such kind of trajectories or oscillations.
Therefore, this approach can be widely applied in the
practical systems. Moreover, deterministic learning the-
ory has been applied to the practical rotating machin-
ery [24], gait silhouettes [25] and ECG systems [27].

Remark 2 In this paper, the system of fault detec-
tion is investigated with observable state. In practice,
accurate measurement of all system states may not be
available. Fault detection for the nonlinear systems with
partial-state measurement can be studied by combining
the approach proposed in this paper and the approach
proposed in Chapter 7 of [22], in which deterministic
learning algorithms with partial-state measurement are
presented. Due to the limitation of space, this issue will
not be pursued in this paper. In the practical systems,
which exhibit periodic or recurrent trajectories, the state
vectors are bounded (or oscillatory). For example, the
currents of power distribution systems are oscillating in
the normal situation. When high impedance faults occur,
the oscillations will be distorted but still remain lower
than the over current thresholds [37]. Such oscillating
faults are similar to the normal behaviors and are very
difficult to be detected.

In general, the uncertainties represented by the vec-
tor field η(x(k),u(k)) is unstructured. For the design and
analysis of a detection scheme, the following assump-
tion is needed.

Assumption 3 η(x(k),u(k)) is bounded in a com-
pact region by some known function η̄x(x(k),u(k)),
i.e., ‖η(x(k), u(k))‖ � η̄(x(k),u(k)),∀(x(k),u(k)) ∈ Ω ⊂
R

n ×Rm, ∀k � 0.
When the system is in fault modes, since the fault

functions may be hidden by the uncertainties, the un-
certainties η(x(k),u(k)) and the fault functions β(k −
k0)φs(x(k),u(k)) (s = 1, . . . ,M) cannot be decoupled
from each other. The two terms are considered together
as an undivided term, and is defined as the general fault
function [23]:

ψs(x(k), u(k)) = η(x(k),u(k)) + β(k − k0)φs(x(k),u(k)),
(11)

where s = 1, . . . ,M, φs(x(k),u(k)) represents the sth

fault belongs to the set of fault functions. For simplic-
ity of presentation, the normal mode is represented
by fault mode s = 0, with φ0(x(k),u(k)) = 0, i.e.,
ψ0(x(k),u(k)) = η(x(k),u(k)).

For both normal and fault modes, combined with (11),
system (10) can be represented by

x(k + 1) = f (x(k),u(k)) + ψs(x(k), u(k)), (12)

where s = 0, 1, . . . ,M.

4 Fault detection for nonlinear discrete-
time systems

4.1 Fault modeling and representation

Construct the following discrete-time dynamical RBF
network:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x̂(k) = f (x(k),u(k)) + A(z(k − 1) − x(k − 1))

+ŴsT(k)S(x(k)),

z(k) = f (x(k),u(k)) + A(z(k − 1) − x(k − 1))

+ŴsT(k + 1)S(x(k)),

(13)

where A = diag{a1, . . . , an} is a diagonal matrix, with
0 < |ai| < 1 being design constant, x̂(k) = [x̂1(k)
x̂2(k) · · · x̂n(k)]T is the state vector of (13), x(k) =
[x1(k) · · · xn(k)]T is the state vector of system (10),
z(k) is the prediction of x̂(k). The Gaussian RBF net-
work ŴsT(k+1)S(x(k)) = [ŴsT

1 (k+1)S(x(k)) · · · ŴsT
n (k+

1)S(x(k))] (s = 0, . . . ,M) is used to approximate the gen-
eral fault function (11).

To adjust the NN weights Ŵ, the adaptive law (6) is
designed as [30].

Remark 3 The parameters of learning system, in-
cluding the adaptive law (6), constant vector of neural
weights (8) and dynamical RBF network (13), are set
according to the analytic results proposed in [22], [30]
and [40]. For example, increasing the node number will
decease the RBF approximation error, while the setting
of the RBF widths will affect the level of persistent excita-
tion, which in turn will also affect the learning capability
of the proposed scheme. The observer gain ai is small,
increasing ai will increase the convergence rate of the
estimated parameters. When ai increases to a certain
extent, increasing ai will decrease convergence rate of
the estimated parameters and deteriorates the ability of
the dynamical RBF network (13) to learn the dynamics
of the fault. Please see [40] for the detail discussion of
the relationship between ai and the learning capability
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of the deterministic learning method. The way of setting
Γi in the adaptive law (6) is similar to that of setting ai.

Lemma 1 Consider the close-loop system consist-
ing of the nonlinear discrete-time system (12), the dy-
namical RBF network (13) and the NN update law (6).
For both normal and fault modes of (12), we have that all
the signals in the closed-loop system remain bounded,
and the general fault function ψs(x(k),u(k)) of system
(12) is locally-accurately approximated along the trajec-
tory ϕs by ŴTS(ϕs) as well as by W̄TS(ϕs) (see (8)).

Proof The proof of Lemma 1 can be found in [30].
Based on the convergence result of Ŵ, we can obtain

a constant vector of neural weights W̄ according to (8),
such that

ψs(x(k),u(k)) = ŴsTS(ϕs) + ε1 = W̄sTS(ϕs) + ε2, (14)

where ε1 and ε2 are the approximation errors using
ŴsTS(ϕs) and W̄sTS(ϕs), respectively. It is clear that after
the transient process,

∣∣∣ |ε1|− |ε2|
∣∣∣ is small. In other word,

the general fault function ψs(x(k),u(k)) of system (12)
can be represented by using the constant RBF network
W̄sTS(x(k)) along the trajectory ϕs (defined in Section 3).
This representation, based on the fundamental informa-
tion extracted from the trajectory ϕs, is independent of
time [22]. It was also showed that the constant RBF
networks W̄sTS(x(k)) trained via deterministic learning
naturally have a certain ability of generalization [22].

Remark 4 In the literature of NN-based fault diag-
nosis, neural networks are used to provide powerful
modeling tools. Nevertheless, for diagnosis of general
nonlinear systems, it is very restrictive to verify a priori
that the PE condition is satisfied [14]. Consequently, it
is difficult to guarantee that the employed neural net-
works can truly approximate the system dynamics and
fault functions. In this paper, it was shown that both sys-
tem dynamics for normal and fault modes can be locally
accurately approximated through deterministic learning.
The sensitivity to small nonlinear faults is increased sub-
stantially, since the modeling uncertainties are reduced,
and locally-accurate information of nonlinear faults is
provided by using the constant NNs.

Note that the NN approximation ofψs(x(k),u(k)) is ac-
curate only in a local region along the trajectory ϕs. For
the region far away from trajectory ϕs, the general fault
function ψs(x(k),u(k)) is not learned. This reveals that
both the normal and fault modes of nonlinear discrete-
time systems can be represented by using the locally-
accurate approximation of their underlying system dy-

namics along the state trajectories. The local regionΩϕs

is described by [29]

Ωϕs := {(x(k),u(k))|dist((x(k),u(k)), ϕs) < d
⇒ |W̄sT

i Si(x(k)) − ψs
i (x(k),u(k))| < ξ∗i },

i = 1, . . . ,n, (15)

where ξ∗i = O(ε1) = O(ε2) is the approximation error
within Ωϕs , d is a positive constant. The representation
can be used in a way that whenever the NN input en-
ters the region Ωϕs again, the RBF network W̄sTS(x(k))
will provide accurate approximation to the dynamics
ψs(x(k),u(k)).

Therefore, by learning the normal system and various
fault systems, a bank of the trained system is repre-
sented by the corresponding constant RBF networks.

4.2 Fault detection

In this section, residuals generation and the fault de-
cision scheme is presented, then a rigorous detectability
analysis of the proposed detection scheme is also pro-
vided.

To be specific, the monitored system is described by

x(k + 1) = f (x(k),u(k)) + η(x(k),u(k))
+β(k − k0)φ′(x(k),u(k)), (16)

where φ′(x(k),u(k)) represents the deviation of system
dynamics due to an unknown fault.

For the monitored system (16), the general fault func-
tion is described by

ψ′(x(k), u(k)) = η(x(k),u(k)) + β(k − k0)φ′(x(k),u(k)).
(17)

By utilizing the learned knowledge about various
trained systems, a dynamical model is constructed as
follows:

x̄h(k + 1) = f (x(k),u(k)) + B(x̄h(k) − x(k))
+W̄hTS(x(k)), (18)

where h = 0, . . . ,M, x̄h(k) = [x̄h
1(k) · · · x̄h

n(k)]T ∈ Rn

is the state of the dynamical model, x(k) = [x1(k) · · ·
xn(k)]T ∈ Rn is the state of monitored system (16),
B = diag{b1, . . . , bn} is a diagonal matrix which is kept
the same for all normal and fault models, with 0 < bi < 1.
W̄hTS(x(k) is the learned knowledge of one trained sys-
tem.

By combining the monitored system (16) and the dy-
namical model (18), the following residual system is
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obtained:

x̃h
i (k + 1) = bix̃h

i (k) + (W̄hT
i Si(x(k))

−ψ′i (x(k),u(k))), i = 1, . . . ,n, (19)

where x̃h
i (k) � x̄h

i (k) − xi(k) is the state estimation error
(residual), and W̄hT

i Si(x(k)) − ψ′i (x(k), u(k)) is the differ-
ence of system dynamics between the monitored system
and the hth estimator.

The following average L1 norm of residuals is provided
for making decision:

‖x̃h
i (k)‖1 = 1

K

k−1∑

j=k−K
|x̃h

i ( j)|, k � K > 1, (20)

where K ∈ Z+ is the preset period constant of the mon-
itored system.

Based on the above mentioned average L1 norm of
residual, we have the following fault detection scheme
for a class of nonlinear discrete-time systems.

Fault detection decision scheme Compare ‖x̃s
i ‖1

with ‖x̃0
i ‖1, i = 1, . . . ,n. If, for s ∈ {1, . . . ,M}, there exists

some finite time ks and some i ∈ {1, . . . , n} such that
‖x̃s

i (k
s)‖1 < ‖x̃0

i (ks)‖1, then the occurrence of a fault is
deduced.

The absolute fault detection time instant Kd is defined
as the first time instant such that ‖x̃s

i (Kd)‖1 < ‖x̃0
i (Kd)‖1,

for some Kd � k0 and some i ∈ {1, . . . , n}, that is,
Kd � min{k : ‖x̃s

i (k)‖1 < ‖x̃0
i (k)‖1} [14]. The fault de-

tection time kd is defined as the difference between the
fault occurrence time k0 and the absolute fault detection
time Kd, i.e., kd = Kd − k0 [13,23].

Lemma 2 Consider the monitored system (16), the
fault estimator (18) and the residual system (19). For all
s ∈ {1, . . . ,M}, i ∈ {1, . . . ,n} and k ∈ [K, k0), when no
fault occurs, if the following conditions hold:

1) there exists at least one interval I = [ka, kb − 1] ⊆
[k − K, k − 1] such that

min
x(kτ),u(kτ)∈Ωϕs

∣∣∣φs
i (x(kτ),u(kτ))

∣∣∣ � 2μi, ∀kτ ∈ I, (21)

where kb > ka > 1, μi > ξ∗i ;
2) bi satisfies

0 < bi < (
ξ∗i

2μi − ξ∗i
)

l
l−l−1 , (22)

where l = kb − ka > l :=
2ξ∗i
μi − ξ∗i

K.

Then ‖x̃0
i (k)‖1 < ‖x̃s

i (k)‖1 holds for all k ∈ [K, k0).

Proof

Step 1 We prove that ‖x̃0
i (k)‖1 <

ξ∗i
1 − bi

for all
k ∈ [K, k0).

For the monitored system (16), prior to the occur-
rence of faults, the general fault function is described
by

ψ′i (x(k),u(k)) = ψ0
i (x(k),u(k)) = ηi(x(k),u(k)). (23)

In the time period K � k < k0, the error dynamics
with respect to the nominal model satisfies

x̃0
i (k + 1) = bix̃0

i (k) + [W̄0T
i Si(x(k)) − ηi(x(k),u(k)]. (24)

The solution to the above equation is

x̃0
i (k) = bk

i x̃0
i (0) +

k−1∑

j=0
bk−1− j

i [W̄0T
i Si(x( j)) − ηi(x( j),u( j)].

(25)
From (15), we have

|ηi(x(k),u(k) − W̄0T
i Si((x(k),u(k))| < ξ∗i , (26)

where ξ∗i is given by (15).
By combining (26) and 0 < bi < 1, we have

|x̃0
i (k)| < bk

i |x̃0
i (0)| + ξ∗i

k−1∑

j=0
bk−1− j

i

< bk
i |x̃0

i (0)| + ξ∗i
1 − bi

. (27)

Since xi(0) is available, we let x̄0
i (0) = 0, x̃0

i (0) = 0, then,

we have |x̃0
i (k)| < ξ∗i

1 − bi
.

Thereby, we have for all k � K > 1,

‖x̃0
i (k)‖1 < 1

K

k−1∑

j=k−K

ξ∗i
1 − bi

=
ξ∗i

1 − bi
. (28)

Step 2 We prove that ‖x̃s
i (k)‖1 >

ξ∗i
1 − bi

> ‖x̃0
i (k)‖1

for all k ∈ [K, k0).
The error dynamics with respect to the sth model sat-

isfies

x̃s
i (k + 1) = bix̃s

i (k) + [W̄sT
i Si(x(k)) − ηi(x(k),u(k)]. (29)

Thus, for kτ ∈ I,

|x̃s
i (kτ)| = |bkτ−ka

i x̃s
i (ka)

+
kτ−1∑

j=ka

bkτ−1− j
i [W̄sT

i Si(x( j))−ηi(x( j),u( j))]|. (30)
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From (15) and (21), we have

|W̄sT
i Si(x(kτ)) − ηi(x(kτ), u(kτ)|

� |φs
i (x(kτ),u(kτ))| − |W̄sT

i Si(x(kτ))
−φs

i (x(kτ),u(kτ)) − ηi(x(kτ), u(kτ)|
� 2μi − ξ∗i
> μi. (31)

Let I′ = [k′a, k′b − 1] ⊆ I with k′b − 1 > k′a and I′ be
defined as

I′ = {kτ ∈ I : |x̃s
i (kτ)| <

μi − ξ∗i
1 − bi

}. (32)

Let l, l′ denote the length of the time interval I and I′

respectively, thereby l′ = k′b − k′a > 1, l � l′.
Then, it can be proven that there at most exists one

time interval I′ and l′ �
ln

biξ∗i
2μi−ξ∗i

ln bi
.

The magnitude of |x̃s
i (kτ)| in the time interval I can be

discussed in the following cases:

1) If |x̃s
i (ka)| � μi − ξ∗i

1 − bi
, and [W̄sT

i Si(x(k))−ηi(x(k),u(k))]

has the same sign with x̃s
i (ka), then from (30) and (31),

we have

|x̃s
i (kτ)| = |bkτ−ka

i x̃s
i (ka)

+
kτ−1∑

j=ka

bkτ−1− j
i [W̄sT

i Si(x( j)) − ηi(x( j), u( j))]|

� |bkτ−ka
i x̃s

i (ka) + μi
1 − bkτ−ka

i

1 − bi
|

�
μi − (ξ∗i + ε

∗
i )

1 − bi
bkτ−ka

i +
μi

1 − bi
− μi

1 − bi
bkτ−ka

i

�
μi

1 − bi
− ξ∗i

1 − bi

=
μi − ξ∗i
1 − bi

. (33)

Thus, |x̃s
i (kτ)| �

μi − ξ∗i
1 − bi

holds for all kτ ∈ I. Therefore,
I′ = ∅ and l′ = 0.

2) If |x̃s
i (ka)| < μi − ξ∗i

1 − bi
, according to (30) and (31), we

have for all kτ ∈ I

|x̃s
i (kτ)| = |bkτ−ka

i x̃s
i (ka)

+
kτ−1∑

j=ka

bkτ−1− j
i [W̄sT

i Si(x( j)) − ηi(x( j),u( j))]|

� |μi
1 − bkτ−ka

i

1 − bi
| − |bkτ−ka

i x̃s
i (ka)|

� |μi
1 − bkτ−ka

i

1 − bi
| − |bkτ−ka

i

μi − ξ∗i
1 − bi

|

=
μi

1 − bi
− μi

1 − bi
bkτ−ka

i − μi − ξ∗i
1 − bi

bkτ−ka
i

=
μi

1 − bi
− 2μi − ξ∗i

1 − bi
bkτ−ka

i . (34)

Consider (34), if k′a = ka, then there exists a finite time
instant k′b − 1 such that

μi − ξ∗i
1 − bi

� |x̃s
i (k
′
b − 1)| � μi

1 − bi
− 2μi − ξ∗i

1 − bi
b

k′b−1−k′a
i .

(35)

Solving the above inequality for k′b yields

k′b �
ln

ξ∗i
2μi−ξ∗i

ln bi
+ 1 + k′a, (36)

which implies that

l′ = k′b − k′a �
ln

ξ∗i
2μi−ξ∗i

ln bi
+ 1 =

ln
biξ∗i

2μi−ξ∗i
ln bi

. (37)

Thus we have |x̃s
i (kb − 1)| � μi − ξ∗i

1 − bi
and |x̃s

i (k
′
b − 1)| �

μi − ξ∗i
1 − bi

, it can be proved that [W̄sT
i Si(x(k))−ηi(x(k),u(k))]

has the same sign with x̃s
i (k
′
b − 1). By using the analy-

sis result of case 1), we have |x̃s
i (kτ)| �

μi − ξ∗i
1 − bi

holds

for all kτ ∈ [k′b, kb − 1]. Therefore, I′ = [k′a, k′b − 1] and

l′ �
ln

biξ∗i
2μi−ξ∗i

ln bi
.

3) In the case that |x̃s
i (ka)| � μi − ξ∗i

1 − bi
, and

[W̄sT
i Si(x(k)) − ηi(x(k),u(k))] has a different sign with

x̃s
i (ka), if there exists a time k′a ∈ I such that |x̃s

i (k
′
a)| <

μi − ξ∗i
1 − bi

, then using analysis result of case 2), we have

I′ = [k′a, k′b − 1] and l′ �
ln

biξ∗i
2μi−ξ∗i

ln bi
. If such time k′a does

not exist, then I′ = ∅ and l′ = 0.
From the above discussion, we can summarize that

there at most exists one time interval I′ = [k′a, k′b−1] ⊆ I

and l′ �
ln

biξ∗i
2μi−ξ∗i

ln bi
.
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Thus, in light of (20), we have for all k � K > 1,

‖x̃s
i (k)‖1
=

1
K

k−1∑

j=k−K
|x̃s

i ( j)|

�
1
K

[
k′a−1∑

j=ka

|x̃s
i ( j)| +

k′b−1∑

j=k′a
|x̃s

i ( j)| +
kb−1∑

j=k′b
|x̃s

i ( j)|]

�
1
K

[
k′a−1∑

j=ka

|x̃s
i ( j)| +

kb−1∑

j=k′b
|x̃s

i ( j)|]

�
1
K

[(kb − ka) − (k′b − k′a)]
μi − (ξ∗i + ε

∗
i )

1 − bi

=
1
K

(l − l′)
μi − ξ∗i
1 − bi

�
l(μi − ξ∗i )
K(1 − bi)

. (38)

With (28) and 0 < bi < 1, (38) can be written as

‖x̃s
i (k)‖1 �

2ξ∗i
1 − bi

>
ξ∗i

1 − bi
> ‖x̃0

i (k)‖1. (39)

�
The following theorem characterizes the fault de-

tectability properties which include the fault detectabil-
ity condition and detection time.

Theorem 1 Consider the monitored system (16),
the fault estimator (18) and the residual system (19). For
some s ∈ {1, . . . ,M}, some i ∈ {1, . . . , n} and k � k0 + K,
if the following conditions hold:

1) there exists at least one interval I = [ka, kb − 1] ⊆
[k − K, k − 1] such that

|φ′i (x(kτ),u(kτ))| � 2μi, ∀kτ ∈ I, (40)

where kb > ka > 1, μi > ξ∗i .
2) bi satisfies

0 < bi < (
ξ∗i

2μi − ξ∗i
)

l
l−l−1 , (41)

where l = kb − ka > l :=
2ξ∗i
μi − ξ∗i

K.

Then,
1) the fault will be detected. i.e., there exists a finite

time ks such that ‖x̃s
i (k

s)‖1 < ‖x̃0
i (ks)‖1;

2) the upper bound on the detection time kd is given
by

k̄d = min
i∈{1,...,n}

logbi

ξ∗i K
(1 − bK

i )|x̃s
i (k0)| + K. (42)

Proof The error dynamics with respect to the nom-
inal model, after the occurrence of the fault yield the
following form:

x̃0
i (k + 1) = bix̃0

i (k) + [W̄0T
i Si(x(k)) − ψ′i (x(k), u(k)]. (43)

For any k � k0 + K, the solution to (48) is given by

x̃0
i (k) =bk−k0

i x̃0
i (k0)

+
k−1∑

j=k0

bk−1− j
i [W̄0T

i Si(x( j)) − ψ′i (x( j), u( j))]. (44)

For kτ ∈ I, using the triangle inequality and (40), we
have

|W̄0T
i Si(x(kτ)) − ψ′i (x(k),u(k))|

= |φ′i (x(kτ),u(kτ))| − |W̄0T
i Si(x(kτ)) − ηi(x(kτ),u(kτ))|

� 2μi − ξ∗i
> μi. (45)

Following the same steps in the proof of Lemma 2, let
I′ be defined as

I′ = {kτ ∈ I : |x̃0
i (kτ)| <

μi − ξ∗i
1 − bi

} (46)

and l, l′ denote the length of the time interval I and I′

respectively.
When k � k0 + T, from (38), we have

‖x̃0
i (k)‖1 = 1

K

k−1∑

j=k−K
|x̃0

i ( j)|

�
1
K

kb−1∑

j=ka

|x̃0
i ( j)| � 2ξ∗i

1 − bi
. (47)

The error dynamics with respect to the sth model sat-
isfies

x̃s
i (k + 1) = bix̃s

i (k)+ [W̄sT
i Si(x(k))−ψ′i (x(k),u(k))]. (48)

Thus, when the fault occurs, the solution to the above
equation is

x̃s
i (k) =bk−k0

i x̃s
i (k0)

+
k−1∑

j=k0

bk−1− j
i [W̄sT

i Si(x( j)) − ψ′i (x( j),u( j))]. (49)

From(15), we have

|x̃s
i (k)| � |bk−k0

i x̃s
i (k0)

+
k−1∑

j=k0

bk−1− j
i [W̄sT

i Si(x( j)) − ψ′i (x( j),u( j))]|
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< ξ∗i
k−1∑

j=k0

bk−1− j
i + bk−k0

i |x̃s
i (k0)|

<
ξ∗i

1 − bi
+ bk−k0

i |x̃s
i (k0)|. (50)

Thus, for k � k0 + K

‖x̃s
i (k)‖1 = 1

K

k−1∑

j=k−K
|x̃s

i ( j)|

<
1
K

k−1∑

j=k−K

ξ∗i
1 − bi

+
1
K

k−1∑

j=k−K
bj−k0

i |x̃s
i (k0)|

=
ξ∗i

1 − bi
+

1
K
|x̃s

i (k0)| k−1∑

j=k−K
bj−k0

i

=
ξ∗i

1 − bi
+

bk−K−k0
i (1 − bK

i )

(1 − bi)K
|x̃s

i (k0)|. (51)

From (47) and (51), we have ‖x̃s
i (k)‖1 < ‖x̃0

i (k)‖1 if

ξ∗i
1 − bi

+
|x̃s

i (k0)|
(1 − bi)K

(1 − bK
i )bk−K−k0

i <
2ξ∗i

1 − bi
. (52)

Note that the left-hand side of the aforementioned in-
equality is a decreasing function of k. This implies there
exists a finite time ks such that the aforementioned in-
equality is satisfied [23].

2) The fault detection time kd can be obtained by
solving the following equation:

|x̃s
i (k0)|

(1 − bi)K
(1 − bK

i )bk−K−k0
i <

ξ∗i
1 − bi

. (53)

Then, we obtain

k > logbi

ξ∗i + K

(1 − bK
i )|x̃s

i (k0)| + k0 + K. (54)

Since k � k0 + K, the absolute fault detection time
instant Kd satisfies

Kd < max{k0 + K, min
i=1,...,n

logbi

ξ∗i K
(1 − bK

i )|x̃s
i (k0)| + k0 + K}

< min
i=1,...,n

logbi

ξ∗i K
(1 − bK

i )|x̃s
i (k0)| + k0 + K. (55)

The proof is completed by letting kd = Kd − k0. �
Remark 5 As shown in Lemma 2 and Theorem 1, in-

creasing bi in equation (18) will improve the detectabil-
ity properties of the presented approach and decrease
the detection time. On the other hand, increasing bi re-
sults in increased stiffness of the differential equation,

which may lead to numerical problems and increase
computational time [13]. Therefore, bi should be cho-
sen sufficiently large to ensure the adequate rapidness
and sensitivity of the detection scheme.

Remark 6 K is the preset period constant of the
monitored system in equations (20)–(22). In general,
the value of K can be set as the multiples of the moni-
tored system period. The interval {ka, . . . , kb} represents
a time segment after the transient process in modeling
phase. The length of interval I = [ka, kb−1] ⊆ [k−K, k−1]
must be satisfied.

5 Simulation

To show the effectiveness and efficiency of the pro-
posed scheme, the well-known three-tank problem is
considered [41]. It contains three interconnected water
tanks, two pumps and associated valves as shown in
Fig. 1.

Fig. 1 Structure of the three-tank system under consideration.

The discrete-time model will be obtained from the
literature [14] by employing a simple forward Euler dis-
cretization, with Ts = 0.001:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = x1(k) +
Ts

A
(−q13(k) + u1(k)),

x2(k + 1) = x2(k) +
Ts

A
(q32(k) − q20(k) + u2(k)),

x3(k + 1) = x3(k) +
Ts

A
(q13(k) − q32(k)),

(56)

where k is the discrete-time instant.
The variables used in this system are given below:
xi(k): Tank i liquid level (m), and 0 < xi(k) < 0.69 m,

i = 1, 2, 3.
A: The cross section (m2) of tanks, and all the tanks

have A = 0.0154 m2.
q13(k): The fluid flow rate (m3/s) between tanks 1 and

3, q13(k) = c1Spsgn(x1(k) − x3(k))
√

2g|x1(k) − x3(k)|.
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q32(k): The fluid flow rate (m3/s) between tanks 3 and
2, q32(k) = c3Spsgn(x3(k) − x2(k))

√
2g|x3(k) − x2(k)|.

q20(k): The fluid flow of outlet rate (m3/s) from the
tank 2, q20(k) = c2Sp

√
2gx2(k).

ci: The outflow coefficients, c1 = 1, c2 = 0.8, c3 = 1.
Sp: The cross section (m2) of the connection pipes,

Sp = 5 × 10−5 m2.
g: The gravity acceleration (m/s2), g = 9.8 m/s2.
ui(k): The fluid flow of inlet rate (m3/s) from two

pumps, and 0 � ui(k) � 1.2 × 10−4 m3/s, i = 1, 2.
Moreover, ui(k) = Ψ (vi(k)), where v1(k) = −5Sp(x1(k) −
0.5) + 0.8Sp(1.5 + sin(ω1k)), v2(k) = −5Sp(x2(k) − 0.5) +
0.8Sp(1.5 + cos(ω2k)), ω1 = 0.3, ω2 = 0.3. Ψ (vi(k)) = 0
if vi < 0 or vi > 1.2 × 10−4 m3/s, Ψ (vi(k)) = vi(k) if
0 � vi � 1.2 × 10−4 m3/s.

The phase portrait of the system (56) in normal mode
is shown in Fig. 2. The state responses of the normal
mode is seen in Fig. 3.

Fig. 2 The phase trajectory of the three-tank system in space.

Fig. 3 Water levels xi(k).

5.1 Fault modes of three-tanks system

In the three-tank system simulation, the control in-
put terms ui(k) are the fluid flow of inlet rate from two
pumps. Water levels xi(k) are in oscillations. The ampli-
tudes of the oscillations are small, which are only about
0.01 m. This situation is common in practical application.
The purpose of the simulation is to show that accurate
NN approximations of the nonlinear system dynamics
can be achieved in the local regions near the system
equilibrium points. The local NN approximations are
then used to detect the faults.

We consider four types of abrupt faults, and also hy-
pothesize every type contains only one fault. The trajec-
tory of fault is close to the normal trajectory when the
fault occurs. Moreover, it is assumed that the measure-
ments of the water levels xi(k), which are influenced by
a pump fault or a leakage. The behaviour of the system
(56) in the following situations:

1) Normal mode: The system is not faulty.
In this simulation, the xi(k + 1) subsystem is consid-

ered to be unknown, i.e., state equations represent the
general fault function of normal mode.

2) Fault mode 1: Actuator fault in pump 1.
We consider a simple multiplicative actuator fault in

pump 1 by letting u′1(k) = u1(k) + (α1 − 1)u1(k), where
u1(k) is the supply flow rate in the non-fault case, and
α1 is the parameter characterizing the magnitude of the
fault. For α1 = 1, we have the non-fault situation in
pump 1, whereas α1 = 0 implies that the pump is com-
pletely faulty, in the sense that there is no flow. For this
simulation, α1 = 0.8.

3) Fault mode 2: Actuator fault in pump 2.
Analogously to the case of a fault in pump 1, we have

u′2(k) = u2(k) + (α2 − 1)u2(k), α2 = 0.8.
4) Fault mode 3: Leakage in tank 1.
We assume that the leak is circular in shape and of

cross section Sl1 = 4 × 10−5 m2. Then, the outflow rate
of the leak is q1 f = c1Sl1

√
2gx1(k) in tank 1.

5) Fault mode 4: Leakage in tank 2.
Analogously to the case of a leakage in tank 1, we

have Sl2 = 8 × 10−5 m2, q2 f = c2Sl2
√

2gx2(k).
These faults are presented only as representative ex-

amples of all the countless faults which can take place
in the system. The case of incipient faults is completely
analogous and is not addressed here for the sake of
brevity.

Consider the same initial condition is x(0) = [x1(0)
x2(0) x3(0)]T = [0.54 0.45 0.5]T. The phase portrait and
state responses of the fault modes are seen in Figs. 4–11.
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Fig. 4 The phase trajectory of the fault mode 1.

Fig. 5 Water levels xi(k) of the fault mode 1.

Fig. 6 The phase trajectory of the fault mode 2.

Fig. 7 Water levels xi(k) of the fault mode 2.

Fig. 8 The phase trajectory of the fault mode 3.

Fig. 9 Water levels xi(k) of the fault mode 3.

Fig. 10 The phase trajectory of the fault mode 4.
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Fig. 11 Water levels xi(k) of the fault mode 4.

5.2 Training phase

For the discrete-time system (56), the following dy-
namical RBF networks are employed to learn the normal
and fault modes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂i(k) = ai(zi(k − 1) − xi(k − 1))

+ŴsT
i (k)Si(x(k − 1)),

zi(k) = ai(zi(k − 1) − xi(k − 1))

+ŴsT
i (k + 1)Si(x(k − 1)),

i = 1, 2, s = 0, . . . , 4.

(57)

The RBF network ŴsT
1 S1(x(k)) with nodes N = 18 ×

11 × 28 nodes are constructed to learn the unknown
system dynamic in the first state equation in normal and
fault modes, whereas the RBF network ŴsT

2 S2(x(k)) with
the same nodes are constructed to learn the system dy-
namic in the second state equation in normal and fault
modes, s = 0, . . . , 4. The centers of RBF network evenly
spaced on [0.510, 0.580]× [0.430, 0.465]× [0.475, 0.505]
with the widths η = 0.0025. Figs. 3, 5, 7, 9 and 11 show
the NN inputs x1(k), x2(k) and x3(k) for training the nor-
mal and fault modes, respectively.

Parameters in equation (57) and the weights updated
law (6) of RBF network are chosen as a1 = a2 = 0.5,
Γ1 = Γ2 = 2, respectively. The initial condition is set as
Ŵs

i (0) = 0.
Consider the actuator fault of fault mode 1, with

the initial condition is x(0) = [x1(0) x2(0) x3(0)]T =

[0.54 0.45 0.50]T, fix the system parameter as α1 = 0.8

to generate a periodic discrete-time sequence. Using the
dynamical RBF networks (57) to learn the general fault
functions, Fig. 12 displays the trajectory of fault mode 1
and NN coverage in space.

Fig. 12 NN coverage of the fault mode 1.

Fig. 13 show that convergence of partial NN parame-
ter to their optimal values and locally accurate approxi-
mation of system dynamics are implemented in the pro-
cess of training fault modes. The learned knowledge is
stored in constant RBF networks W̄1T

1 S1(x(k)).

Fig. 13 Partial NN parameter convergence of Ŵ1
1(k).

Simulation results for training of other faults and
modes are similar to the above fault mode, and are omit-
ted here due to the limitation of space.

6 Fault detection phase

We consider two types of monitored system with
abrupt fault, and also hypothesize every type contains
only one fault.

Assume that for the monitored system 1, a fault oc-
curs at k0 = 250 steps due to the multiplicative actuator
fault in pump 1. the parameter of the fault magnitude is
α′1 = 0.85. The phase trajectory and states of the moni-
tored system 1 are shown in Figs. 14 and 15.
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Fig. 14 The phase trajectory of the monitored system 1.

Fig. 15 Water levels xi(k) of the monitored system 1.

Assume that for the monitored system 2, a leak-
age fault occurs at k0 = 250 steps with cross section
S′l1 = 5 × 10−6 m2 in tank 1. The phase trajectory and
states of the monitored system 2 are shown in Figs. 16
and 17. The process for learning other actuator and plant
faults are similar to those detecting results of the moni-
tored systems 1 and 2, and are omitted here.

Fig. 16 The phase trajectory of the monitored system 2.

Fig. 17 Water levels xi(k) of the monitored system 2.

Consider fault modes 0, 1 and 3 because of the mon-
itored fault occurs at pump 1. Three RBF NN estimators
are constructed for detecting the first state equation of
the monitored system:

x̄h
1(k + 1) = b1(x̄h

1(k) − x1(k)) + W̄hT
1 S(x(k)), (58)

h = 0, 1, 3,

whereas three RBF NN estimators are constructed for
detecting the second state equation of the monitored
system:

x̄h
2(k + 1) = b2(x̄h

2(k) − x2(k)) + W̄hT
2 S(x(k)), (59)

h = 0, 1, 3,

where x̄h
1, x̄h

2 are the state of the estimators, x1 and x2

are the state of the monitored systems. The parameter
b1 = b2 = 0.5 is designed. x̃h

1(k) = x̄h
1(k) − x1(k) and

x̃h
2(k) = x̄h

2(k) − x2(k) are the residuals.
According to (20), the average L1 norm of the residu-

als is calculated with K = 30 steps. The detection time is
yielded because of the choice of the preset period con-
stant of the monitored system (i.e., K) for calculating the
average L1 norm of the residuals.

For the first state equation of the monitored system 1,
the average L1 norm ‖x̃s

1‖1(s = 0, 1, 3) are shown in
Fig. 18. ‖x̃1

1‖1 becomes smaller than ‖x̃3
1‖1 at approxi-

mately Kd = 319 steps. It is mean that the test fault is
detected at Kd = 319 steps, and the fault detection time
kd = Kd − k0 = 69 steps.
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Fig. 18 The average L1 norm ‖x̃s
1‖1(s = 0, 1, 3) of the monitored

system 1.

For the first state equation of the monitored system
2, the average L1 norm ‖x̃s

1‖1 (s = 0, 1, 3) are shown
in Fig. 19. ‖x̃1

1‖1 becomes smaller than ‖x̃3
1‖1 at ap-

proximately Kd = 290 steps. Thus the test fault is de-
tected at Kd = 290 steps, and the fault detection time
kd = Kd − k0 = 40 steps.

Fig. 19 The average L1 norm ‖x̃s
1‖1(s = 0, 1, 3) of the monitored

system 2.

7 Conclusions

In this paper, an approach has been proposed for
fault detection of nonlinear discrete-time systems based
on the recently proposed deterministic learning the-
ory. First, the discrete-time dynamical RBF network with
an extended weight update law has been employed to
locally-accurately approximate the general fault function
(i.e., the internal dynamic) via deterministic learning.
The obtained knowledge of system dynamics has been
embedded to construct a bank of estimators, and a set of
residuals have been obtained and used to measure the
differences between the dynamics of the monitored sys-
tem and the dynamics of the trained systems. Second, a

fault detection decision scheme has been presented by
comparing the magnitude of residuals. Subsequently,
the fault detectability analysis has been carried out and
the upper bound of detection time has been derived. Fi-
nally, a simulation example has been given to illustrate
the effectiveness of the proposed scheme.

Future research effort will be devoted to address sev-
eral issues including: i) performance analysis of the pro-
posed fault detection scheme; ii) fault isolation for non-
linear discrete-time systems; iii) fault detection and iso-
lation for closed-loop discrete-time systems; iv) fault
tolerant control design for nonlinear discrete-time sys-
tems; and v) detection of simultaneous faults may occur
at the same time.
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