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Abstract
In this paper, the linear quadratic regulation problem for discrete-time systems with state delays and multiplicative noise is

considered. The necessary and sufficient condition for the problem admitting a unique solution is given. Under this condition, the
optimal feedback control and the optimal cost are presented via a set of coupled difference equations. Our approach is based on
the maximum principle. The key technique is to establish relations between the costate and the state.
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1 Introduction

Delay exists widely in areas of economics, physics,
biology, chemistry and mechanics [1]. This makes the
study of time-delay systems, which can model processes
with delay, greatly significant in both theory and applica-
tion. The research in this field includes stability and sta-
bilization [2–4], optimal control [5,6], H∞ control [7,8],
etc. As an important part of the optimal control theory,
the linear quadratic regulation (LQR) problem for time-
delay systems has been extensively studied. For exam-
ple, [9] focuses on continuous-time linear systems with

state delay. A sufficient condition for a feedback control
to be optimal is established via a set of differential equa-
tions. For other literature on this subject, see [10–12]
and references therein.

Stochastic uncertainty is another important subject
in the control theory. In practical situation, there ex-
ist various kinds of noises and disturbances. As a re-
sult, stochastic systems can characterize the real pro-
cess more accurately. Stochastic systems can be nat-
urally classified as continuous-time ones and discrete-
time ones. Continuous-time stochastic systems are usu-

†Corresponding author.
E-mail: hszhang@sdu.edu.cn.
This work was supported by the Taishan Scholar Construction Engineering by Shandong Government and the National Natural Science
Foundation of China (Nos. 61120106011, 61203029).

© 2015 South China University of Technology, Academy of Mathematics and Systems Science, CAS, and Springer-Verlag Berlin Heidelberg



L. Li, H. Zhang / Control Theory Tech, Vol. 13, No. 4, pp. 348–359, November 2015 349

ally described by Itô-type differential equations gov-
erned by Brownian motion. Systems which correspond
to the discretization of Itô-type differential equations are
those with multiplicative noises. For works concerning
stochastic control, readers are referred to [13, 14] in
continuous time and [15,16] in discrete time.

Many control problems have been studied for sys-
tems with both time delay and stochastic uncertainty
in the literature. These problems include stability and
stabilization [17, 18], estimation [19], and optimal con-
trol [20–22]. Reference [20] considers discrete-time
stochastic systems with a single input delay. By using the
stochastic maximum principle, it presents a complete
solution to the finite-horizon LQR problem. It estab-
lishes a necessary and sufficient condition for the exis-
tence of a unique optimal controller and gives an explicit
optimal controller via a Riccati-ZXL difference equation.
Reference [21] is concerned with the finite-horizon LQR
problem for continuous-time stochastic systems with
state and input delays. The optimal feedback controller is
given by a new type of Riccati equations whose solvabil-
ity is not easy to obtain. To the best of our knowledge,
previous works on the LQR problem for state-delay sys-
tems in both deterministic setting and stochastic setting
usually assume that the weighting matrix of the control
in the quadratic cost function is strictly positive definite
and only give sufficient conditions for the existence of
an optimal control; see [9], [12] and [21]. Motivated by
this, we are devoted to using the method in [20] to solve
the LQR problem for stochastic systems with multiple
state delays and aim to derive a necessary and sufficient
condition for the existence of an explicit optimal con-
trol under the condition that the weighting matrix of the
control is positive semi-definite. Readers may think that
a possible way to settle this problem is to change it into
a delay-free one by incorporating the history state into
an augmented state. However, the resultant solution is
a high-dimensional Riccati equation, which causes com-
putational burden as pointed out by [7].

The contributions of the paper lie in that a neces-
sary and sufficient condition for the LQR problem ad-
mitting a unique solution is given and under this condi-
tion, the optimal feedback control and the optimal cost
are presented in terms of coupled difference equations.
The main technique is to solve the maximum princi-
ple, which can be viewed as delayed forward (the state
equation) and delayed backward (the costate equation)
stochastic difference equations. The optimal costate is
expressed as a linear function of a finite length of state

and the corresponding coefficient matrices satisfy the
above-mentioned coupled difference equations.

The rest of the paper is organized as follows. In Sec-
tion 2, the stochastic LQR problem for state-delay sys-
tems is formulated. Section 3 presents the solution to
the problem. Section 4 provides the proof of the main
results. Section 5 uses numerical examples to illustrate
the results. Section 6 makes a conclusion. Some details
of proof are given in Appendix.

Notation R
n stands for the usual n-dimensional Eu-

clidean space; Rn×m is the space of real matrices with
order n × m; The superscript ′ means the matrix trans-
pose; I denotes the unit matrix; A symmetric matrix
M > 0 (reps. � 0) means that it is strictly positive def-
inite (reps. positive semi-definite); For a random vari-
able ξ and a σ-algebra F , E(ξ) and E(ξ|F ) represents
the mathematical expectation of ξ and the conditional
expectation of ξ with regards to F , respectively; δi, j is
the usual Kronecker function, i.e., δi,i = 1 and δi, j = 0 if
i � j.

2 Problem statement

Consider the following discrete-time system with
state delays and multiplicative noise:

xk+1 =
d∑

i=0
[Ai +

r∑

l=1
ωk(l)Āi,l]xk−i

+[B +
r∑

l=1
ωk(l)B̄l]uk, k = 0, . . . ,N, (1)

where xk ∈ Rp is the state; uk ∈ Rq is the input control;
the constant delay d is a positive integer; {x0, x−1, . . . ,
x−d} is the deterministic initial value; Ai, Āi,l,B and B̄l

with i = 0, . . . , d, l = 1, . . . , r are constant matrices with
compatible dimensions; and vk = (ωk(1) · · · ωk(r) )′ is a
r-dimensional white noise defined on a complete prob-
ability space {Ω,P,F }. The variance of vk is σ, i.e.,

E[vkv′k] = σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11 · · · σ1r
...

...

σr1 · · · σrr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rr×r, σ � 0.

Let Fk be the natural filtration generated by vk, i.e., Fk

is the σ-algebra generated by {v0, . . . , vk}.
Consider the cost function

J = E[
N∑

k=0
x′kQxk +

N∑

k=0
u′kRuk + x′N+1WxN+1], (2)
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where Q � 0, R � 0 and W � 0. Define the admissible
control set as

Uad = {uk, k = 0, . . . ,N : uk is Fk−1-measurable}. (3)

The problem to be addressed is stated as follows.
Problem 1 Find uk ∈ Uad to minimize the cost func-

tion (2) subject to system (1).

Remark 1 (1) is a discrete-time system which ad-
mits two features: one is the time delay and another is
the white noise vk. Its possible application can be found
in networked control systems (NCSs) with transmission
delay as pointed out by [17]. Moreover, a special case
of system (1) when vk is an independent Bernoulli pro-
cess is often used to describe packet dropout in NCSs;
see [23] and [24].

3 Main results

3.1 A special case: scalar noise

In this section, we will focus on a special case of sys-
tem (1) with r = 1:

xk+1 =
d∑

i=0
[Ai + ωk(1)Āi,1]xk−i + [B + ωk(1)B̄1]uk. (4)

In this context, notations ωk(1), Āi,1, i = 0, . . . , d, and B̄1

will be re-denoted byωk, Āi and B̄, respectively. Accord-
ingly, Fk is the σ-algebra generated by {ω0, . . . , ωk} and
the variance matrix σ is reduced to a scalar. The opti-
mal control problem under consideration becomes the
following one.

Problem 2 Find uk ∈ Uad to minimize the cost func-
tion (2) subject to system (4).

Motivated by the approach proposed in [25], the max-
imum principle for Problem 2 is derived as

xk+1 =
d∑

i=0
Ai(k)xk−i + B(k)uk, (5)

λN =WxN+1, (6)

λk−1 = E[
d∑

m=0
A′m(k +m)λk+m| Fk−1] +Qxk, (7)

0 = E[B′(k)λk|Fk−1] + Ruk, k = 0, . . . ,N, (8)

where
⎧
⎪⎪⎨
⎪⎪⎩

Ai(k) � Ai + ωkĀi, B(k) � B + ωkB̄, k = 0, . . . ,N,

Ai(k) � 0, λk � 0, k > N.

Before presenting the solution to Problem 2, we de-

fine a set of matrix sequences Rk,L
j
k and Pj

k, j = 0, . . . , d,
by the following backwards recursion for k = N, . . . , 0:

Rk = B′P0
k+1B + σB̄′P0

k+1B̄ + R, (9)
Lj

k = B′P0
k+1Aj + σB̄′P0

k+1Āj + B′Pj+1
k+1, (10)

Pj
k =

d− j∑

i=0
[A′i P

0
i+k+1Ai+ j + σĀ′i P

0
i+k+1Āi+ j + A′i P

j+i+1
i+k+1

+(Pi+1
i+k+1)′Ai+ j − (Li

i+k)′R−1
i+kLj+i

i+k] + δ j,0Q, (11)

where the terminal value is given by

P0
N+1 =W, P0

N+i = 0, i = 2, . . . , d + 1, (12)

Pj
N+i = 0, j = 1, . . . , d + 1, i = 1, . . . , d + 1, (13)

RN+i = I, Lj
N+i = 0, i = 1, . . . , d, j = 0, . . . , d. (14)

Theorem 1 Problem 2 has a unique solution if and
only if

Rk > 0 (15)

for k = N, . . . , 0. In this case, the unique optimal control
uk and the optimal value of (2) are respectively

uk = −R−1
k

d∑

j=0
Lj

kxk− j, (16)

and

J� = x′0P0
0x0 + 2x′0

d∑

j=1
Pj

0x− j +
d∑

j=1

d∑

i=1

d−1∑

f=0
x′− j

×[A′f+ jP
0
f+1Af+i + σĀ′f+ jP

0
f+1Ā f+i

+A′f+ jP
i+ f+1
f+1 + (Pj+ f+1

f+1 )′Af+i

−(Lj+ f
f )′R−1

f Li+ f
f ]x−i. (17)

In addition, the following relation between the optimal
costate and the state holds:

λk−1 =
d∑

j=0
Pj

kxk− j. (18)

The proof of Theorem 1 will be provided in the next
section.

Remark 2 In Theorem 1, we have extended the def-
inition of the variables Pj

k+1, Lj
k, Aj and Āj as

Pj
k = 0, Lj

k = 0, Aj = Āj = 0, j > d,

for the convenience of simplicity.

Remark 3 From (9)–(11), it can be easily observed
that Pj

k is completely determined by the following cou-
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pled difference equations:

Pj
k =

d− j∑

i=0
[A′i P

0
i+k+1Ai+ j + σĀ′i P

0
i+k+1Āi+ j + A′i P

j+i+1
i+k+1

+(Pi+1
i+k+1)′Ai+ j − (B′P0

i+k+1Ai + σB̄′P0
i+k+1Āi

+B′Pi+1
i+k+1)′(B′P0

i+k+1B + σB̄′P0
i+k+1B̄ + R)−1

×(B′P0
i+k+1Ai+ j + σB̄′P0

i+k+1Āi+ j + B′Pj+i+1
i+k+1)]

+δ j,0Q, j = 0, . . . , d, (19)

with terminal value (12) and (13). The role of equation
(19) in our problem is the same as that of the general-
ized difference Riccati equation in the standard stochas-
tic LQR problem [15].

Remark 4 This remark is to make clear the differ-
ences of this paper from our previous one [20].
� First, problems considered in these two papers are

completely different. Reference [20] studies the LQR
problem for the following system with a single input
delay:

xk+1 = (A + ωkĀ)xk + (B + ωkB̄)uk−d. (20)

While this paper focuses on system (1) which is with
multiple state delays. Obviously, (20) and (1) are essen-
tially different.
� Second, the maximum principle in [20] is given by

λk−1 = E[(A + ωkĀ)′λk|Fk−1] +Qxk, (21)
0 = E[(B + ωkB̄)′λk|Fk−d−1] + Ruk−d, (22)

where the equilibrium equation is with a single input-
delay. In this paper, the adjoint equation (7) is a back-
ward difference equation with multiple delays. Equa-
tions (4)–(8) are more difficult to solve than (20)–(22)
(see Section 4).
� Third, the results are different. In [20], the optimal

controller is shown to be a predictor form as

uk = −Υ−1
k+dMk+dE[xk+d|Fk−1],

where E[xk+d|Fk−1] is the conditional expectation of xk+d

with respect to Fk−1 and can be expressed as

E[xk+d|Fk−1] = Adxk +
d∑

i=1
Ai−1Buk−i.

The gain−Υ−1
k+dMk+d is given by the following Riccati-ZXL

difference equation

Zk =A′Zk+1A + σĀ′Xk+1Ā +Q − Lk,

Xk =Zk +
d−1∑

i=0
(A′)iLk+iAi,

where

Lk =M′
kΥ
−1
k Mk,

Υk = B′Zk+1B + σB̄′Xk+1B̄ + R,
Mk = B′Zk+1A + σB̄′Xk+1Ā.

While in this paper, the optimal controller has the form
as (16) which involves a finite length of history states.
In addition, the gains are determined by the coupled
difference equations (19).

Remark 5 This paper concentrates on the finite-
horizon LQR problem. By showing the convergence of
the solution to equations (19) when N tends to +∞, we
can derive the corresponding results in infinite-horizon
case. On the other hand, combination of this paper
with [22], which is concerned with the LQR problem
for systems with multiple input delays, will yield results
for systems with both multiple state delays and multiple
input delays.

3.2 Solution to Problem 1

Next, we shall extend the results in the previous sec-
tion to system (1). The increase of the dimension of
the white noise does not cause any essential changes.
A counterpart of Theorem 1 will be presented without
proof.

Theorem 2 Problem 1 admits a unique optimal con-
trol iff

Rk > 0 (23)

for k = N, . . . , 0, where Rk is given by the following
coupled difference equations:

Rk = B′P0
k+1B +

r∑

l=1

r∑

f=1
σl f B̄′l P

0
k+1B̄ f + R, (24)

Lj
k = B′P0

k+1Aj +
r∑

l=1

r∑

f=1
σl f B̄′l P

0
k+1Āj, f + B′Pj+1

k+1, (25)

Pj
k =

d− j∑

i=0
[A′i P

0
i+k+1Ai+ j +

r∑

l=1

r∑

f=1
σl f Ā′i,lP

0
i+k+1Āi+ j, f

+A′i P
j+i+1
i+k+1 + (Pi+1

i+k+1)′Ai+ j − (Li
i+k)′R−1

i+kLj+i
i+k]

+δ j,0Q, j = 0, . . . , d, (26)

with terminal value as (12)–(14). Under this condition,
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the unique optimal control and the optimal cost are as

uk = −R−1
k

d∑

j=0
Lj

kxk− j, (27)

and

J� = x′0P0
0x0 + 2x′0

d∑

j=1
Pj

0x− j +
d∑

j=1

d∑

i=1

d−1∑

f=0
x′− j

×[A′f+ jP
0
f+1Af+i +

r∑

l=1

r∑

m=1
σlmĀ′f+ j,lP

0
f+1Ā f+i,m

+A′f+ jP
i+ f+1
f+1 + (Pj+ f+1

f+1 )′Af+i

−(Lj+ f
f )′R−1

f Li+ f
f ]x−i. (28)

4 Derivation of the main results

4.1 Necessity of Theorem 1

Suppose that Problem 2 admits a unique solution. We
will show that the matrix Rk defined by (9)–(14) is pos-
itive definite, the unique optimal control is as (16), and
the optimal costate λk−1 can be expressed like (18).

Lemma 1 Define a set of matrices Rk,L
j
k, Φ

m, j
k , S

m−1, j
k

and Pj
k with k = N, . . . , 0, j = 0, . . . , d, and m = 1, . . . , d,

by the following equations:

Rk = B′P0
k+1B + σB̄′P0

k+1B̄ + R, (29)
Lj

k = B′P0
k+1Aj + σB̄′P0

k+1Āj + B′Pj+1
k+1, (30)

Φ
m, j
k =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Aj(k) − B(k)R−1
k Lj

k, m = 1,
m−1∑

f=1
Φ1,m−1− f

k+m−1 Φ
f , j
k +Φ

1, j+m−1
k+m−1 , m > 1,

(31)

Sm−1, j
k =

m∑

f=1
Pm− f

k+mΦ
f , j
k + Pj+m

k+m, (32)

Pj
k = A′0P0

k+1Aj + σĀ′0P0
k+1Āj + A′0Pj+1

k+1

−(A′0P0
k+1B + σĀ′0P0

k+1B̄)R−1
k Lj

k

+
d∑

m=1
{E[A′m(k +m)Sm−1,0

k+1 ]Aj

−E[A′m(k +m)Sm−1,0
k+1 ]BR−1

k Lj
k

+E[A′m(k +m)Sm−1, j+1
k+1 ]} + δ j,0Q, (33)

with terminal value given by

P0
N+1 =W, P0

N+i = 0, i = 2, . . . , d + 1, (34)
Pj

N+i = 0, j = 1, . . . , d + 1, i = 1, . . . , d + 1, (35)

Sm−1, j
N+1 = 0, Φ1, j

N+i = 0, m = 1, . . . , d,
i = 1, . . . , d − 1, j = 0, . . . , d. (36)

Suppose that Problem 2 has a unique optimal control,

then Rk, which has been defined above, satisfies

Rk > 0 (37)

for k = N, . . . , 0. The optimal control possesses the form
of

uk = −R−1
k

d∑

j=0
Lj

kxk− j. (38)

When the control is optimal, the following relations hold

xk+m =
d∑

j=0
Φ

m, j
k xk− j, (39)

λk+m−1 =
d∑

j=0
Sm−1, j

k xk− j, m = 1, . . . , d, (40)

λk−1 =
d∑

j=0
Pj

kxk− j. (41)

Proof See Appendix.

Remark 6 For j > d, Sm, j
k and Φm, j

k are defined to be
zero.

Remark 7 From (29)–(36), it can be observed that
Pj

k is deterministic while Φm, j
k and Sm−1, j

k contain noises
at time k, k + 1, . . . , k +m − 1.

Lemma 2 For k = 0, . . . ,N, there holds

d∑

m=1
E[A′m(k +m)Sm−1, j

k+1 ]

=
d− j+1∑

i=1
[A′i P

0
i+k+1Ai+ j−1 + σĀ′i P

0
i+k+1Āi+ j−1

+A′i P
j+i
i+k+1 + (Pi+1

i+k+1)′Ai+ j−1

−(Li
i+k)′R−1

i+kLj−1+i
i+k ], j � 1, (42)

and

d∑

m=1
E[A′m(k +m)Sm−1,0

k+1 ]= (P1
k+1)′. (43)

Proof See Appendix.
Finally, it can be shown that (33) can be rewritten as

(11) with the help of (42) and (43). This process is com-
pletely similar to the derivation of (a16), so details are
not provided here.

4.2 Sufficiency of Theorem 1

Proof Suppose Rk > 0 for k = N, . . . , 0 where Rk is
determined by (9)–(14), then it will be proven that the
unique solution to Problem 2 is (16) and the optimal
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value of (2) is (17). To this end, define

V(k, x̄k)

= E{x′kP0
kxk + 2x′k

d∑

j=1
Pj

kxk− j +
d∑

j=1

d∑

i=1

d−1∑

f=0
x′k− j

×[A′f+ jP
0
k+ f+1Af+i + σĀ′f+ jP

0
k+ f+1Ā f+i

+A′f+ jP
i+ f+1
k+ f+1 + (Pj+ f+1

k+ f+1)′Af+i

−(Lj+ f
k+ f )

′R−1
k+ f L

i+ f
k+ f ]xk−i}, (44)

where the notation x̄k stands for the vector (x′k x′k−1

· · · x′k−d)′. By applying (5), (9) and (10), direct computa-
tion produces

V(k, x̄k) − V(k + 1, x̄k+1)

= E{x′kP0
kxk − x′k[

d∑

f=0
(A′f P

0
k+ f+1Af + σĀ′f P

0
k+ f+1Ā f

+A′f P
f+1
k+ f+1 + (Pf+1

k+ f+1)′Af ) −
d∑

f=1
(Lf

k+ f )
′R−1

k+ f L
f
k+ f ]

×xk + 2x′k
d∑

j=1
Pj

kxk− j − 2x′k
d∑

i=1
[

d−1∑

f=0
(A′f P

0
k+ f+1Af+i

+σĀ′f P
0
k+ f+1Ā f+i + A′f P

i+ f+1
k+ f+1 + (Pf+1

k+ f+1)′Af+i)

− d−1∑

f=1
(Lf

k+ f )
′R−1

k+ f L
i+ f
k+ f ]xk−i −

d∑

j=1

d∑

i=1
x′k− j(L

j
k)′

×R−1
k Li

kxk−i − u′k(Rk − R)uk − 2u′k
d∑

j=0
Lj

kxk− j}.

In view of the invertibility of Rk, we can complete the
square in the above equation as

V(k, x̄k) − V(k + 1, x̄k+1)

= E{x′kP0
kxk − x′k[

d∑

f=0
(A′f P

0
k+ f+1Af + σĀ′f P

0
k+ f+1Ā f

+A′f P
f+1
k+ f+1 + (Pf+1

k+ f+1)′Af − (Lf
k+ f )

′R−1
k+ f L

f
k+ f )]

×xk + 2x′k
d∑

j=1
Pj

kxk− j − 2x′k
d∑

j=1
[
d−1∑

i=0
(A′i P

0
k+i+1Ai+ j

+σĀ′i P
0
k+i+1Āi+ j + A′i P

j+i+1
k+i+1 + (Pi+1

k+i+1)′Ai+ j

−(Li
k+i)
′R−1

k+iL
j+i
k+i)]xk− j + u′kRuk − [uk

+R−1
k

d∑

j=0
Lj

kxk− j]′Rk[uk + R−1
k

d∑

j=0
Lj

kxk− j]}. (45)

By making use of (11), (45) is further rewritten as

V(k, x̄k) − V(k + 1, x̄k+1)

= E[x′kQxk + u′kRuk − (uk + R−1
k

d∑

j=0
Lj

kxk− j)′

×Rk(uk + R−1
k

d∑

i=0
Li

kxk−i)]. (46)

On both sides of (46), take sums from k = 0 to k = N.
It leads to

V(0, x̄0) − V(N + 1, x̄N+1)

=
N∑

k=0
E[x′kQxk + u′kRuk − (uk + R−1

k

d∑

j=0
Lj

kxk− j)′

×Rk(uk + R−1
k

d∑

i=0
Li

kxk−i)].

In view of (12)–(14), it can be readily derived that
V(N + 1, x̄N+1) = E(x′N+1WxN+1). Then the above equa-
tion implies that the cost function (2) can be expressed
as

J =V(0, x̄0) +
N∑

k=0
E[(uk + R−1

k

d∑

j=0
Lj

kxk− j)′

×Rk(uk + R−1
k

d∑

i=0
Li

kxk−i)]. (47)

Note that V(0, x̄0) only depends on the initial value of
system (5) and Rk is positive definite. Therefore, the
unique controller minimizing JN must be (16) and the
optimal value of J is V(0, x̄0), i.e., (17). �

5 Numerical examples

Example 1 Consider system (4) where both xk and
uk are scalar and

d = 2, σ = 1, A0 = 2, A1 = −1, A2 = −2,
Ā0 = 0.5, Ā1 = −1.5, Ā2 = 0.8, B = 2, B̄ = 1.

In the cost function (2), we set

N = 0, W = 1, R = 1, Q = 1.

By direct computation, we can obtain the solution to the
backwards recursion (9)–(14) as

P0
0 = 1.8750, P1

0 = −0.1250, P2
0 = −1.2000,

P0
1 = 1, P1

1 = 0, P2
1 = 0,

R0 = 6, L0
0 = 4.5000, L1

0 = −3.5000, L2
0 = −3.2000.

Note that R0 > 0. Thus from Theorem 1, it follows that
the unique optimal control of Problem 2 is given by

u0 = −0.75x0 + 0.5833x−1 + 0.5333x−2. (48)
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To show the effectiveness of our results, we will com-
pare the values of (2) under the controller (48) and the
following one

û0 = 1.3583x0. (49)

Denote the value of (2) with (48) by J� and that with
(49) by J. Five cases with different initial values are con-
sidered below.

1) x0 = 2, x−1 = 0, x−2 = 0, J� = 7.5000, J = 16.3807,
2) x0 = 2.2, x−1 = −3, x−2 = 1, J� = 25.6533, J =

25.7420,
3) x0 = 1, x−1 = −2.8, x−2 = 1, J� = 18.5550, J =

20.0056,
4) x0 = 0, x−1 = −5, x−2 = 2, J� = 63.2750, J =

83.8100,
5) x0 = 3, x−1 = 1, x−2 = −4, J� = 156.4333, J =

311.6145.
In all cases, controller (48) generates a smaller value

for (2) than (49). This coincides with Theorem 1.

Example 2 Consider system (4) where xk ∈ R2,
uk ∈ R2, d = 1, σ = 1, and

A0 =

⎛
⎜⎜⎜⎜⎜⎝

2 −1

0 1

⎞
⎟⎟⎟⎟⎟⎠ , A1 =

⎛
⎜⎜⎜⎜⎜⎝
−3 1

2 1

⎞
⎟⎟⎟⎟⎟⎠ , Ā0 =

⎛
⎜⎜⎜⎜⎜⎝
−1 0

2 −2

⎞
⎟⎟⎟⎟⎟⎠ ,

Ā1 =

⎛
⎜⎜⎜⎜⎜⎝

1 −1

0 −1

⎞
⎟⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎜⎜⎝

1 2

2 1

⎞
⎟⎟⎟⎟⎟⎠ , B̄ =

⎛
⎜⎜⎜⎜⎜⎝

3 3

2 6

⎞
⎟⎟⎟⎟⎟⎠ ,

and the cost function (2) where

N = 2, Q = I, R = I, W = 0.

The solution to (9)–(14) is derived as

P0
0 =

⎛
⎜⎜⎜⎜⎜⎝

15.6887 1.3581

1.3581 3.7805

⎞
⎟⎟⎟⎟⎟⎠ , P1

0 =

⎛
⎜⎜⎜⎜⎜⎝
−4.7514 7.6065

2.0778 1.8842

⎞
⎟⎟⎟⎟⎟⎠ ,

P0
1 =

⎛
⎜⎜⎜⎜⎜⎝

5 −1

−1 2

⎞
⎟⎟⎟⎟⎟⎠ , P1

1 =

⎛
⎜⎜⎜⎜⎜⎝
−4.5 3

2.5 0

⎞
⎟⎟⎟⎟⎟⎠ , P0

2 =

⎛
⎜⎜⎜⎜⎜⎝

1 0

0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

P1
2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0

0 0

⎞
⎟⎟⎟⎟⎟⎠ , R0 =

⎛
⎜⎜⎜⎜⎜⎝

51 54

54 100

⎞
⎟⎟⎟⎟⎟⎠ , L0

0 =

⎛
⎜⎜⎜⎜⎜⎝
−4.5 1

20.5 −21

⎞
⎟⎟⎟⎟⎟⎠ ,

L1
0 =

⎛
⎜⎜⎜⎜⎜⎝

10 −8

−18 −9

⎞
⎟⎟⎟⎟⎟⎠ , R1 =

⎛
⎜⎜⎜⎜⎜⎝

19 25

25 51

⎞
⎟⎟⎟⎟⎟⎠ , L0

1 =

⎛
⎜⎜⎜⎜⎜⎝

3 −3

13 −13

⎞
⎟⎟⎟⎟⎟⎠ ,

L1
1 =

⎛
⎜⎜⎜⎜⎜⎝

4 −2

−1 −6

⎞
⎟⎟⎟⎟⎟⎠ , R2 =

⎛
⎜⎜⎜⎜⎜⎝

1 0

0 1

⎞
⎟⎟⎟⎟⎟⎠ , L0

2 = L1
2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0

0 0

⎞
⎟⎟⎟⎟⎟⎠ .

It can be easily verified that R0,R1 and R3 are all posi-
tive definite. Hence, according to Theorem 1, the unique

optimal controller is

u0 =

⎛
⎜⎜⎜⎜⎜⎝

0.7129 −0.5650

−0.5900 0.5151

⎞
⎟⎟⎟⎟⎟⎠ x0 +

⎛
⎜⎜⎜⎜⎜⎝
−0.9029 0.1438

0.6676 0.0124

⎞
⎟⎟⎟⎟⎟⎠ x−1,

u1 =

⎛
⎜⎜⎜⎜⎜⎝

0.5 −0.5

−0.5 0.5

⎞
⎟⎟⎟⎟⎟⎠ x1 +

⎛
⎜⎜⎜⎜⎜⎝
−0.6657 −0.1395

0.3459 0.1860

⎞
⎟⎟⎟⎟⎟⎠ x0,

u2 =

⎛
⎜⎜⎜⎜⎜⎝

0

0

⎞
⎟⎟⎟⎟⎟⎠ .

When the initial value is chosen to be

x0 =

⎛
⎜⎜⎜⎜⎜⎝

1

−1

⎞
⎟⎟⎟⎟⎟⎠ , x−1 =

⎛
⎜⎜⎜⎜⎜⎝

0

1

⎞
⎟⎟⎟⎟⎟⎠ ,

the optimal cost is

J� = 36.9361. (50)

If the controller is changed into

û0 =

⎛
⎜⎜⎜⎜⎜⎝

1 −1

−1 1

⎞
⎟⎟⎟⎟⎟⎠ x0 +

⎛
⎜⎜⎜⎜⎜⎝
−1 0

1 0

⎞
⎟⎟⎟⎟⎟⎠ x−1,

û1 =

⎛
⎜⎜⎜⎜⎜⎝

0.5 −0.5

−0.5 0.5

⎞
⎟⎟⎟⎟⎟⎠ x1 +

⎛
⎜⎜⎜⎜⎜⎝
−1 0

0 0

⎞
⎟⎟⎟⎟⎟⎠ x0,

û2 =

⎛
⎜⎜⎜⎜⎜⎝

1 0

2 0

⎞
⎟⎟⎟⎟⎟⎠ x2 +

⎛
⎜⎜⎜⎜⎜⎝
−1 0

0 4

⎞
⎟⎟⎟⎟⎟⎠ x1,

the associated value of the cost function is

J = 626.25,

which is larger than (50).

6 Conclusions

This paper solves the LQR problem for stochastic sys-
tems with state delays in discrete-time case. The cou-
pled difference equations developed here play the same
role in our problem as the generalized difference Riccati
equation does in the standard stochastic LQR problem.
The stabilization problem for this class of systems is
worth considering in the future.
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Appendix
Proof of Lemma 1 Suppose that Problem 2 has a unique

solution. (37)–(41) will be shown inductively on k = N, . . . , 0.
For simplicity, denote the cost function starting from time k,
k = 0, . . . ,N, by

J(k) �
N∑

i=k
E(x′i Qxi + u′i Rui) + E(x′N+1WxN+1). (a1)

The verification of the case of k = N is simple and similar
to the discussion given below. Thus it will be omitted. Induc-
tively, suppose (37)–(41) hold for k � n + 1. We shall show
that they are true for k = n. First, Rn > 0 is to be verified. To
this end, set n to be the initial time and let the initial value be

xn−i � 0, i = 0, . . . , d. (a2)

Take un to be any Fn−1-measurable random variable and un+1,
. . . , uN to be optimal. Now the optimal value of J(n + 1) will
be calculated. For k = n + 1, . . . ,N + 1, denote

αk � E[x′kλk−1 +
d∑

j=1
x′k− j

d− j∑

m=0
A′j+m(k +m)λk+m]. (a3)

By (7), (5) and (8), it can be derived

αk − αk+1

= E[x′kλk−1 − x′k+1λk +
d∑

j=1

d− j∑

m=0
x′k− jA

′
j+m(k +m)λk+m

− d−1∑

j=0

d− j∑

m=1
x′k− jA

′
j+m(k +m)λk+m]

= E{x′kE[
d∑

m=0
A′m(k +m)λk+m|Fk−1] + x′kQxk
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− d∑

j=0
x′k− jA

′
j(k)λk − u′kB′(k)λk

+
d∑

j=1
x′k− jA

′
j(k)λk −

d∑

m=1
x′kA′m(k +m)λk+m}

= E(x′kQxk + u′kRuk), k = n + 1, . . . ,N.

Summing from k = n + 1 to k = N on the two sides of the
above equation yields

αn+1 − αN+1 =
N∑

k=n+1
E(x′kQxk + u′kRuk).

From (a3), (6) and λk = 0 for k > N, it follows that αN+1 =

E(x′N+1WxN+1). Thus the optimal value of J(n + 1) is

J�(n + 1)

= αn+1

= E[x′n+1λn +
d∑

j=1
x′n+1− j

d− j∑

m=0
A′j+m(n +m + 1)λn+m+1]. (a4)

(41) is assumed to be true for k = n + 1, i.e., λn is as

λn =
d∑

j=0
Pj

n+1xn+1− j. (a5)

By applying (a4), (a5), (a2) and (5), it leads to

J�(n + 1) = E(x′n+1P0
n+1xn+1)

= E[u′nB′(n)P0
n+1B(n)un]

= E[u′n(B′P0
n+1B + σB̄′P0

n+1B̄)un], (a6)

where the fact that the matrix P is deterministic has been em-
ployed (see Remark 7). That Problem 2 has a unique solution
implies the solution to the optimization problem min

un
Ĵ(n) is

unique. Therein,

Ĵ(n) = E(x′nQxn + u′nRun) + J�(n + 1). (a7)

Furthermore, the weighting matrix of un in Ĵ(n) must be pos-
itive definite. By substituting (a6) into (a7), it can be easily
obtained that the weighting matrix is just Rn. Hence, Rn > 0
has been shown.

Second, the optimal un is to be solved. Substitution of (a5)
and (5) into (8) produces

0 = E[
d∑

j=0
B(n)′Pj

n+1xn+1− j|Fn−1] + Run

=
d∑

j=0
(B′P0

n+1Aj + σB̄′P0
n+1Āj)xn− j +

d−1∑

j=0
B′Pj+1

n+1xn− j

+Rnun

=
d∑

j=0
Lj

nxn− j + Rnun.

Combined with Rn > 0, it is readily seen that the optimal un is
given by

un = −R−1
n

d∑

j=0
Lj

nxn− j. (a8)

Third, let us verify (39) for k = n, i.e., the following relation

xn+t =
d∑

j=0
Φt, j

n xn− j, (a9)

holds for t = 1, . . . , d. The analysis will be made inductively on
t. By substituting (a8) into (5), xn+1 becomes

xn+1 =
d∑

j=0
(Aj(n) − B(n)R−1

n Lj
n)xn− j

=
d∑

j=0
Φ1, j

n xn− j, (a10)

which is the case of t = 1. Inductively, suppose (a9) is true for
t = 1, . . . , s. By applying (39) with k = n + s and m = 1, one
gets

xn+s+1 =
d∑

j=0
Φ1, j

n+sxn+s− j

=
d∑

j=0
Φ1, j+s

n+s xn− j +
s∑

f=1
Φ1,s− f

n+s xn+ f , (a11)

where Φ1, j+s
n+s = 0 if j + s > d has been employed (See Remark

6). By making use of (a9) for t = 1, . . . , s in (a11), it yields

xn+s+1 =
d∑

j=0
[Φ1, j+s

n+s +
s∑

f=1
Φ1,s− f

n+s Φ
f , j
n ]xn− j

=
d∑

j=0
Φs+1, j

n xn− j,

which is (a9) for t = s+ 1. Hence, (a9) has been shown induc-
tively.

Next, (40) is to be proven for k = n and m = 1, . . . , d. Ac-
cording to the inductive hypothesis, (41) is true for k = n+m,
i.e.,

λn+m−1 =
d∑

j=0
Pj

n+mxn+m− j

=
d∑

j=0
Pj+m

n+mxn− j +
m∑

f=1
Pm− f

n+mxn+ f , (a12)

where Pj+m
n+m = 0 if j+m > d has been used (See Remark 2). By

employing (39) with k = n in (a12), we get

λn+m−1 =
d∑

j=0
[Pj+m

n+m +
m∑

f=1
Pm− f

n+mΦ
f , j
n ]xn− j

=
d∑

j=0
Sm−1, j

n xn− j,

which is indeed (40) with k = n.
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Finally, let us show (41) for k = n. In (40) and (41), setting
k = n + 1 produces

λn+m =
d∑

j=0
Sm−1, j

n+1 xn+1− j

= Sm−1,0
n+1 xn+1 +

d∑

j=0
Sm−1, j+1

n+1 xn− j, m = 1, . . . , d,

λn =
d∑

j=0
Pj

n+1xn+1− j

= P0
n+1xn+1 +

d∑

j=0
Pj+1

n+1xn− j,

where zeros terms Sm−1,d+1
n+1 and Pd+1

n+1 have been added on pur-
pose. Combined with (a10), the above equations become

λn+m =
d∑

j=0
[Sm−1,0

n+1 (Aj(n) − B(n)R−1
n Lj

n) + Sm−1, j+1
n+1 ]xn− j, (a13)

λn =
d∑

j=0
[P0

n+1(Aj(n) − B(n)R−1
n Lj

n) + Pj+1
n+1]xn− j. (a14)

Substitution of (a13) and (a14) into (7) leads to

λn−1

= E{ d∑

j=0
[A′0(n)P0

n+1Aj(n) − A′0(n)P0
n+1B(n)R−1

n Lj
n

+A′0(n)Pj+1
n+1]xn− j +

d∑

m=1

d∑

j=0
[A′m(n +m)Sm−1,0

n+1 Aj(n)

−A′m(n +m)Sm−1,0
n+1 B(n)R−1

n Lj
n

+A′m(n +m)Sm−1, j+1
n+1 ]xn− j|Fn−1} +Qxn.

In view of Remark 7, Pj
n+1 is deterministic and Sm−1, j

n+1 contain
noises at time n + 1, . . . , n +m. Therefore, the above equation
can be further computed as

λn−1

=
d∑

j=0
E[A′0(n)P0

n+1Aj(n) − A′0(n)P0
n+1B(n)R−1

n Lj
n

+A′0(n)Pj+1
n+1]xn− j +

d∑

m=1

d∑

j=0
E[A′m(n +m)Sm−1,0

n+1 Aj(n)

−A′m(n +m)Sm−1,0
n+1 B(n)R−1

n Lj
n + A′m(n +m)Sm−1, j+1

n+1 ]

×xn− j +Qxn

=
d∑

j=0
[A′0P0

n+1Aj + σĀ′0P0
n+1Āj + A′0Pj+1

n+1

−(A′0P0
n+1B + σĀ′0P0

n+1B̄)R−1
n Lj

n]xn− j

+
d∑

j=0

d∑

m=1
{E[A′m(n +m)Sm−1,0

n+1 ]Aj

−E[A′m(n +m)Sm−1,0
n+1 ]BR−1

n Lj
n

+E[A′m(n +m)Sm−1, j+1
n+1 ]}xn− j +Qxn

=
d∑

j=0
Pj

nxn− j,

which is (41) for k = n. Until now, the proof of this Lemma is
completed. �

Proof of Lemma 2 The lemma will be shown inductively
on k = N, . . . , 0. Since all the variables Sj

k+1,P
j
i+k+1 and Lj

i+k are
zero with k � N and i � 1, the case of k = N is trivial. Suppose
that the claim is true for k = N, . . . , n. By applying (42) and
(43) with k = n, . . . ,N in (33), it yields

Pj
k = A′0P0

k+1Aj + σĀ′0P0
k+1Āj + A′0Pj+1

k+1 + (P1
k+1)′Aj

−[A′0P0
k+1B + σĀ′0P0

k+1B̄ + (P1
k+1)′B]R−1

k Lj
k

+
d− j∑

i=1
[A′i P

0
i+k+1Ai+ j + σĀ′i P

0
i+k+1Āi+ j + A′i P

j+1+i
i+k+1

+(Pi+1
i+k+1)′Ai+ j − (Li

i+k)′R−1
i+kLj+i

i+k] + δ j,0Q. (a15)

From (30), it follows

(L0
k)′ = A′0P0

k+1B + σĀ′0P0
k+1B̄ + (P1

k+1)′B.

Employ the above equation in (a15). It leads to

Pj
k =

d− j∑

i=0
[A′i P

0
i+k+1Ai+ j + σĀ′i P

0
i+k+1Āi+ j + A′i P

j+1+i
i+k+1

+(Pi+1
i+k+1)′Ai+ j − (Li

i+k)′R−1
i+kLj+i

i+k] + δ j,0Q,
j = 0, . . . , d, k = n, . . . ,N. (a16)

Now we show (42) and (43) for k = n − 1. The following
relation will be verified inductively on t = d, . . . , 1:

d∑

m=t
E[A′m(n − 1 +m)Sm−1, j

n ]

=
t−1∑

f=1

d∑

i=t
[A′i P

0
i+nAi−1− f + σĀ′i P

0
i+nĀi−1− f + A′i P

i− f
i+n

+(Pi+1
i+n)′Ai−1− f − (Li

i+n−1)′R−1
i+n−1Li− f−1

i+n−1]E(Φ f , j
n )

+
d∑

i=t
[A′i P

0
i+nAi−1+ j + σĀ′i P

0
i+nĀi−1+ j + A′i P

j+i
i+n

+(Pi+1
i+n)′Ai−1+ j − (Li

i+n−1)′R−1
i+n−1Lj+i−1

i+n−1]. (a17)

First, consider the case of t = d. In (32) and (31), setting
k = n and m = d produces

Φd, j
n =

d−1∑

f=1
Φ1,d−1− f

n+d−1 Φ
f , j
n +Φ

1, j+d−1
n+d−1 , (a18)

Sd−1, j
n =

d∑

f=1
Pd− f

n+dΦ
f , j
n + Pj+d

n+d, j � 0. (a19)

Substitution of (a18) into (a19) generates

Sd−1, j
n =

d−1∑

f=1
(P0

n+dΦ
1,d−1− f
n+d−1 + Pd− f

n+d)Φ f , j
n

+P0
n+dΦ

1, j+d−1
n+d−1 + Pj+d

n+d,

which means

E[A′d(n + d − 1)Sd−1, j
n ]

=
d−1∑

f=1
E[A′d(n + d − 1)(P0

n+dΦ
1,d−1− f
n+d−1 + Pd− f

n+d)Φ f , j
n ]
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+E[A′d(n + d − 1)P0
n+dΦ

1, j+d−1
n+d−1 ] + E[A′d(n + d − 1)Pj+d

n+d].

Based upon Remark 7, it is known that Ad(n + d − 1) and
Φ1,d−1− f

n+d−1 are independent of Φ f , j
n . Thus the above equation can

be further computed as

E[A′d(n + d − 1)Sd−1, j
n ]

=
d−1∑

f=1
{Yf + A′dPd− f

n+d}E(Φ f , j
n ) + Y− j + A′dPj+d

n+d (a20)

with

Yf = E[A′d(n + d − 1)P0
n+dΦ

1,d−1− f
n+d−1 ]. (a21)

By applying (31) with k = n + d − 1 and j = d − 1 − f in (a21),
it results in

Yf = A′dP0
n+dAd−1− f + σĀ′dP0

n+dĀd−1− f

−(A′dP0
n+dB + σĀ′dP0

n+dB̄)R−1
n+d−1Ld−1− f

n+d−1.

In view of (30), there holds

(Ld
n+d−1)′ = A′dP0

n+dB + σĀ′dP0
n+dB̄.

Therefore, Yf becomes

Yf = A′dP0
n+dAd−1− f + σĀ′dP0

n+dĀd−1− f

−(Ld
n+d−1)′R−1

n+d−1Ld−1− f
n+d−1.

Y− j can be obtained by replacing f with − j in the above equa-
tion. Employ Yf and Y− j in (a20). It yields

E[A′d(n + d − 1)Sd−1, j
n ]

=
d−1∑

f=1
{A′dP0

n+dAd−1− f + σĀ′dP0
n+dĀd−1− f

−(Ld
n+d−1)′R−1

n+d−1Ld−1− f
n+d−1 + A′dPd− f

n+d}E(Φ f , j
n )

+A′dP0
n+dAd−1+ j + σĀ′dP0

n+dĀd−1+ j

−(Ld
n+d−1)′R−1

n+d−1Ld−1+ j
n+d−1 + A′dPj+d

n+d,

which is indeed (a17) for t = d. So far, the case of t = d has
been clarified.

Suppose that (a17) holds for t = h + 1 with 1 � h � d − 1,
i.e.,

d∑

m=h+1
E[A′m(n − 1 +m)Sm−1, j

n ]

=
h∑

f=1

d∑

i=h+1
[A′i P

0
i+nAi−1− f + σĀ′i P

0
i+nĀi−1− f + A′i P

i− f
i+n

+(Pi+1
i+n)′Ai−1− f − (Li

i+n−1)′R−1
i+n−1Li− f−1

i+n−1]E(Φ f , j
n )

+
d∑

i=h+1
[A′i P

0
i+nAi−1+ j + σĀ′i P

0
i+nĀi−1+ j + A′i P

j+i
i+n

+(Pi+1
i+n)′Ai−1+ j − (Li

i+n−1)′R−1
i+n−1Lj+i−1

i+n−1]. (a22)

Now we show it is true for t = h. Note that

d∑

m=h
E[A′m(n − 1 +m)Sm−1, j

n ]

= E[A′h(n − 1 + h)Sh−1, j
n ]

+
d∑

m=h+1
E[A′m(n − 1 +m)Sm−1, j

n ]. (a23)

According to (32) and (31), Sh−1, j
n and Φh, j

n are respectively
as

Sh−1, j
n =

h∑

f=1
Ph− f

n+hΦ
f , j
n + Pj+h

n+h, (a24)

Φh, j
n =

h−1∑

f=1
Φ1,h−1− f

n+h−1 Φ
f , j
n +Φ

1, j+h−1
n+h−1 , (a25)

which yields

E[A′h(n − 1 + h)Sh−1, j
n ]

=
h−1∑

f=1
{A′hPh− f

n+h + E[A′h(n − 1 + h)P0
n+hΦ

1,h−1− f
n+h−1 ]}E[Φ f , j

n ]

+E[A′h(n − 1 + h)P0
n+hΦ

1, j+h−1
n+h−1 ] + A′hPj+h

n+h. (a26)

Therein, the independence of {Ah(n−1+h), Φ1,h−1− f
n+h−1 } andΦ f , j

n

with f � h − 1 has been applied. On the other hand, (a25)
implies

E(Φh, j
n ) =

h−1∑

f=1
E(Φ1,h−1− f

n+h−1 )E(Φ f , j
n ) + E(Φ1, j+h−1

n+h−1 ). (a27)

Combine (a22), (a23), (a26) and (a27). It results in

d∑

m=h
E[A′m(n − 1 +m)Sm−1, j

n ]

=
h−1∑

f=1
{Yf + A′hPh− f

n+h +
d∑

i=h+1
[A′i P

0
i+nAi−1− f

+σĀ′i P
0
i+nĀi−1− f + A′i P

i− f
i+n + (Pi+1

i+n)′Ai−1− f

−(Li
i+n−1)′R−1

i+n−1Li− f−1
i+n−1]}E(Φ f , j

n )

+Y− j + A′hPj+h
n+h +

d∑

i=h+1
[A′i P

0
i+nAi−1+ j

+σĀ′i P
0
i+nĀi−1+ j + A′i P

j+i
i+n + (Pi+1

i+n)′Ai−1+ j

−(Li
i+n−1)′R−1

i+n−1Lj+i−1
i+n−1], (a28)

where

Yf =E[A′h(n − 1 + h)P0
n+hΦ

1,h−1− f
n+h−1 )]

+
d∑

i=h+1
[A′i P

0
i+nAi−1−h + σĀ′i P

0
i+nĀi−1−h + A′i P

i−h
i+n

+ (Pi+1
i+n)′Ai−1−h − (Li

i+n−1)′R−1
i+n−1Li−h−1

i+n−1]E(Φ1,h−1− f
n+h−1 ).

(a29)
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In (a16), take k = n+h and j = h+1. Then (Ph+1
n+h)′ is derived

as

(Ph+1
n+h)′

=
d∑

i=h+1
[A′i P

0
i+nAi−h−1 +σĀ′i P

0
i+nĀi−h−1 + (Pi+1

i+n)′Ai−h−1

+A′i P
i−h
i+n − (Li

i+n−1)′R−1
i+n−1Li−h−1

i+n−1].

Apply the above equation in (a29). Thus Yf becomes

Yf = E[A′h(n − 1 + h)P0
n+hΦ

1,h−1− f
n+h−1 )]

+(Ph+1
n+h)′E(Φ1,h−1− f

n+h−1 ). (a30)

Furthermore, employ (31) and (30) in (a30). We get

Yf = A′hP0
n+hAh− f−1 + σĀ′hP0

n+hĀh− f−1

+(Ph+1
n+h)′Ah− f−1 − [A′hP0

n+hB + σĀ′hP0
n+hB̄

+(Ph+1
n+h)′B]R−1

n+h−1Lh− f−1
n+h−1

= A′hP0
n+hAh− f−1 +σĀ′hP0

n+hĀh− f−1 + (Ph+1
n+h)′Ah− f−1

−(Lh
n+h−1)′R−1

n+h−1Lh− f−1
n+h−1. (a31)

Replacing f with − j in (a31) yields Y− j. Substitute Yf and Y− j

into (a28). Then (a17) for t = h can be directly obtained. So
far, it has been shown that (a17) is true for t = 1, . . . , d in an
inductive way. In particular, setting t = 1 in (a17) generates

d∑

m=1
E[A′m(n − 1 +m)Sm−1, j

n ]

=
d∑

i=1
[A′i P

0
i+nAi−1+ j + σĀ′i P

0
i+nĀi−1+ j + A′i P

j+i
i+n + (Pi+1

i+n)′

×Ai−1+ j − (Li
i+n−1)′R−1

i+n−1Lj+i−1
i+n−1], j = 1, . . . , d, (a32)

d∑

m=1
E[A′m(n − 1 +m)Sm−1,0

n ]

=
d∑

i=1
[A′i P

0
i+nAi−1 + σĀ′i P

0
i+nĀi−1 + A′i P

i
i+n

+(Pi+1
i+n)′Ai−1 − (Li

i+n−1)′R−1
i+n−1Li−1

i+n−1]. (a33)

Note that in (a32), if i > d− j+1, the variables Ai−1+ j, Āi−1+ j,P
j+i
i+n

and Lj+i−1
i+n−1 are all zero. Therefore, (a32) is actually (42) with

k = n − 1. In view of (a16), it can be easily observed that the
right side of (a33) is (P1

n)′. This verifies (43) for k = n − 1.
Therefore, the proof is completed. �
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