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Abstract

In this paper, a quasi-Newton-type optimized iterative learning control (ILC) algorithm is investigated for a class of discrete

linear time-invariant systems. The proposed learning algorithm is to update the learning gain matrix by a quasi-Newton-type

matrix instead of the inversion of the plant. By means of the mathematical inductive method, the monotone convergence of the

proposed algorithm is analyzed, which shows that the tracking error monotonously converges to zero after a finite number of

iterations. Compared with the existing optimized ILC algorithms, due to the superlinear convergence of quasi-Newton method,

the proposed learning law operates with a faster convergent rate and is robust to the ill-condition of the system model, and thus

owns a wide range of applications. Numerical simulations demonstrate the validity and effectiveness.
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1 Introduction

Iterative learning control (ILC) has been acknowl-

edged as one of the effective techniques that achieves

perfect trajectory tracking while the system implements

the tracking task repetitively over a fixed time-interval,

see, e.g., [1–6]. Arimoto et al. [1] firstly introduced ILC

as an intelligent teaching mechanism called “betterment

process” for robot manipulators. Numerous ILC contri-

butions have come forth over the past three decades

scoping from theoretical investigations to practical ap-

plications. As one of the important theoretical issues,

the convergence analysis has been discussed by Amann

et al. [2], Xu [3], and Meng et al. (2-D analysis ap-

proach) [5] and Ruan et al. [6, 7]. In addition, the ro-

bustness has been discussed from many aspects, such

as stochastic noise in [8], iteration-varying disturbances

in [9], model uncertainty in [10] and time-delay uncer-

tainty in [11], etc., stability and initial state learning have

been researched in [12] and [13], respectively. Another

significant contribution to ILC theory is optimal ILC algo-

rithms in articles [14–19]. In terms of the applications of

ILC, the categories mainly include robotics in [20], rotary

systems in [21], chemical batch processing in [22], etc.
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Ahn et al. [23] provided a summary and review of the

recent trends in ILC research from both the application

and the theoretical aspects.

In optimization field, it is known that the gradient

method, the conjugate direction method, the Newton

method as well as the quasi-Newton method have been

acknowledged as effective optimization techniques for

their widely applications in the areas of industry, agricul-

ture, military and medical treatment, see, e.g., [24–26].

Guided by the practicability and the validity of the opti-

mization techniques, a number of investigations have

been made which focus on embedding some of the

above-mentioned optimization methods into the ILC al-

gorithms [14–19]. Referring to the scheme of optimiza-

tion technique, the mode of such an optimized ILC up-

dating law is to generate a sequence of optimized control

inputs by minimizing performance index function.

In this aspect, Amann et al. [2] firstly introduced the

concept of optimal ILC algorithm for linear systems

based on optimization theory and made a comprehen-

sive analysis of norm-optimal ILC (NOILC). After that,

Owens and Feng [15] proposed a parameter optimiza-

tion ILC (POILC) for discrete linear time-invariant sys-

tems and derived its monotone convergence under the

assumption that the system satisfies a positivity condi-

tion. Besides, Owens et al. [16] offered a gradient-type

ILC algorithm and analyzed its convergence in a rigor-

ous manner. The analogous work was to establish an

inverse model ILC scheme named as a Newton-type ILC

algorithm, and made a comprehensive analysis in term

of the convergence and the robustness as shown in [17].

It is noticed that the optimized ILC strategies in [15–17]

are model-based, of which both the necessity and the

sufficiency of the monotone convergence are involved.

Theoretically, it is thus no doubt that the inverse

model ILC scheme owns a one-step terminative perfor-

mance for the case when the inversion of the model

of the plant is precisely identified in prior and well-

conditioned. In reality, on the one hand, the inverse

model algorithm is quite sensitive to the perturbation

incurred by some measurement noise or slow chang-

ing of the system parameters. On the other hand, the

inverse model technique may not work for the model

imprecision. This implies that the inverse model ILC

is hardly realizable in practical executions. In order to

avoid the complexities of matrix inversion, Owens et

al. [18] developed a polynomial approximation ILC (PA-

ILC) algorithm which replaces the inverse model of the

plant by a polynomial. However, the ILC algorithm re-

quires plenty of computation to capture the inversions

of the system matrices and thus is just implementable to

a lower dimensional plant or a less operational process-

ing. Besides, as the searching directory of the gradient-

type ILC mechanism, article [16] prevailed to a saw path

with a very small learning step when the iteration-wise

approximate optimum is close to the desired one, the

convergent rate of the gradient-type ILC is to some ex-

tent not satisfactory, especially when the system is ill-

conditioned. In 2013, Yang and Ruan [19] developed

a type of conjugate direction ILC scheme for linear dis-

crete time-invariant systems to speed up the convergent

rate.

In spite of the above-mentioned executable limita-

tion, the inverse mode ILC mechanism remains referable

to develop an efficient learning law. As such, a quasi-

Newton-type ILC updating law is a candidate, which

adopts an approximate matrix to replace the inverse

model of the plant. This motivates the paper to develop a

quasi-Newton-type ILC strategy for discrete linear time-

invariant systems and derives its convergence as well.

The paper is organized as follows. Section 2 presents

two types of quasi-Newton ILC schemes abbreviated as

SR1-ILC algorithm and SR2-ILC algorithm, respectively.

Section 3 exhibits the monotonic convergence. Numer-

ical simulations are illustrated in Section 4 and the con-

clusions are drawn in Section 5.

2 Quasi-Newton-type optimized ILC algo-
rithm

Consider a class of repetitive discrete linear time-

invariant single-input-single-output (SISO) systems de-

scribed as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x(t + 1) = Ax(t)+ Bu(t),

y(t) = Cx(t),

x(0) = 0,

(1)

where t ∈ I represents the sampling time with I = {0, 1,
. . . ,N} denoting the set of the sampling times and N
standing for the total number of the sampling times, re-

spectively. The variables x(t) ∈ Rn, u(t) ∈ R and y(t) ∈ R
are respectively an n-dimensional state vector, a scalar

input and a scalar output at the sampling time t. A,B
and C are matrices with appropriate dimensions, re-

spectively, satisfying CB � 0. The model system (1) is
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reformulated in a lifted input-output form as follows:

y = Gu, (2)

where

u = [u(0) u(1) · · · u(N − 1)]T,

y = [y(1) y(2) · · · y(N)]T,

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB 0 0 · · · 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0
...

...
...

...

CAN−1B CAN−2B CAN−3B · · · CB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is obvious that G is an invertible Markov parameters-

based transfer matrix.

Let yd = [yd(1) yd(2) · · · yd(N)]T be a given de-

sired trajectory of system (2) and e = yd − y = [yd(1) −
y(1) yd(2)− y(2) · · · yd(N)− y(N)]T

= yd−Gu denotes

the tracking error of system (2). The ILC algorithm is to

design a sequence of inputs {uk+1} so that it may drive

system (2) to track the desired trajectory yd as precisely

as possible as the iteration index approaches infinity.

That is to say,

lim
k→∞
‖ek+1‖2 = 0,

where

ek+1 = yd − yk+1,

yk+1 = [yk+1(1) yk+1(2) · · · yk+1(N)]T

refers to the output of system (2) driven by uk+1 =

[uk+1(0) uk+1(1) · · · uk+1(N−1)]T. Such an ILC sequence

uk+1 can be produced by solving an optimization prob-

lem for system (2) as follows:

min
u

F(u) =
1
2
‖e‖2

=
1
2

uTGTGu − (GTyd)Tu +
1
2

yT
dyd. (3)

Recall that the Newton-type ILC updating law of the op-

timization (3) developed in article [17] takes a form of

uk+1 = uk + βG−1ek, (4)

where k = 1, 2, . . . is the iterative number. ek = yd− yk is

the tracking error between the desired trajectory yd and

the output yk, and β is termed as a learning step length.

Obviously, the above Newton-type ILC is an

inversion-model scheme, which requires amounts of

computation for inversion and is usually fit for a well-

conditioned system.

For the purpose of avoiding the computational com-

plexity of matrix inversion and enriching the fitness of

the system mode, a feasible manner is to replace the

learning gain matrix G−1 of the scheme (4) by a matrix

with less computation or generally conditioned. As such,

an iteration-relevant matrix HkGT is adopted for the sub-

stitution and the corresponding ILC scheme named as

the quasi-Newton-type optimized ILC algorithm is as

follows:

uk+1 = uk + βkHkGTek. (5)

Here, Hk is the kth approximation of (GTG)−1 and is up-

dated in accordance with the quasi-Newton condition.

βk is termed as the kth learning step length that obtained

by exact linear search method.

The quasi-Newton ILC algorithm (5) is specified as

follows.

u1 and H1 are given arbitrarily,

y1 = Gu1,

ē1 = GT(yd − y1),

β1 =
ēT

1 (H1ē1)

(H1ē1)TGTG(H1ē1)
;

when k � 1,

uk+1 = uk + βkHkēk, (6)

yk+1 = Guk+1, (7)

ek+1 = yd − yk+1, (8)

ēk+1 = GTek+1, (9)

Hk+1 = Hk + ΔHk, (10)

βk+1 =
ēT

k+1(Hk+1ēk+1)

(Hk+1ēk+1)TGTG(Hk+1ēk+1)
, (11)

where ΔHk is a correction term which can be con-

structed in various forms so that the matrix Hk+1 satisfies

the quasi-Newton condition

Hk+1ẽk = Δuk, k = 1, 2, . . . , (12)

where

Δuk = uk+1 − uk = βkHkēk (13)

is assigned as the searching direction and

ẽk = ∇F(uk+1) − ∇F(uk) = GTGΔuk (14)
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is termed as the gradient difference vector and the ex-

pression (12) is called as a secant equation.

Two typical correction forms are symmetrical-rank-1

and symmetrical-rank-2 expressed as follows:

I) Symmetrical-Rank-1 (SR1) correction formula is

ΔHk =
(Δuk −Hkẽk)(Δuk −Hkẽk)T

(Δuk −Hkẽk)Tẽk
. (15)

The above (6)–(11) together with the SR1 correction

form (15) compose an SR1-ILC algorithm.

II) Symmetrical-Rank-2 (SR2) correction formula is

ΔHk =
ΔukΔuT

k

ΔuT
k ẽk

−
HkẽkẽT

k Hk

ẽT
k Hkẽk

. (16)

The symmetric-rank-2 form is induced by DFP correc-

tion in [27]. The above (6)–(11) plus the correction form

(16) is called an SR2-ILC algorithm.

3 Convergence analysis

The monotonicity of the tracking error and the ter-

mination at the finite iteration of the quasi-Newton-type

optimized ILC algorithm can be concluded in the follow-

ing theorem. In order to derive convergence property,

some properties of the searching directions are exhib-

ited as Lemmas 1–3 as follows.

Lemma 1 Suppose that the sequence of the gradi-

ent difference vectors {ẽ j}
k+1
j=1 and the searching direction

vectors {Δuj}
k+1
j=1 are generated by the SR1-ILC algorithm

(6)–(11) and (15) satisfying (Δuk+1 − Hkẽk+1)Tẽk+1 � 0.

Then, the following secant equations are true:

Hk+1ẽ j = Δuj, j = 1, 2, . . . , k. (17)

Proof Since the assumption that (Δuk+1 − Hkẽk+1)T

×ẽk+1 � 0, the SR1-ILC updating law is well-defined. The

secant equations are derived by mathematical inductive

method as follows.

Step 1 (For the case when k = 1) From the quasi-

Newton condition (12), the SR1-ILC updating law satis-

fies the secant equation, that is, H2ẽ1 = Δu1 is true.

Assume that the secant equations (17) are true for the

the case when k = m and m = 1, 2, . . . , that is,

Hm+1ẽ j = Δuj, j = 1, 2, . . . ,m. (18)

Step 2 Induce that for the case when k = m + 1 the

conclusion is true.

From (10) and (15), we have

H(m+1)+1 ẽ j

= Hm+1ẽ j

+
(Δum+1 −Hm+1ẽm+1)(Δum+1 −Hm+1ẽm+1)Tẽ j

(Δum+1 −Hm+1ẽm+1)ẽm+1
.

(19)

From the assumption (18), we have

(Δum+1 −Hm+1ẽm+1)Tẽ j

= ΔuT
m+1 ẽ j − ẽT

m+1(Hm+1ẽ j)
= ΔuT

m+1 ẽ j − ẽT
m+1Δuj

= ΔuT
m+1(GTGΔuj) − (GTGΔum+1)T

Δuj

= 0. (20)

Substituting (18) and (20) into (19), we have

H(m+1)+1ẽ j

= Hm+1ẽ j

= Δuj, j = 1, 2, . . . ,m + 1. (21)

This means that (17) holds when k = m + 1. �

Remark 1 From Lemma 1, it is observed that the se-

cant equation is guaranteed to depend on not only the

current tracking error but also all previous tracking er-

rors. The SR1-ILC algorithm has the hereditary property

Hk+1ẽ j = Δuj for j = 1, 2, . . . , k, where Hk+1ẽ j = Δuj is

named as the secant equation for ẽ j = ∇F(uj+1)−∇F(uj)
and Δuj = uj+1 − uj.

Lemma 2 Suppose that the searching direction vec-

tors Δu1,Δu2, . . . ,Δuk are GTG-conjugate and k � N.

Then, the searching direction vectors Δu1,Δu2, . . . ,Δuk

are linearly independent.

Proof Suppose that there exists such a set of num-

bers α1, α2, . . . , αk that the equality

α1Δu1 + α2Δu2 + · · · + αkΔuk = 0 (22)

holds. Then, (22) yields

0=ΔuT
i GTG(α1Δu1 + α2Δu2 + . . . + αkΔuk)

= αiΔuT
i GTGΔui, i = 1, 2, . . . , k.

Because ΔuT
i GTGΔui � 0, it is no other than αi = 0 for

all i = 1, 2, . . . , k. �

Remark 2 A set of nonzero searching direction vec-

tors {Δu1, . . . ,Δuk} is said to be conjugate with respect

to the symmetric positive definite matrix GTG if

ΔuT
i GTGΔuj = 0, i � j.
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Lemma 3 Suppose that the sequence of the gra-

dient difference vectors {ẽ j} and the searching direc-

tion vectors {Δuk} are generated by SR2-ILC algorithm

(6)–(11) and (16). Then, the searching direction vectors

Δu1,Δu2, . . . ,Δuk are conjugate for all k � N, and the

following secant equations are true

Hk+1ẽ j = Δuj, j = 1, 2, . . . , k, (23)

ΔuT
k GTGΔuj = 0, j = 1, 2, . . . , k − 1. (24)

Proof By using the mathematical inductive method,

we can prove (23) and (24) to be true.

For the case when k = 1, from the quasi-Newton con-

dition (12), we have H2ẽ1 = Δu1, it shows that (23) is

true.

For the case when k = 2, from the property of exact

line search ēT
k+1Δuk = 0, we obtain

ΔuT
2 GTGΔu1 = β2ēT

2 H2ẽ1 = β2ēT
2Δu1 = 0. (25)

From (14) and (25), we have

ΔuT
2 ẽ1 = ΔuT

2 GTGΔu1 = 0, (26)

ẽT
2 H2ẽ1 = ẽT

2Δu1 = (GTGΔu2)T
Δu1

= Δu2GTGΔu1 = 0. (27)

Thus,

H3ẽ1 =H2ẽ1 +
Δu2ΔuT

2 ẽ1

ΔuT
2 ẽ2

−
H2ẽ2 ẽT

2 H2ẽ1

ẽT
2 H2ẽ2

=H2ẽ1 = Δu1. (28)

In addition, from the quasi-Newton condition (12), we

have

H3ẽ2 = Δu2. (29)

Equalities (29) and (28) show that (23) is true and (26)

shows that (24) is true for the case when k = 2.

Assume that the secant equations (23) and (24) are

true for the index k = m and m = 1, 2, . . ., that is

Hm+1ẽ j = Δuj, j = 1, 2, . . . ,m, (30)

ΔuTm GTGΔuj = 0, j = 1, 2, . . . ,m − 1. (31)

For the case k = m + 1, since ēm+1 � 0, the property of

exact line search ēT
m+1Δum = 0 and inductive assumption

(31) for all j � m, we have

ēT
m+1Δuj

= ēT
j+1Δuj +

m∑
i= j+1

(ēi+1 − ēi)T
Δuj

= ēT
j+1Δuj −

m∑
i= j+1

ẽT
i Δuj

= 0 −
m∑

i= j+1
ΔuT

i GTGΔuj

= 0. (32)

By (13), (14), (30) and (32), we have

ΔuT
m+1GTGΔuj

= βm+1ēT
m+1Hm+1ẽ j

= βm+1ēT
m+1Δuj = 0, j � m. (33)

It shows that (24) holds for the case when k = m + 1.

By the quasi-Newton condition, when j = m + 1, we

have

H(m+1)+1 ẽm+1 = Δum+1. (34)

For all j � m, from (14) and (33), we have

ΔuT
m+1ẽ j = ΔuT

m+1GTGΔuj = 0, (35)

ẽT
m+1Hm+1ẽ j = ẽT

m+1Δuj

= (GTGΔum+1)T
Δuj = 0. (36)

By (35) and (36), we have

H(m+1)+1ẽ j =Hm+1ẽ j +
Δum+1ΔuT

m+1ẽ j

ΔuT
mẽm+1

−
Hm+1ẽm+1ẽT

m+1Hm+1ẽ j

ẽT
m+1Hm+1ẽm+1

=Hm+1ẽ j. (37)

Expressions (34) and (37) indicate that H(m+1)+1 ẽ j = Δuj

holds, for all j = 1, 2, . . . ,m + 1. �

Theorem 1 Assume that the tracking errors {ek} are

generated by SR1-ILC algorithm (6)–(11) and (15), then

the following conclusions hold.

i) If the searching direction vectors {Δuj}
N
j=1 are lin-

early independent, then the tracking error ek converges

to zero at the (N + 1)th iteration, which means that

eN+2 = 0 if (N + 1)th iteration is performed.

ii) If the searching direction vectors Δu1,Δu2, . . . ,Δuk

are linearly dependent, Δu1,Δu2, . . . ,Δuk−1 are linearly

independent, k � N and (11) is replaced by βk = 1, then

ek+1 = −∇F(uk+1) = 0, which means that the input signal

uk+1 is the solution and the tracking error ek+1 = 0.

Proof From Lemma 1 we have

Δuj = HN+1ẽ j = HNGTGΔuj, j = 1, . . . ,N.

If the search direction vectors {Δuj}
N
j=1 are linearly inde-
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pendent, then HN+1GTG = I, which implies that HN+1 =

(GTG)−1. Thus,

eN+2 = yd − GuN+2

= yd − GuN+1 − GβNHNēN+1

= eN+1 − G
ēT

N+1(HN+1ēN+1)HN+1ēN+1

(HN+1ēN+1)TGTG(HN+1ēN+1)

= eN+1 −
G · ēT

N+1(GTG)−1ēN+1 · (GTG)−1ēN+1

ēT
N+1(GTG)−1)T(GTG)(GTG)−1ēN+1

= eN+1 − G
ēT

N+1(GTG)−1ēN+1

ēT
N+1(GTG)−1)TēN+1

(GTG)−1ēN+1

= eN+1 − G(GTG)−1ēN+1

= eN+1 − G(GTG)−1GTeN+1

= 0.

Consider the case when the searching direction vectors

Δu1,Δu2, . . . ,Δuk become linearly dependent. Let Δuk

be a linear combination of the previous iterations, we

have

Δuk = ξ1Δu1 + . . . + ξk−1Δuk−1. (38)

For some scalar ξi, from (14), (17) and (38) we obtain

that

Hkẽk =HkGTGΔuk

= ξ1HkGTGΔu1 + . . . + ξk−1HkGTGΔuk−1

= ξ1Hkẽ1 + ξk−1Hkẽk−1

= ξ1Δu1 + . . . + ξkΔuk−1

=Δuk.

Since ẽk = ∇F(uk+1) − ∇F(uk) = ēk − ēk+1 = Hkēk and

Δuk = uk+1 − uk = Hkēk, we obtain that

Hk(ēk − ēk+1) = Hkēk,

which, by the non-singularity of Hk, implies that ēk+1 = 0,

that is ∇F(uk+1) = 0. Thus, the input signal uk+1 is the

solution. Since ēk+1 = GTek+1 = 0 and G is nonsingular,

then we have ek+1 = 0. �

Theorem 2 Assume that the tracking errors {ek} are

generated by the SR2-ILC algorithm (6)–(11) and (16).

Then, the tracking error ek is reduced to zero at the

most (N+1)th iteration. This implies that eN+2 = 0 if the

(N + 1)th iteration is performed.

Proof If the (N + 1)th iteration is performed, it fol-

lows from (24) in Lemma 3 that the vectors of search

directions Δu1,Δu2, . . . ,ΔuN are conjugate with respect

to the matrix GTG. Thus, the searching direction vectors

Δu1,Δu2, . . . ,ΔuN are linearly independent by Lemma 2.

From (23) in Lemma 3, it yields

HN+1ẽ j = Δuj, j = 1, 2, . . . ,N,

that is,

HN+1GTGΔuj = Δuj, j = 1, 2, . . . ,N.

Therefore, HN+1 = (GTG)−1.

Additionally,

eN+2 = yd − GuN+2

= yd − GuN+1 − GβNHNēN+1

= eN+1 − G
ēT

N+1(HN+1ēN+1)HN+1ēN+1

(HN+1ēN+1)TGTG(HN+1ēN+1)

= eN+1 −
G · ēT

N+1

(
GTG
)−1

ēN+1 ·
(
GTG
)−1

ēN+1

ēT
N+1 (GTG)−1)T (GTG) (GTG)−1 ēN+1

= eN+1 − G
ēT

N+1

(
GTG
)−1

ēN+1

ēT
N+1 (GTG)−1)T ēN+1

(
GTG
)−1

ēN+1

= eN+1 − G(GTG)−1ēN+1

= eN+1 − G(GTG)−1GTeN+1

= 0.

�

Theorem 3 Assume that the tracking errors {ek} are

generated by quasi-Newton-type optimized ILC algo-

rithm (6)–(11) for both the correction forms (15) and

(16) for all k, then the norm of tracking error is mono-

tone decreasing, that is, ‖ek+1‖2 � ‖ek‖2.

Proof

‖ek+1‖
2
2 − ‖ek‖

2
2

= ‖yd − Guk+1‖
2
2 − ‖ek‖

2
2

= ‖yd − G(uk + βkHkēk)‖22 − ‖ek‖
2
2

= ‖yd − Guk − βkGHkēk‖
2
2 − ‖ek‖

2
2

= ‖ek − βkGHkēk‖
2
2 − ‖ek‖

2
2

= (ek − βkGHkēk)T(ek − βkGHkēk) − eT
k ek

=−2βkēT
k Hkēk + β

2
k(Hkēk)T(GTG)Hkēk

=−2
ēT

k (Hkēk)

(Hkēk)T(GTG)(Hkēk)
ēT

k (Hkēk)

+

( ēT
k (Hkēk)

(Hkēk)T(GTG)(Hkēk)

)2
(Hkēk)T(GTG)(Hkēk)

=−
(ēT

k (Hkēk))2

(Hkēk)T(GTG)(Hkēk)
� 0.
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Hence, the result ‖ek+1‖2 � ‖ek‖2 is proven. �

Remark 3 From Theorems 1–3, it is clarified that the

SR1(SR2) ILC has the property of quadratic termination,

that is, the tracking error ek converges monotonically to

zero at the most (N+1)th iteration. While as the NOILC

in [2], Gradient-ILC in [16] and PA-ILC in [18] are con-

vergent with nonzero quotient convergence factors. This

implies that the proposed quasi-Newton ILC may guar-

antee zero-tracking error at a finite iteration whilst the

NOILC in [2], Gradient-ILC in [16] and the PA-ILC in [18]

only guarantee the tracking error is at most very small.

4 Numerical simulations

In order to manifest the feasibility and practicality of

the proposed SR1-ILC (SR2-ILC) scheme to a wide range

of systems, this section gives simulation results for three

examples, of which Example 1 is a well-conditioned sys-

tem whilst Example 2 is an ill-conditioned system and

Example 3 is a real system. For the same initial input u1,

SR1-ILC and SR2-ILC can generate the same sequence of

inputs uk, the details can be referred to the articles [27]

and [28].

Example 1 Consider the following discrete time-

invariant SISO system, which was adopted in [29].

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x(t + 1) =

⎡
⎢⎢⎢⎢⎢⎣
−0.1 −0.1

0.1 0.78

⎤
⎥⎥⎥⎥⎥⎦ x(t) +

⎡
⎢⎢⎢⎢⎢⎣
−0.1

−0.1

⎤
⎥⎥⎥⎥⎥⎦u(t),

y(t) =
[
0.5 0

]
x(t).

(39)

The desired trajectory is predetermined as

yd(t) = 0.5exp(
t

100
) sin(

6t
50

),

t ∈ I = {0, 1, . . . , 100}.

The initial state is set xk(1) = [0 0]T and the beginning

input u1(t) = 0. It is calculated that the condition num-

ber of the matrix GTG is 1.6145 and the largest singular

value of GTG is 0.3524. This means that the exampled

system (39) is well-conditioned.

The comparative tracking errors in 2-norm of the

SR1-ILC (SR2-ILC) algorithm with that of the norm opti-

mal ILC (NOILC) [2] and gradient-based ILC (Gradient-

ILC) [16] are presented in Fig. 1. The tracking outputs of

the SR1-ILC (SR2-ILC) at the 5th iteration and that of the

NOILC and Gradient-ILC are exhibited in Fig. 2. It is seen

from Figs. 1 and 2 that the tracking error of the SR1-ILC

(SR2-ILC) algorithm converges faster than the others.

Fig. 1 Tracking errors of SR1(SR2)-ILC, Gradient-ILC and

NOILC.

Fig. 2 Tracking outputs of SR1(SR2)-ILC, Gradient-ILC and

NOILC at the 5th iteration.

Example 2 Consider the following discrete time-
invariant SISO systems that was used in [30].

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x(t + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8187 0 0

0.4526 0.9915 0

0.0023 0.0100 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(t) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0.0197

0.0211

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(t),

y(t) = [0 0 1]x(t).
(40)

The discrete time interval t ∈ I = {1, 2, . . . , 1200}. Set
the initial state xk(1) = [0 0 0]T, the beginning input
u1(t) = 0. The desired trajectory is given as yd(t) =

10 × (1 + sin(
π

600
(t − 1) −

π

2
)). It is computed that the

largest singular value of GTG is 31.9026 and the condi-
tion number is 9.2306 × 106. This implies that system
(40) is ill-conditioned. Fig. 3 displays the tracking errors
in 2-norm of SR1-ILC (SR2-ILC), whilst Fig. 4 exhibits the
tracking errors of SR1-ILC (SR2-ILC), NOILC in natural
logarithm of 2-norm.

From Fig. 3, it is found that the tracking error of the
SR1-ILC (SR2-ILC) converges to zero at the 10th itera-
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tion and Fig. 4 illustrates that the tracking error of the
SR1-ILC (SR2-ILC) converges faster than that of NOILC
algorithm. Additionally, Fig. 5 gives a comparable track-
ing errors of natural logarithm form of 2-norm of SR1-ILC
(SR2-ILC) with those produced by the PA-ILC [18] with
polynomial degree being L = 1, 2, . . . , 7, respectively. It
shows that the convergence of tracking error of SR1-
ILC (SR2-ILC) is faster than the PA-ILC after the 15th
iteration. As system (40) is extremely ill-conditioned, its
convergent assumption with respect to the Gradient-ILC
algorithm is not guaranteed.

Fig. 3 Tracking error of SR1(SR2)-ILC.

Fig. 4 Tracking errors of SR1(SR2)-ILC and NOILC.

Fig. 5 Tracking errors of SR1(SR2)-ILC and PA-ILC.

Example 3 In microelectronics manufacturing, in

order to guarantee the rapid thermal processing to work

at the designed set-point, the temperature of the mono-

crystal reactor must be tuned to follow an operating

trajectory [6]. As the rapid thermal processing is usu-

ally scheduled as a repetitive batch process, the ILC

scheme is adequately to be utilized so that transient

temperature of the reactor to follow a desired trajec-

tory. Suppose that the transfer function of the reactor is

identified as Gp(s) =
K

(τWs + 1)(τLs + 1)
, where K is the

process gain, τW denotes the heating time constant of

the crystal and τL the heating time constant of the crys-

tal light. Conventionally, the power ratio of the crystal

light is tuned by a proportional-derivative-integral (PID)

controller. Given that the transfer function of the PID

controller is GC(s) =
KC

1 + 1/τIs + τDs
, where KC, τI and

τD are proportional, integral and derivative gains, re-

spectively [6]. By converting the dynamics of frequency

domain into that of time domain and then discretiz-

ing the PID-controller-tuned closed-loop control system

with the 0.05s sampling step, the discrete time system

is described as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.05 0

0 1 0.05

−0.05a0 −0.05a1 1 − 0.05a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(t)

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0.05

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(t),

y(t) = [b0 b1 b2]x(t),

(41)

where

a0 =
KKC

τIτWτL
, a1 =

1 + KKC

τWτL
,

a2 =
(τW + τL) + KKCτD

τWτL
,

b0 =
KKC

τIτWτL
, b1 =

KKC

τWτL
, b2 =

KKCτD

τWτL
.

By setting a group of parameters as K = 0.9, τW = 5,

τL = 1, KC = 1.51, τI = 15 and τD = 3.33. Set the

initial state xk(0) = [0 0 0]T and the initial u1(t) = 0,

where t ∈ [0, 100]. The desired trajectory is defined as

yd(t) = 1−exp(−0.4t). The comparative tracking error of

the proposed quasi-Newton ILC scheme with that of the

Gradient-type ILC and the NOILC is exhibited in Fig. 6,

whilst the outputs at the 12th iteration of the the pro-
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posed quasi-Newton ILC scheme, the Gradient-type ILC

and the NOILC are displayed in Fig. 7.

It is seen from Figs. 6 and 7 that the proposed quasi-

Newton SR1 (SR2)-ILC owns better tracking perfor-

mance.

Fig. 6 Comparative tracking errors.

Fig. 7 Comparative tracking performance at the 12th iteration.

5 Conclusions

In this paper, a quasi-Newton-type optimized ILC is

proposed for a class of discrete linear time-invariant

SISO systems. The idea is to use an approximation ma-

trix to replace the inverse model of the plant. The conver-

gence analysis indicates that the proposed ILC algorithm

performs well with the tracking error vanishing within

finite iterations. Numerical simulations testify that the

proposed quasi-Newton-type optimized ILC scheme is

effective though the system is ill-conditioned. However,

the proposed scheme requires a precise knowledge of

the system. In reality, the system is unavoidably per-

turbed by noise and sometimes the system is nonlinear.

How to solve the perturbation and the nonlinearity is

challenging in the future.
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