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Abstract
In 4-stroke internal combustion engines, air-fuel ratio control is a challenging task due to the rapid changes of engine throttle,

especially during transient operation. To improve the transient performance, managing the cycle-to-cycle transient behavior of the
mass of the air, the fuel and the burnt gas is a key issue due to the imbalance of cyclic combustion process. This paper address the
model-based estimation and control problem for cyclic air-fuel ratio of spark-ignition engines. A discrete-time model of air-fuel
ratio is proposed, which represents the cycle-to-cycle transient behavior of in-cylinder state variables under the assumptions of
cyclic measurability of the total in-cylinder charge mass, combustion efficiency and the residual gas fraction. With the model,
a Kalman filter-based air-fuel ratio estimation algorithm is proposed that enable us to perform a feedback control of air-fuel
ratio without using lambda sensor. Finally, experimental validation result is demonstrated to show the effectiveness of proposed
estimation and control scheme that is conducted on a full-scaled gasoline engine test bench.
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1 Introduction

In the last several decades, the performance of the
combustion engines is focused on the optimization of
fuel efficiency and emissions due to the limitation of
sources of fuel and environmental aspects. The cyclic
fluctuation in combustion engines is an important fact
that affects the engine performances, such as the air-fuel
ratio and torque generation, since the cyclic variation of
the residual burnt gas, the unburnt fuel and the unre-
acted air succeeding the next cycle from previous cycle

effect to the cyclic combustion quality [1, 2]. However,
the combustion event in-cylinder is a complex phenom-
ena and is difficult to analyze on cyclic basis due to
the high pressure, temperature variation and gas ex-
change dynamics during cycles. Moreover, the combus-
tion event exhibits stochastic characteristics.

In the research field of stochastic variation, several
investigations based on experimental and physical mod-
els have been introduced, such as experimental study
of cyclic combustion variation as reflected in the max-
imum pressure, indicated mean effective pressure, and
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dynamic injection timing [3–5]. The stochastic model for
the cyclic combustion variation and prier-cycle effects
considering the in-cylinder residual gas contents [6–9].

To challenging the air-fuel ratio (AFR) control prob-
lems, several researches have been reported, such as
AFR using model predictive control based on a neural
network model in real time to cope with nonlinear dy-
namics [10]. In [11], AFR control at desired target level
based on multi-input-multi-output sliding mode control
scheme to simultaneously control the mass flow rate of
both port and direct fuel injection systems with guar-
anteed stability to drive the system AFR under various
air flow disturbances is reported. AFR control based on
stochastic L2 disturbance attenuation with considering
the residual gas fraction as a stochastic process with
Markovian property is discussed in [12]. Control of AFR
based on adaptive control approach of time delay sys-
tems in which adoptive posicast controller has been de-
veloped that used adaptation in both feedforward and
feedback paths [13]. Linear quadratic tracking control
for AFR based on a control-oriented model during engine
transient operation is presented in [14]. Usually, these
air-fuel control applications are based on lambda-sensor
which is equipped on the exhaust manifold. Therefor the
combustion-to-exhaust delay and the transient dynam-
ics of the sensor constraint the performance of air-fuel
control, specially during transient operating mode.

Recently, in-cylinder pressure-based air-fuel ratio es-
timation method is proposed to cope with the sensing
delay. In the literature [15], the estimation of instanta-
neous AFR using the in-cylinder pressure signal in which
the advantage of linear relation between AFR and the
2nd or the 3rd order moment of pressure cycle has
been considered and then a simple regression model
and its identification is proposed and [16] presented
a model and identification based on net heat releases
profile using in-cylinder pressure signal for cyclic av-
eraging AFR, but still variance of the estimates is larger
which need to be improved. In recent trends researchers
are getting almost information of engine behavior us-
ing the advantage of in-cylinder pressure data, which
is fast in response in transient mode. An investigation
of feedback signal based on in-cylinder pressure can be
seen in [17, 18]. Since the in-cylinder contents such as
in-cylinder air, fuel and residual gas compositions are
difficult to measure directly except in-cylinder pressure
data, a model based observer is thus necessary to es-
timate these quantities for the analysis of in-cylinder
cyclic variation of contents and control application in

transient mode.
In this paper, a discrete-time model and control sys-

tem for air-fuel ratio that represents the cyclic transient
behavior of in-cylinder state variables under the assump-
tions of measurability of the cyclic total in-cylinder mass,
residual gas fraction and combustion efficiency using the
in-cylinder pressure data is proposed. The control sys-
tem is modeled as a time-varying linear system as the
state variables are considered as total fuel mass, resid-
ual unreacted air and burnt gas mass. The Kalman filter
algorithm is used for the estimation of these state vari-
ables and a PI feedback controller approach is used for
the control of air-fuel ratio to desired value. Validation
of model and control system for air-fuel ratio have been
done in steady and transient mode of experiments on a
gasoline engine test bench.

2 Experimental setup and measurement
2.1 Experimental setup

In this research work, a gasoline direct injection (GDI)
engine (Engine type: 2 GR-FSE, V6, 3.5 L (TOYOTA)) is
used for the experiment and analysis. The engine spec-
ifications are given in Table 1. Engine is coupled to a
HORIBA made low inertial dynamometer as shown in
Fig. 1. The engine is facilitated by direct and port fuel
injection which can be switched automatically on oper-
ating conditions. The engine is well instrumented for the
analysis and control of engine systems. Variable valve
timing (VVT) system is also in-built for the analysis of
the effect of VVT on the in-cylinder gas contains, such as
residual gas mass during cyclic fluctuation. The dSPACE
(DS1106) and electronic control unit (ECU) are used
for the capturing of data and control input, such as of
throttle position, fuel injection, spark advance and VVT.
An interface system is used to avoid the signal delay in
connecting area network (CAN). In addition, for the anal-
ysis of desired experiment and study, additional sensors
are also installed in the engine, such as individual cylin-
der air-fuel ratio sensor, intake port temperature sensor,
NOx sensor and manifold pressure sensor. Apart from
these, a separate combustion analyzer (A&D) is also
used for the heat release rate and combustion efficiency
analysis simultaneously.

In this experimental setup, the data of total in-cylinder
charge, combustion efficiency and residual gas using in-
cylinder pressure data in real time experiment are cap-
tured with the help of simulink program for the 5th
cylinder.
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Table 1 Engine specifications.

Fuel system Port & Direct injection
Compression ratio 11.8:1
Bore X stroke (mm) 94 × 83
Displacement (cm3) 3456
Max power (kW) 228 @ 6400 r ·min−1

Max torque (N ·m) 375 @ 4800 r ·min−1

Fig. 1 Experimental setup.

2.2 Pressure sensor based measurement

In-cylinder cyclic total charge Mtp(k) is calculated
in real time experiment using the in-cylinder pressure
data [15,19] as given below:

Mtp(k) =
ΔP(k)V1(k)

RT1(k)
{(V1(k)

V2(k)
)n − 1}−1, (1)

where P and V denote the in-cylinder pressure and
volume, respectively. ΔP is the pressure difference be-
tween pressure P2(k) and P1(k). P1(k) and V1(k) data
are considered at 5◦ crank angle after intake valve clo-
sure (aIVCi). P2(k) and V2(k) data are considered at 45◦

crank angle after intake valve closure (aIVCi) during the
compression stroke for maintaining the adiabatic poly-
tropic process. n is the polytropic constant and assumed
constant value (1.32). T1 is in-cylinder gas temperature
(assumed engine warmed temperature) and R is the uni-
versal gas constant.

The residual gas fraction r(k) at the end of exhaust
stroke is calculated using in-cylinder pressure data is as
given in equation (2) [1].

r(k) =
Mr(k)
Mt(k)

=
(V4(k)
V3(k)

)(P4(k)
P3(k)

) 1
n , (2)

where P3(k) and V3(k) data are considered at 5◦ crank an-
gle before exhaust valve open (bEVOe). P4(k) and V4(k)
data are considered at 5◦ crank angle before exhaust
valve closure (bEVCe) for avoiding the signal response
delay and fluctuation in signals due to mechanical sys-
tems. A cyclic process for measurement points for the
total charge and residual gas fraction are shown in Fig. 2.

Similarly, the combustion efficiency Cf(k) on cycle ba-
sis is also calculated using the ratio of total heat release
during the cycle and the energy contained in the fuel
injected as given below.

The heat release is calculated using the thermody-
namics heat release model [20] given in equation (3).
The heat transfer from the wall and lubricant oil is not
taken in account for avoiding the computational load.

Q(k)=
n

n − 1

� EVO

st.comb.
p(k)dv(k)

+
1

n − 1

� EVO

st.comb.
v(k)dp(k). (3)

The fuel energy calculated as

E(k) = uf(k) LHV. (4)

Hence from equations (3) and (4), the combustion ef-
ficiency (Cf(k)) in on-line experiment can be calculated
on cycle basis as

Cf(k) =
Q(k)
E(k)
, (5)

where st.comb., EVO and LHV denotes the start of
combustion, exhaust valve opening and the lower heat-
ing value of fuel, respectively.

For the validation of total charge mass calculated us-
ing the signal from pressure sensor, a reference value
of total charge mass is also calculated using the direct
measurement of air mass, fuel mass form sensor and
calculated RGF based on pressure data and results of
total charge using both methods have been compared.
The direct measurement of fresh inducted air, fresh in-
jected fuel and RGF using in-cylinder pressure data are
used to calculated the total mass in direct measurement
as given below:

Mts(k) =
mind(k − 1) + uf(k − 1)

(1 − r(k))
, (6)

where mind(k−1) and uf(k−1) denotes the fresh inducted
air and injected fuel respectively from the previous cycle
for the combustion of present cycle on the basis of cycle
definition as shown in Fig. 2.
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Fig. 2 Cyclic gas exchange definition.

2.3 Problem descriptions

As it is well known that the AFR is the most affect-
ing source for the automotive performance. Thus, our
main aim is to develop a model which can display the
transient AFR estimation and its control with negligible
delay in signals. In this work, a discrete time model is
developed assuming the in-cylinder state variables such
as in-cylinder total fuel mf, residual air mra and burnt
gas mb. These state variables are estimated using the
Kalman filter estimation method. The input variables for
the model and state estimation have been used as fresh
injected fuel, inducted air mass, residual gas fraction and
combustion efficiency. After estimating the state vari-
ables, the in-cylinder AFR is calculated using same state
variables and comparison has been done with AFR mea-
sured by lambda sensor. The estimated AFR is then con-
trolled to a reference value (stoichiometric AFR (14.6))
using feedback PI controller. The input control is con-
sidered as direct fuel injection uf.

3 Modeling and estimation

The model is developed on the basis of the cycle
definition from BDCi(k) to BDCi(k + 1) as kth cycle as
shown in Fig. 2. In this cycle, data at BDCi(k) is consid-
ered in kth cycle and data at BDCi(k+1) is considered in
k + 1th cycle. Next cycle (k + 1th cycle) variables can be
estimated from the present cycle (kth cycle) variables
using this model. From Fig. 2, it can be state that the
total mass of the charge Mt(k) including fresh charge
of present cycle and residual burnt gas mass, unreacted
air and unburnt fuel mass from previous cycle will have

contribution in the combustion performance of present
cyclic process.

3.1 Modeling

The in-cylinder total mass Mt(k) for the combustion
in one cycle includes the total fuel, unreacted air, burnt
gas and fresh inducted air mass which is represented as

Mt(k) = mf(k) +mra(k) +mb(k) +mind(k − 1). (7)

For the sake of simplicity during the model derivation,
two assumptions have been considered as follows:

1) Mass is conserved during the gas exchange in cyclic
process.

2) The fraction of residual air, residual fuel and resid-
ual brunt gas of a cycle are all assumed to be equivalent.

r(k) =
mra(k)
ma(k)

=
mrf(k)
mf(k)

=
mrb(k)
mb(k)

. (8)

On the basis of cycle definition in Fig. 2 and the above
assumptions, the total mass of fuel, mass of unreacted
air (residual air) and residual burnt gas for the next cycle
combustion (i.e., k + 1th cycle) are derived as:

a) From the mass conservation law, the total mass of
fuel available for start of combustion in k + 1th cycle is
equal to the summation of mass of unburnt fuel in kth
cycle and fresh fuel injected at the start of k + 1th cycle
which is considered in kth cycle as defined in cycle def-
inition Fig. 2. Hence, the total fuel in k + 1th cycle can
be written in mathematical form as

mf(k + 1) = mrf(k) + uf(k).
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If the combustion efficiency Cf(k) and residual gas
fraction r(k) on cycle basis are measurable, then the un-
burnt fuel which is available for k + 1th cycle from kth
cycle will be equal to (1 − Cf(k))r(k)mf(k). Hence, after
substituting unburnt fuel in terms of Cf(k) and r(k), the
total fuel for the k + 1th cycle can be written as

mf(k + 1) = (1 − Cf(k))r(k)mf(k) + uf(k). (9)

b) The unreacted air (residual air) at the start of com-
bustion in k+ 1th cycle is equal to the residual air which
is trapped in cylinder at the end of kth cycle. This un-
reacted air can be calculated in terms of combustion
efficiency and RGF as:

Total air mass before start of combustion in kth cy-
cle is the summation of unreacted air mass (mra(k)) and
fresh inducted air mass (mind(k− 1)). When combustion
starts, the λdCf(k)mf(k) amount of air mass will con-
sumed during the combustion. Hence, the residual air
mass can be obtained by the multiplication of RGF (r(k))
in total air mass available excepting the air mass which
has been consumed in combustion process as

mra(k + 1) = r(k){[mra(k) +mind(k − 1)]
−λdCf(k)mf(k)}.

After simplification, the model for unreacted air mass
becomes as

mra(k + 1)= r(k)mra(k)−λdr(k)Cf(k)mf(k)
+r(k)mind(k − 1). (10)

c) Similarly, the burnt gas at the start of combustion
in k + 1th cycle is equal to the residual burnt gas at the
end of kth cycle. This burnt gas will be equal to the sum-
mation of the residual burnt gas from previous cycle and
burnt gas contributed by air and fuel during combustion.
The burnt gas in term of combustion efficiency and RGF
can be written as

mb(k + 1) = r(k)[mb(k) + Cf(k)mf(k)+λdCf(k)mf(k)].

After simplification, the model for burnt gas becomes as

mb(k + 1) = r(k)mb(k) + r(k)Cf(k)(1 + λd)mf(k), (11)

where mf(k) denotes the mass of total fuel (= uf(k−1)+
mrf(k − 1)) in the cycle at the start of combustion, mrf is
unburnt fuel from previous cycle which is available for
the combustion in present cycle, Cf(k) is the combustion
efficiency, uf(k) is fresh fuel injected, r(k) is residual gas

fraction (RGF), mra(k) is unreacted air mass, λd is the
stoichiometric air fuel ratio (14.6), mb(k) is the mass of
burnt gas and mind(k − 1) is fresh air which is considered
in previous cycle on cycle definition in Fig. 2.

For the modeling and control system of air-fuel ratio,
two assumptions are considered for the sake of simplic-
ity as follows:

1) mind(k − 1) = Δ + ζ(k).
2) ymes(k) =Mt(k) − Δ.
Then finally, discrete time model for estimation of

cyclic behavior is represented as

x(k + 1) = A(k)x(k) + B1uf(k) + B2(k)(Δ + ζ(k)), (12)
y(k) = Cx(k) + ξ(k), (13)

where Δ is constant and measured by the air mass flow
sensor, ζ(k) is variance (ζ(k) ∈ N(0, σ2). Mt(k) is the total
mass of charge in cylinder which is measured using the
in-cylinder pressure data as discussed in Section 2.2.
ξ(k) is the measurement noise, x(k) is the state variables
and A(k), B1, B2(k) and C are constants as given below:

x(k) = [mf(k) mra(k) mb(k) ]T,

A(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − Cf(k))r(k) 0 0

−λdr(k)Cf(k) r(k) 0

r(k)Cf(k)(1 + λd) 0 r(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B2(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

r(k)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and C = [1 1 1].

3.2 Estimation using Kalman filter

For the estimation of in-cylinder state variables, a
Kalman filter algorithm is used for the same model.

Estimated variables and control output for the air-fuel
control system using the Kalman filter estimation are
written as

x̂(k + 1) = A(k)x̂(k) + B1uf(k) + B2(k)(Δ + ζ(k))
+ L(ymes(k) − ŷ(k)), (14)

ŷ(k) = Cx̂(k). (15)

The Kalman filter gain is calculated as given below:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L(k) = P−(k)CT[CP−(k)CT + Pv]−1,

P−(k) = A(k)P+(k − 1)AT(k) + Pw,

P+(k) = [I − L(k)C]P−(k),

(16)
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where L(k) denotes the Kalman filter gain which can be
calculated using equation (16). Pw and Pv are assumed
to be covariance of process and sensor white noise re-
spectively as Gaussian random process with zero mean.
ymes(k) is measured from the experiment and ŷ(k) is
estimated from the Kalman filter.

4 AFR feedback control design

AFR is estimated by the Kalman filter method using
the input variables as fresh fuel injected, inducted air,
residual gas fraction and combustion efficiency. A feed-
back PI controller is designed for the AFR control. The
estimated AFR from equation (17) is controlled at de-
sired reference value (Ref. (14.6)). The input control for
AFR is used as direct fuel injection (uf). A schematic di-
agram for estimation and feedback control is shown in
Fig. 3.

AFRest(k) =
mind(k − 1) + m̂ra(k)

m̂f(k)
. (17)

Fig. 3 Kalman filter estimation and feedback PI control
schematic block diagram.

5 Validation

5.1 Model validation

Model validation is done in off-line simulation and
real time experiment using total in-cylinder charge mea-
sured by both methods (i.e., measured by directly sensor
(Mts(k)) and calculated by pressure data (Mtp(k)). In sim-
ulation, actual experimental data such as fresh inducted
air, fuel injected, total in-cylinder charge, residual gas
fraction and combustion efficiency on cycle basis are
used as input variables.

5.1.1 Model validation using Mts(k)

In this case, ymes(k) is calculated from equation (18)
and AFRmeas(k) is measured by lambda sensor and then

comparison has been done with model result as shown
in Fig. 4. In graph, it is shown that the simulation result
of control output y(k) and AFR are able to approach the
measured result and the delay in signals is found ap-
proximately 0.25 ms which is equal to one simulation
sampling time.

ymes(k) =Mts(k) − Δ, (18)

where Mts(k) is calculated from equation (6) andΔmea-
sured from air mass flow sensor.

Fig. 4 Comparison of simulation result of model and measured
control output and AFR using Mts(k).

5.1.2 Model validation using Mtp(k)

In this case, ymes(k) is calculated from equation (19)
and AFRmeas(k) is measured from sensor and then com-
parison has been done with model result as shown in
Fig. 5.

Fig. 5 Comparison of simulation result of model and measured
control output and AFR using Mtp(k).

It is observed that, the results in this case contain
more noise and some offset compared to previous case.
The noise exhibits due to high cyclic fluctuation in the
in-cylinder pressure data, which is mainly caused due to
the combustion phenomena in cylinder. The offset ap-
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pears due to the model assumptions and measurement
process of model input variables.

ymes(k) =Mtp(k)r(k) +mfn(k − 1), (19)

where Mtp(k) and r(k) are calculated from equation num-
ber (1) and (2), respectively. mfn(k − 1) is measured by
the fuel sensor.

5.2 Experimental validation

AFR is calculated using the estimated in-cylinder state
variables as unreacted air (m̂ra(k)) and total fuel (m̂f(k))
in real time experiment using Kalman filter algorithm
and fresh inducted air (mind(k − 1)) measured by air
mass flow sensor using equation (17) and comparison
has been done with the measured value of AFR using
lambda sensor. The comparison of estimated AFR is also
done with the calculated AFR by fresh inducted air and
fresh injected fuel.

Some offset between estimated and measured AFR
is observed, which mainly caused due to the assump-
tions in model and measurement process of model input
variables, such as in-cylinder total charge, combustion
efficiency and residual gas fraction. Experiments are con-
ducted in different operating conditions to observe the
error between estimated, measured and calculated AFR.
Figs. 6 and 7 show the estimated, measured and calcu-
lated AFR which implies that the error between the esti-
mated and measured by lambda sensor is less than 5%
and also error is less during the middle range of speed
and load which is acceptable in practical uses. The esti-
mated and measured AFR mean value and error between
both at different operating conditions are shown in Ta-
ble 2. A sample of real time estimated AFR using Kalman
filter algorithm based on the total charge measured by
pressure sensor and AFR measured by lambda sensor
in transient mode experiment is also shown in Fig. 8.
In graph, it can be seen that by the changes of input
throttle, the estimated̂AFR(k) is able to follow the mea-
sured AFRmeas(k) and becomes stable after some delay
of cycle. It is also shown that the response of estimated
AFR is faster than the AFR measured by lambda sensor
in transient mode of experiment which is indicated by
circles in the same graph.

Remark 1 The estimated AFR shows faster response
than lambda sensor, because the estimated AFR has
been estimated by Kalman filter algorithm (assuming

the process and measurement noise as Gaussian white
noise) using the in-cylinder pressure signal which gives
faster signal response compared to the lambda sensor
signal. The offset between AFR results improved due to
considering in account of the contribution of residual air
and residual fuel.

Fig. 6 Comparison of estimated ̂AFR(k) by Kalman filter and
measured AFRmeas by lambda sensor at (a) 1000 r ·min−1,
60 N ·m, (b) 1000 r ·min−1, 120 N ·m, and (c) 1000 r ·min−1,
180 N ·m in steady state experiment.

Fig. 7 Comparison of estimated ̂AFR(k) by Kalman filter and
measured AFRmeas by lambda sensor at (a) 2000 r ·min−1,
60 N ·m, (b) 2000 r ·min−1, 120 N ·m, and (c) 2000 r ·min−1,
180 N ·m in steady state experiment.



158 M. Kumar, T. Shen / Control Theory Tech, Vol. 13, No. 2, pp. 151–159, May 2015

Table 2 Estimated mean AFR and its offset from
measured by lambda sensor.

Operating condition ̂AFR AFRmes Error (%)

1000 r ·min−1, 60 N ·m 14.126 14.570 3.047
1000 r ·min−1, 120 N ·m 14.411 14.527 0.799
1000 r ·min−1, 180 N ·m 14.453 14.458 0.032
1500 r ·min−1, 60 N ·m 14.098 14.496 2.742
1500 r ·min−1, 120 N ·m 14.473 14.481 0.058
1500 r ·min−1, 180 N ·m 14.603 14.483 0.82
2000 r ·min−1, 60 N ·m 14.066 14.453 2.678
2000 r ·min−1, 120 N ·m 14.291 14.458 1.150
2000 r ·min−1, 180 N ·m 14.077 14.496 2.704

Fig. 8 Comparison of estimated ̂AFR(k) by Kalman filter and
measured AFRmeas by lambda sensor in transient mode exper-
iment.

5.3 Validation of AFR feedback control

A feedback PI control approach is implemented to
control AFR using the Kalman filter based estimated state
variables. The response of PI control is also analyzed by
the changes of desired value (reference) of AFR keeping
the throttle constant. A graph of transient AFR (desired
value) to observe the control response time is shown in
Fig. 9. It is shown that the PI controller is able to con-
trol AFR after some delay of time (approximately 1.5 s).
The experimental results of AFR control at different op-
erating conditions to verified the AFR control approach
are indicated by circles which shown in Figs. 10 and
11. These results indicate that the estimated AFR and

its control using the in-cylinder pressure data can give
faster response with negligible delay in feedback signals
compared to lambda sensor which fulfill the research
objective of several researchers.

Fig. 9 PI control response by changes of desired reference
AFR.

Fig. 10 PI feedback control of AFR at 1000 r ·min−1, 60 N ·m.

Fig. 11 PI feedback control of AFR at 2000 r ·min−1, 96 N ·m.
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6 Conclusions

A discrete-time model is developed that represents
the cycle-to-cycle transient behavior of the total mass
of fuel, unreacted air and residual gas. As an application
of the proposed model, Kalman filter-based estimation
algorithm is proposed under the assumption that the
stochastic property of cyclic variation of the combus-
tion efficiency and the residual gas fraction are Gaus-
sian process. It should be noted that the measurement
of cyclic total in-cylinder charge, combustion efficiency
and residual gas fraction is still a challenging task due to
the cyclic imbalances and if the noise does not satisfied
the assumptions of stochastic properties and changes
according to operating mode, then some correction is
needed in model for implementation on different sys-
tems.
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