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Abstract
This paper discusses discrete-time stochastic linear quadratic (LQ) problem in the infinite horizon with state and control

dependent noise, where the weighting matrices in the cost function are assumed to be indefinite. The problem gives rise to a
generalized algebraic Riccati equation (GARE) that involves equality and inequality constraints. The well-posedness of the indefinite
LQ problem is shown to be equivalent to the feasibility of a linear matrix inequality (LMI). Moreover, the existence of a stabilizing
solution to the GARE is equivalent to the attainability of the LQ problem. All the optimal controls are obtained in terms of the
solution to the GARE. Finally, we give an LMI -based approach to solve the GARE via a semidefinite programming.
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1 Introduction

It is well known that the linear quadratic (LQ) opti-
mal control problem of deterministic systems was first
founded by Kalman [1], which has been playing impor-
tant role in both theory and applications. The deter-
ministic LQ problem has been discussed extensively by
many researchers; see, e.g., [2–5]. The stochastic LQ

problem was initiated by Wonham [6] and has been
investigated; see [7–14] and the references therein. In
the literature, it is a common assumption that the con-
trol weighting matrix should be positive definite and
the state weighting matrix should be nonnegative. In
this case, the solvability of the LQ problem is equiva-
lent to that of the Riccati equations. However, a class of
stochastic LQ problems with indefinite control weights
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may still be well-posed [15]. The solvability of indefinite
stochastic LQ problem is closely linked to the solvability
of the indefinite stochastic Riccati equations. There are
many works focusing on this issue, we refer the reader
to [16–18].

For the discrete-time LQ control, Y. Huang et al.
[19, 20] studied a class of special cases, where the sys-
tem is described by a difference equation with control
and state dependent noise. In [21], the optimal control
is obtained for the systems with only control dependent
noise. These papers dealt with the LQ problem with the
positive definite control weighting matrices in the cost
functional. A discrete-time indefinite LQ control in a fi-
nite horizon with state and control dependent noise is
studied in [22]. Analytical properties of the constrained
discrete-time indefinite stochastic LQ control in finite
time horizon were extensively studied in [23–25].

This paper considers the discrete-time indefinite
stochastic LQ problem in the infinite horizon. Different
from the finite horizon case, in order to guarantee the
well-posedness of the LQ problem and the existence of
the feedback stabilizing control, we have to define some
concepts such as stabilizability. A generalized algebraic
Riccati equation (GARE) is introduced. It turns out that
the attainability of the LQ problem is necessary and suf-
ficient for the existence of the stabilizing solution to the
GARE. Meanwhile, we introduce a linear matrix inequal-
ity (LMI) condition and show that the well-posedness
of the LQ problem is equivalent to the feasibility of the
LMI. Furthermore, we present all optimal controls via
the solution to the GARE. Finally, we give an LMI-based
approach to solve the GARE via a semidefinite program-
ming.

The remainder of this paper is organized as follows.
In Section 2, we present the notions of stabilizability and
some preliminaries. Section 3 shows that the solvability
of the GARE is sufficient for the well-posedness of the LQ
problem and the existence of an optimal control. Sec-
tion 4 contains main results of the paper. In Section 5,
we give an LMI-based approach to solve the GARE via
a semidefinite programming. Section 6 ends this paper
with some concluding remarks.

For convenience, we adopt the following notations.
M′ represents the transpose of a matrix M; Tr(M) is the
trace of a square matrix M; M > 0 (M � 0) means that M
is a positive definite (positive semi-definite) symmetric
matrix; E[x] represents the mathematical expectation of
a random variable x; Rk is the k-dimensional Euclidean
space with the usual 2-norm ‖ · ‖; Rm×n is the vector

space of all m× n matrices with entries in R; M† means
the Moore-Penrose pseudo inverse of a matrix M; I is
the identity matrix with an appropriate dimension; Sn

denotes the set of all real n×n symmetric matrices; and
N = {0, 1, 2, . . .}.

2 Problem formulation and preliminaries

Consider the following stochastic discrete-time sys-
tem of the form:

xk+1=Axk+Buk+[Cxk+Duk]wk, k ∈N, x0 ∈ Rn, (1)

where A, B, C and D are constant matrices with appro-
priate dimensions. x ∈ Rn is called the system state,
u ∈ Rm is the control input. x0 ∈ Rn is the initial state
which is deterministic. {wk}k�0 are the one-dimensional
independent random variables defined on the complete
probability space (Ω,F ,P), such that E[wk] = 0 and
E[wswt] = δst, where δst is the Kronecker delta.

We denote Fk the σ-algebra generated by wk, k ∈ N,
i.e., Fk = σ( ws : 1 � s � k). Let L2(Ω,Rm) repre-
sent the space of Rm-valued random vectors ξ with
E‖ξ‖2 < ∞. l2w(N,Rm) consists of all sequences y =
{yk : yk ∈ Rm}k∈N, such that yk ∈ L2(Ω,Rm) is Fk−1

measurable for k ∈ N, where we define F−1 = {φ,Ω},
i.e., y0 is a constant. The l2-norm of y ∈ l2w(N,Rm) is

defined by ‖y‖2
l2w(N,Rm)

=
∞∑

k=0
E[‖yk‖2].

For simplicity of our discussion, we give the following
definitions.

Definition 1 Consider system (1) with uk = 0. Sys-
tem (1) is said to be mean-square stable [19] if for any
x0 ∈ Rn, the corresponding state satisfies lim

k→∞
E‖xk‖2 =

0. u = {uk : k ∈ N} (may be an open-loop control) is
said to be a mean-square stabilizing control (with re-
spect to x0) if the corresponding state xk of (1) satisfies
lim
k→∞

E‖xk‖2 = 0. u = {uk : k ∈N} with uk = Kxk is called

a mean-square feedback stabilizing control law if for
every x0, the closed-loop system

xk+1 = (A + BK)xk + (C +DK)xkwk,

k ∈N, x0 ∈ Rn

is mean-square stable, where K is a constant matrix.

Definition 2 System (1) is said to be stabilizable in
the mean square sense if there exists a mean-square
feedback stabilizing control law uk = Kxk, where K is a
constant matrix.
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For system (1), the admissible control set Uad(x0) is
defined as follows:

Uad(x0) ={u ∈ l2w(N,Rm)|uk is mean-square
stabilizing with respect to a given x0}.

For any (x0,uk) ∈ Rn × Uad(x0), the associated cost
functional to system (1) is defined as

J(x0,u) =
∞∑

k=0
E[x′kQxk + 2x′kLuk + u′kRuk], (2)

where L ∈ Rn×m, Q ∈ Sn andR ∈ Sm are given matrices.
The LQ optimal control problem is to find a control

sequence u∗ = (u∗0, . . . , u
∗
n, . . .) ∈ Uad(x0) such that

J(x0,u∗) = V(x0) = inf
u∈Uad(x0)

J(x0,u). (3)

We call V(x0) the optimal cost value.
Definition 3 The LQ problem is called well-posed if

−∞ < V(x0) < +∞, ∀x0 ∈ Rn.

A well-posed LQ problem is called attainable if there
exists a control sequence (u∗0, . . . , u

∗
n . . .) that achieves

V(x0).

We suppose that system (1) is stabilizable throughout
this paper. Hence, Uad(x0) is nonempty for each x0.

Now, we present a new GARE as follows.
Definition 4 The constrained algebraic equation on

P ∈ Sn

⎧⎪⎪⎨⎪⎪⎩
F(P) −H′(P)G†(P)H(P) = 0,

G(P)G†(P)H(P) −H(P) = 0, G(P) � 0
(4)

with
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F(P) = A′PA + C′PC − P +Q,

H(P) = B′PA +D′PC + L′,
G(P) = R + B′PB +D′PD

(5)

is called a constrained GARE.

Let us give some lemmas needed in the proof of our
main results.

Lemma 1 [26] For any matrix M ∈ Rm×n, there is a
unique matrix M† ∈ Rn×m, which satisfies

MM†M =M , M†MM† =M†,
(MM†)′ =MM†, (M†M)′ =M†M.

M† is called the Moore-Penrose pseudo inverse of M.

Lemma 2 [26] Let a symmetric matrix M be given.
Then

M′† =M†′, MM† =M†M,
M � 0 if and only if M† � 0.

Lemma 3 [22] Let matrices L, M, N be given, then
the matrix equation LXM = N has a solution X if and
only if LL†NMM† = N. X is given by X = L†NM† +
Y− L†LYMM†, where Y is a matrix with an appropriate
dimension.

Lemma 4 (Extended Schur’s lemma) [27] Let matri-
ces M =M′, N, R = R′ be given with appropriate sizes.
Then the following conditions are equivalent:

i) M −NR†N′ � 0,R � 0, and N(I − RR†) = 0.

ii)

⎡
⎢⎢⎢⎢⎢⎣

M N

N′ R

⎤
⎥⎥⎥⎥⎥⎦ � 0.

iii)

⎡
⎢⎢⎢⎢⎢⎣

R N′

N M

⎤
⎥⎥⎥⎥⎥⎦ � 0.

3 Sufficiency of the GARE

In this section, it is shown that the solvability of the
GARE (4) is sufficient for the well-posedness of the LQ
problem and the existence of an optimal control. More-
over, we show that any optimal control can be deter-
mined by means of the solution to the GARE.

Theorem 1 If the GARE (4) admits a solution P and
there exist Yk ∈ Rm×n and Zk ∈ Rm such that the follow-
ing control:

u(Yk, Zk)
k = −(G†(P)H(P) − Yk + G†(P)G(P)Yk)xk

−G†(P)G(P)Zk + Zk (6)

is admissible for any initial x0. Then LQ problem (1)–(3)
is attainable. Furthermore, u(Yk, Zk)

k is the optimal control
and the optimal cost value is uniquely determined by

V(x0) = x′0Px0.

Proof Let P solve the GARE (4). It is clear that
∀T ∈N, P ∈ Sn,

E[x′TPxT − x′0Px0] =
T−1∑
k=0

E(x′k+1Pxk+1 − x′kPxk)

=
T−1∑
k=0

E

⎡
⎢⎢⎢⎢⎢⎣
xk

uk

⎤
⎥⎥⎥⎥⎥⎦

′
Q(P)

⎡
⎢⎢⎢⎢⎢⎣
xk

uk

⎤
⎥⎥⎥⎥⎥⎦ ,



W. Zhang et al. / Control Theory Tech, Vol. 13, No. 3, pp. 230–237, August 2015 233

where

Q(P) =

⎡
⎢⎢⎢⎢⎢⎣
A′PA + C′PC − P A′PB + C′PD

B′PA +D′PC B′PB +D′PD

⎤
⎥⎥⎥⎥⎥⎦ .

Let T→∞, then

∞∑
k=0

E

⎡
⎢⎢⎢⎢⎢⎣
xk

uk

⎤
⎥⎥⎥⎥⎥⎦

′
Q(P)

⎡
⎢⎢⎢⎢⎢⎣
xk

uk

⎤
⎥⎥⎥⎥⎥⎦ = −x′0Px0.

By adding the above equality to the performance index,
we have

J(x0,u) =
∞∑

k=0
E[x′k(Q + A′PA + C′PC − P)xk

+ 2x′k(A′PB + C′PD + L)uk

+ u′k(R + B′PB +D′PD)uk] + x′0Px0

=
∞∑

k=0
E[x′kF(P)xk + 2x′kH′(P)uk

+ u′kG(P)uk] + x′0Px0. (7)

Define

M1
k = G†(P)G(P)Yk − Yk, M2

k = G†(P)G(P)Zk − Zk.

Hence, we can obtain that

G(P)M1
k = 0, G(P)M2

k = 0.

By completing squares, (7) can be rewritten as

J(x0,u) =
∞∑

k=0
E[(uk + (G†(P)H(P) +M1

k)xk

+M2
k)′G(P)(uk + (G†(P)H(P) +M1

k)xk

+M2
k)] + x′0Px0. (8)

This implies that the control sequence

uk = u(Yk, Zk)
k = −[(G†(P)H(P) +M1

k)xk +M2
k], k ∈N

minimizes J with the optimal value given by x′0Px0. �

Definition 5 A solution P to the GARE (4) is called
stabilizing if there exists an admissible control deter-
mined by (6).

Remark 1 A solution P to the GARE (4) is stabilizing
if and only if for any x0 there exists some Zk ∈ Rm such
that the following control:

uk = −G†(P)H(P)xk + [I − G†(P)G(P)]Zk (9)

is admissible, where xk is the solution to (1) under the
above control with the initial state x0.

The following definition is concerned with the maxi-
mal solution.

Definition 6 A matrix P is called a maximal solution
to the GARE (4) if P � P∗ for any P∗ satisfying

⎧⎪⎪⎨⎪⎪⎩
F(P∗) −H′(P∗)G†(P∗)H(P∗) � 0,

H(P∗) − G(P∗)G†(P∗)H(P∗) = 0, G(P∗) � 0.
(10)

By Definition 6, it is clear that the maximal solution
must be unique if it exists. Now, let us turn to the GARE
(4).

Theorem 2 There is at most one stabilizing solution
to (4). Moreover, a stabilizing solution to (4) is also its
maximal solution.

Proof Assume that P1 and P2 are different stabi-
lizing solutions to (4). By Theorem 1, it follows that
x′0P1x0 = x′0P2x0 for any x0, so P1 = P2.

Let any P∗ satisfy (10) and P be the stabilizing solution
to (4). Putting P∗ in (8) we assert that

J(x0,u) � x′0P∗x0, ∀u ∈ Uad(x0).

By Theorem 1, it is easy to show that x′0Px0 = V(x0) �
x′0P∗x0. Therefore, P is a maximal stabilizing solution to
the GARE due to Definition 6. �

The following corollaries are special cases of the
above result.

Corollary 1 Suppose that the GARE (4) admits a sta-
bilizing solution P. If G(P) = 0, then any admissible
control is optimal and the GARE (4) reduces to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P = A′PA +Q + C′PC,

B′PA +D′PC + L′ = 0,

R + B′PB +D′PD = 0.

(11)

Proof By (7) and G(P) = 0, we can show that

J(x0,u) = x′0Px0,

which implies that V(x0) = x′0Px0 for any uk ∈
Uad(x0). �

Corollary 2 Let P be a stabilizing solution to the
GARE (4). If G(P) > 0, then the LQ problem(1)–(3) is
uniquely solvable. The unique optimal control is given
by

uk = −G−1(P)H(P)xk.
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Proof Using Theorem 1, we immediately obtain
Corollary 2. �

4 Well-posedness and attainability of LQ
problem

In this section, we first present the connection be-
tween the well-posedness of the LQ problem and
the solvability of the GARE. Then, we study the well-
posedness via the LMI condition. Finally, we establish
the link between the attainability of the LQ problem and
the solvability of the GARE.

Lemma 5 The LQ problem (1)–(3) is well-posed if
and only if there exists a symmetric constant matrix P
such that

V(x0) = x′0Px0, ∀x0 ∈ Rn. (12)

Proof (12) can be shown by a simple adaptation of
the well-known result in the deterministic case [2].

We introduce the following convex set P of Sn:

P =
{
P ∈ Sn|

⎡
⎢⎢⎢⎢⎢⎣

F(P) H′(P)

H(P) G(P)

⎤
⎥⎥⎥⎥⎥⎦ � 0

}
. (13)

�
Theorem 3 The LQ problem (1)–(3) is well-posed

if and only if the set P is nonempty. Moreover, there
exists P ∈ P such that P � P̃, ∀P̃ ∈ P.

Proof (Sufficiency) Assume that the set P is
nonempty, let ∀P̃ ∈ P. Then, adding the following equal-
ity:

+∞∑
k=0

E[x′k+1P̃xk+1 − x′kP̃xk] = −E[x′0P̃x0]

to the cost function

J(x0,u) =
+∞∑
k=0

E[x′kQxk + 2x′kLuk + u′kRuk]

and applying (1), we can see that for any (x0,uk) ∈
R

n ×Uad(x0),

J(x0,u) =
+∞∑
k=0

E
(
⎡
⎢⎢⎢⎢⎢⎣
xk

uk

⎤
⎥⎥⎥⎥⎥⎦

′ ⎡⎢⎢⎢⎢⎢⎣
F(P̃) H′(P̃)

H(P̃) G(P̃)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
xk

uk

⎤
⎥⎥⎥⎥⎥⎦
)
+ x′0P̃x0

�x′0P̃x0.

Since x0 and uk are arbitrary, thus

V(x0) � x′0P̃x0 (14)

implies the well-posedness of the LQ problem.
(Necessity) Assume that the LQ problem (1)–(3) is

well-posed, Lemma 5 yields that there exists a symmet-
ric matrix P such that V(x0) = x′0Px0, ∀x0 ∈ Rn.

By the dynamic programming principle, we obtain

x′0Px0 �
h∑

k=0
E[x′kQxk + 2x′kLuk + u′kRuk

+ x′h+1Pxh+1], ∀h � 0, ∀u ∈ Uad(x0).

Based on (1) and the above inequality, we conclude that

E[x′h+1Pxh+1] − x′0Px0

+
h∑

k=0
E[x′kQxk + 2x′kLuk + u′kRuk]

=
h∑

k=0
E[x′k+1Pxk+1 − x′kPxk

+ x′kQxk + 2x′kLuk + u′kRuk]

=
h∑

k=0
E
(
⎡
⎢⎢⎢⎢⎢⎣
xk

uk

⎤
⎥⎥⎥⎥⎥⎦

′ ⎡⎢⎢⎢⎢⎢⎣
F(P) H′(P)

H(P) G(P)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
xk

uk

⎤
⎥⎥⎥⎥⎥⎦
)
� 0. (15)

Setting uk = ū and letting h = 0, we have

⎡
⎢⎢⎢⎢⎢⎣
x0

ū

⎤
⎥⎥⎥⎥⎥⎦

′ ⎡⎢⎢⎢⎢⎢⎣
F(P) H′(P)

H(P) G(P)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
x0

ū

⎤
⎥⎥⎥⎥⎥⎦ � 0.

Because x0 and ū are arbitrary, it is easy to see that

⎡
⎢⎢⎢⎢⎢⎣

F(P) H′(P)

H(P) G(P)

⎤
⎥⎥⎥⎥⎥⎦ � 0.

This means that P ∈ P. Employing (14), it follows that
P � P̃, ∀P̃ ∈ P. �

The following theorem can be viewed as the converse
of Theorem 1, which plays an essential role in this paper.

Theorem 4 The LQ problem (1)–(3) is attainable for
any x0, then the GARE (4) has a stabilizing solution.
Moreover, any optimal control is given by (6).

Proof If the LQ problem (1)–(3) is attainable, it is
also well-posed. By Theorem 5, there exists a maximal
element P ∈ P satisfying V(x0) = x′0Px0 and

⎡
⎢⎢⎢⎢⎢⎣

F(P) H′(P)

H(P) G(P)

⎤
⎥⎥⎥⎥⎥⎦ � 0.
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Using Lemma 4, it is obvious that
⎧⎪⎨⎪⎩

F(P) −H′(P)G†(P)H(P) � 0,
H′(P)(I − G(P)G†(P)) = 0, G(P) � 0.

(16)

Let u∗ be an optimal control for any initial x0. As same
as Theorem 5, the following (17) is derived:

V(x0) =J(x0,u∗)

=
+∞∑
k=0

E[x′k(F(P) −H′(P)G†(P)H(P))xk]

+
+∞∑
k=0

E[(u∗k + G†(P)H(P)xk)′G(P)

× (u∗k + G†(P)H(P)xk)] + x′0Px0. (17)

Combining (16) with V(x0) = x′0Px0, it can be shown
that
+∞∑
k=0

E[x′k(F(P) −H′(P)G†(P)H(P))xk] = 0,

+∞∑
k=0

E[(u∗k+G†(P)H(P)xk)′G(P)(u∗k+G†(P)H(P)xk)] = 0.

Hence, we have

F(P) −H′(P)G†(P)H(P) = 0, k ∈N.

Together with (15), we obtain that P is a solution to the
GARE (4).

In what follows, we show that any optimal control u∗k
can be given by (6). From (16), it yields that

G(P)
1
2 [u∗k + G†(P)H(P)xk] = 0,

which implies

G(P)u∗k + G(P)G+(P)H(P)xk = 0.

By Lemma 3 with

L = G(P), M = I, N = −G(P)G+(P)H(P)xk,

we solve the above equation and have the following so-
lution u∗k = −G+(P)H(P)xk + Y − G+(P)G(P)Y. Thus u∗k
can be represented by (6) with Zk = Y and Yk = 0. On
the other hand, from Definition 5, it follows that P is a
stabilizing solution to the GARE (4). �

5 Characterizing LQ problem via SDP

In this section, we develop an approach based on
semidefinite programming (SDP). We show that the sta-

bilizing of the feedback control can be examined via
solving a SDP problem. We establish several relations
among the GARE, the SDP and the optimality of the LQ
problem.

First, we introduce the following definition.
Definition 7 [28] Let a vector c = (c1, . . . , cm)′ ∈ Rm

and matrices F0,F1, . . . , Fm ∈ Sn be given. The following
optimization problem:

min c′x

s.t. F(x) = F0 +
m∑

i=1
xiFi � 0 (18)

is called a semidefinite programming (SDP). The SDP is
feasible if there exists an x such that F(x) � 0.

Consider the following SDP problem:

min −Tr(P)

s.t.

⎡
⎢⎢⎢⎢⎢⎣

F(P) H′(P)

H(P) G(P)

⎤
⎥⎥⎥⎥⎥⎦ � 0. (19)

The following assertions provide connections among
the well-posedness of the LQ problem, the feasibility of
the SDP and the solvability of the GARE.

Theorem 5 The SDP (19) is feasible if and only if
the LQ problem (1)–(3) is well-posed.

Proof By Theorem 5, we easily get the desired re-
sult. �

Theorem 6 If the SDP (19) is feasible, then it
has a unique optimal solution P∗ satisfying V(x0) =
x′0P∗x0, ∀x0 ∈ Rn.

Proof By Theorem 5, it follows that the SDP (19) has
a maximal solution P such that V(x0) = x′0Px0, ∀x0 ∈ Rn,
which is also an optimal solution to (19). Let P∗ be
arbitrary optimal solution to (19). It is evident that
Tr(P− P∗) = 0. Moreover, the maximality of P results in
P − P∗ � 0 . Therefore, P − P∗ = 0, i.e., P = P∗. �

Theorem 7 If the LQ problem (1)–(3) is attainable,
then the unique optimal solution to (19) is the stabilizing
solution to the GARE (4).

Proof From Theorems 2 and 6, the assertion is im-
mediately obtained. �

Similar to the discussion in [29], we give a compu-
tational approach to determine the lower bound of the
control weighting matrix R for the LQ problem to be
well-posed.

Definition 8 Let Q and L be given. The smallest
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r∗ ∈ R is called the well-posed margin if the LQ problem
(1)–(3) is well-posed for any R � r∗I.

Remark 2 By the above definition, if the smallest
eigenvalue λmin(R) of R satisfies λmin(R) � r∗, then the
LQ problem is well-posed. Otherwise, the LQ problem
is ill-posed. In particular, if r∗ = 0, the LQ problem is
ill-posed for any indefinite R.

The following result shows that the well-posedness
margin r∗ can be obtained numerically.

Theorem 8 The well-posedness margin r∗ can be
derived by solving the following SDP problem:

min r

s.t.

⎡
⎢⎢⎢⎢⎢⎣

F(P) H′(P)

H(P) B′PB +D′PD + rI

⎤
⎥⎥⎥⎥⎥⎦ � 0. (20)

Proof From Theorem 7, Theorem 8 is easily
proved. �

Example 1 System (1)–(3) is specified by the follow-
ing matrices:

A =

⎡
⎢⎢⎢⎢⎢⎣
−2 1

0 1

⎤
⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎣

1

0

⎤
⎥⎥⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎢⎢⎣
2 0

0 0

⎤
⎥⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎢⎣

1

0

⎤
⎥⎥⎥⎥⎥⎦ ,

x0 =

⎡
⎢⎢⎢⎢⎢⎣

1

−1

⎤
⎥⎥⎥⎥⎥⎦ , Q =

⎡
⎢⎢⎢⎢⎢⎣
−21 0

0 6/5

⎤
⎥⎥⎥⎥⎥⎦ , L = 0, R = −1.

Solving the corresponding GARE (4) yields G = 5,

H = [0 1], P =

⎡
⎢⎢⎢⎢⎢⎣

3 −2

−2 1

⎤
⎥⎥⎥⎥⎥⎦. Finally, we can calculate the

optimal control sequence uk = −[0 1/5]xk and the op-
timal cost value V(x0) = x′0Px0 = 8 . By Theorem 8, the
well-posedness margin r∗ = 6.

Remark 3 In stochastic systems, there is no similar
definition to transfer function as in linear system theory.
Therefore, we cannot define an optimal feedback control
to be proper or improper as in [30]. In this paper, the
admissible control set Uad(x0) is not limited to a static
state feedback form, which may include other forms
such as open-loop controls. However, from Theorem 4,
if the LQ problem is attainable, all optimal controls take
the form of (6), which completely characterizes all the
optimal control forms.

6 Conclusions

This paper has investigated the infinite horizon in-
definite LQ control for discrete-time stochastic systems

with state and control dependent noise. A GARE has
been introduced. The well-posedness of the LQ prob-
lem is equivalent to the feasibility of an LMI. Moreover,
the attainability of the LQ problem is equivalent to the
existence of a stabilizing solution to the GARE. All the
optimal controls are obtained in terms of the solution to
the GARE. To some extent, the results of this paper may
be viewed as a discrete-time version of [29].
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