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Abstract:
In this paper, we investigate state estimations of a dynamical system in which not only process and measurement noise, but

also parameter uncertainties and deterministic input signals are involved. The sensitivity penalization based robust state estimation
is extended to uncertain linear systems with deterministic input signals and parametric uncertainties which may nonlinearly affect
a state-space plant model. The form of the derived robust estimator is similar to that of the well-known Kalman filter with a
comparable computational complexity. Under a few weak assumptions, it is proved that though the derived state estimator is
biased, the bound of estimation errors is finite and the covariance matrix of estimation errors is bounded. Numerical simulations
show that the obtained robust filter has relatively nice estimation performances.
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1 Introduction

State estimation plays an important role in signal pro-
cessing and control system design. It is known that the
Kalman filter is the optimal estimator under the criterion
of mean-squares and widely applied in numerous fields
such as target tracking, global positioning systems, hy-
drological modelling, atmospheric observations, time-

series analyses in systems biology and econometrics,
automated drug delivery, and so on [1–3]. As modelling
errors are generally unavoidable, robust state estima-
tors such as H2/H∞ filtering, set-valued estimation, and
guaranteed-cost designs, which do not vary appreciably
when actual plant parameters deviate from their nom-
inal ones in a reasonable way, have been developed,
see [1, 4–8] and the references therein. Particularly
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worth mentioning is that a regularized least-squares
(RLS) based framework is suggested in [1] for robust
filter designs, whose attractive characteristic is that the
filter shares the same form of the well known Kalman
filter with corrected parameters. However, in this frame-
work the plant parameters are required to depend lin-
early on an uncertainty block, which may be a restrictive
condition. The other possible limitation is that the robust
estimator needs to optimize a cost function at every es-
timation step, whose unique minimum has no analytic
expression.

There is another paradigm in robust filter designs
which is based on sensitivity penalization of estimation
errors to parameter variations. In [9], it is employed
for single-input single-output systems in the frequency
domain with transfer function representation and spec-
tral factorization. In [2, 10], it is adopted for multi-
input multi-output time varying dynamical systems un-
der state-space framework and the plant parameters are
affected by modelling errors in a relatively arbitrary way.
Based on the relationship between Kalman filter and reg-
ularized least-squares, as well as sensitivity penalization
on estimation errors to parameter variations, an ana-
lytic expression of the robust state estimator has been
derived [2,10]. The estimator can be recursively imple-
mented and has a comparable computational complexity
with the widely applied Kalman filter.

The works aforementioned normally assume that the
system is driven only by noise processes without de-
terministic input signals. It is true that the existence
of a known deterministic input does not affect the es-
timation errors if the signal process does not involve
parameter uncertainties, on the contrary it is not valid
because the superposition principle is no longer estab-
lished for the existence of parameter uncertainties [11].
On this occasion, it is of significance to take robust state
estimation with deterministic input signals into account
and analyze the asymptotic properties of the derived
estimator. The H∞ filtering approach [7] was extended
to provide a guaranteed H∞ bound for estimation er-
rors in the presence of both parameter uncertainties
and known input signals for continuous time varying
uncertain systems [12] and discrete time varying uncer-
tain systems [11], respectively. In [13] a robust H∞ state
estimator is investigated for a class of uncertain discrete
time piecewise affine systems with partitioned state
space based on which the filter implementation may
not be synchronized with state trajectory transitions.

In this paper we generalize the robust state estimator

sensitivity penalization based [2, 10] to cope with the
cases where deterministic input signals are considered.
An analytic expression has been derived for the robust
estimator, which can be recursively implemented and
has a similar form and a comparable computational com-
plexity with the Kalman filter. In [2,14] it is proved that
under some assumptions, as well as conditions like de-
tectability and stabilizability, the robust state estimator
sensitivity penalization based is asymptotically unbiased
when there are no deterministic input signals in process.
Our main contribution lies in the fact that the estimation
errors are proved to be bounded and have a bounded
covariance matrix though the robust state filter is biased
owing to the existence of modelling errors when there
exist deterministic input signals. Some numerical simu-
lations show that this robust estimator has relatively nice
estimation performances and can be widely applied.

The rest of this paper is organized as follows. In Sec-
tion 2, a state-space plant model is given and the robust
state estimator sensitivity penalization based is derived.
Some important properties such as convergence and
boundedness are discussed in Section 3. Numerical sim-
ulation results are reported in Section 4. Finally, Section
5 concludes this paper. Two appendices are included to
give a derivation of the recursive estimation procedure
and a proof of the theoretical result.

Notation Given a column vector x and a positive-
definite matrix W, ‖x‖2 and ‖x‖2W are defined to denote
the Euclidean norm and its weighted version, namely,
xTx and xTWx, respectively.

2 Plant dynamics description and robust s-
tate estimator design

Consider the following uncertain linear system,

⎧⎪⎪⎨⎪⎪⎩xi+1 = Ai(εi)xi + B1i(εi)ui + B2i(εi)wi,

yi = Ci(εi)xi + vi, i � 0,
(1)

where x is the state, w is the process noise, u is a de-
terministic input signal, y is the measurement, and v is
the measurement noise. x0,wi and vi are uncorrelated
random vectors with E(x0) = 0,E(wi) = 0,E(vi) = 0 and
E((col(x0,wi, vi))(∗)T) = diag{Π0,Qiδi j,Riδi j}, in which
Π0,Qi and Ri are known positive definite matrices and
δi j represents the Kronecker delta function. Moreover,
εi denotes parametric modelling errors at the ith sam-
pled instant which is composed of L real valued scalar
uncertainties εi,k, k = 1, . . . ,L. It is assumed that the L
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uncertainties are independent of each other and all the
entries of matrices Ai(εi),B1i(εi),B2i(εi) and Ci(εi) are
differentiable functions of εi.

Compared system (1) with the one in [2, 10], the
known deterministic input is considered in this paper. It
is obvious that system (1) collapses to the one in [2,10]
when there is no deterministic input, therefore, sys-
tem (1) can be regarded as a generalization of the one
in [2,10].

From [1, 3], we know that the Kalman filter admits a
deterministic interpretation as the solution to a regular-
ized least-squares problem, as follows:

x̂i+1|i+1 = Ai(0)x̂i|i+1 + B2i(0)ŵi|i+1 + B1i(0)ui, (2)⎡⎢⎢⎢⎢⎢⎣ x̂i|i+1

ŵi|i+1

⎤⎥⎥⎥⎥⎥⎦ = arg min
xi,wi

[‖xi − x̂i|i‖2P−1
i|i
+ ‖wi‖2Q−1

i

+‖yi+1 − Ci+1(0)xi+1‖2R−1
i+1

],

where x̂i|l stands for the optimal estimator of xi based
on measurements yj|lj=0, and Pi|l the corresponding es-
timation errors covariance matrix. The cost function of
the regularized least-squares problem is the regularized
squares residual norm. The interpretation means that
given an initial estimate x̂i|i for xi, one seeks to meliorate
it by incorporating the additional information provided
by the new measurement yi+1 and deterministic input
ui.

We improve the cost function of the regularized
least-squares problem considering the estimation per-
formances appreciable deterioration because of model
uncertainties which are generally unavoidable. For nota-
tional simplicity, define matrices respectively as follows:

Ψi = R−1
i+1,

Hi(εi, εi+1) = Ci+1(εi+1)[Ai(εi) B2i(εi)],
βi(εi, εi+1) = yi+1 − Ci+1(εi+1)(B1i(εi)ui + Ai(εi)x̂i|i),
Φi = diag{P−1

i|i ,Q
−1
i }, αi = col(xi − x̂i|i,wi).

Then the cost function can be rewritten as ‖αi‖2Φi
+

‖Hi(0, 0)αi − βi(0, 0)‖2Ψi
and an analytic solution to this

regularized least-squares problem can be obtained. In
our improvement, denote yi+1 − Ci+1(εi+1)Ai(εi)x̂i|i −
Ci+1(εi+1)[Ai(εi) B2i(εi)]αi as ei(εi, εi+1) which is gener-
ally called innovation process, the new cost function of
the RLS at every instant is suggested to be (3) to reduce
the sensitivity of estimation performances to modelling
errors.

J(αi) =γi[‖αi‖2Φi
+ ‖Hi(0, 0)αi − βi(0, 0)‖2Ψi

]

+ (1 − γi)
L∑

k=1
(‖∂ei(εi, εi+1)

∂εi,k
‖2

+ ‖∂ei(εi, εi+1)
∂εi+1,k

‖2)|εi=0,εi+1=0. (3)

From the cost function we can conclude that the
deviations of the innovation process from yi+1 −
Ci+1(0)[Ai(0)x̂i|i+1 + B1i(0)ui + B2i(0)ŵi|i+1] reflect contri-
butions of modelling errors to prediction errors based on
yi+1, and the design parameter γi takes account in both
the importance of nominal estimation performances and
that of estimation performance degradation due to mod-
elling errors. Generally, the design parameter γi has an
empirical value [2, 10] and can be adjusted according
to the relative magnitude of modelling errors in practi-
cal application. The bigger the amplitude of modelling
errors is, the smaller the parameter is. This means that
the estimation performance degradation owing to mod-
elling errors plays a more important role. It is consistent
with physical intuitions. When there are no modelling
errors and γi=1, the state estimator through minimizing
the cost function (3) collapses to the standard Kalman
filter.

Define matrices Si,T1i and T2i respectively as follows:

Si = [ST
i,1(0, 0) ST

i,2(0, 0) · · · ST
i,L(0, 0) ]T,

T1i = [TT
1i,1(0, 0) TT

1i,2(0, 0) · · · TT
1i,L(0, 0) ]T,

T2i = [TT
2i,1(0, 0) TT

2i,2(0, 0) · · · TT
2i,L(0, 0) ]T,

where

Si,k(εi, εi+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂Ci+1(εi+1)
∂εi+1,k

Ai(εi)

Ci+1(εi+1)
∂Ai(εi)
∂εi,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

T1i,k(εi, εi+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂Ci+1(εi+1)
∂εi+1,k

B1i(εi)

Ci+1(εi+1)
∂B1i(εi)
∂εi,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

T2i,k(εi, εi+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂Ci+1(εi+1)
∂εi+1,k

B2i(εi)

Ci+1(εi+1)
∂B2i(εi)
∂εi,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
k = 1, 2, . . . ,L.

Then, we can obtain

L∑
k=1

(‖∂ei(εi, εi+1)
∂εi,k

‖2 + ‖∂ei(εi, εi+1)
∂εi+1,k

‖2)|εi=0,εi+1=0

= ([Si T2i ]αi+Six̂i|i+T1iui)T([Si T2i ]αi+Six̂i|i+T1iui).
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It is easy to know that the cost function J(αi) is a strictly
convex function when 0 < γi � 1 from matrices Φi and
Ψi, which has a global unique minimum expressed as

αiopt at
∂J(αi)
∂αi

= 0. It is determined by (4) as follows:

(Φi +HT
i (0)ΨiHi(0) +

1 − γi

γi
[Si T2i ]T[Si T2i ])αiopt

= HT
i (0)Ψiβi(0) − 1 − γi

γi
[Si T2i ]

T
(Six̂i|i + T1iui). (4)

According to the above analysis we can provide the
following recursive procedure to compute the estimate
of the plant state when there exist a deterministic input
signal and parameter uncertainties. The derivative de-
tails are provided in Appendix A. Denote λi = (1−γi)/γi.

1) Initialization. Designate P0|0 and x̂0|0 as

P0|0 = (Π̂−1
0 + CT

0 (0)R−1
0 C0(0))−1,

x̂0|0 = P0|0CT
0 (0)R−1

0 y0,

respectively, in which

Π̂0 = (Π−1
0 + λ0

L∑
k=1

(
∂CT

0 (ε0)

∂ε0,k
)(
∂C0(ε0)
∂ε0,k

)|ε0=0)−1.

2) Parameter modification. Define matrices T̂2i, Âi(0),
B̂1i(0), B̂2i(0), P̂i|i and Q̂i respectively as follows:

T̂2i = T2i − λiSiP̂i|iST
i T2i,

Âi(0) = (Ai(0) − λiB̂2i(0)Q̂iTT
2iSi)(I − λiP̂i|iST

i Si),
B̂2i(0) = B2i(0) − λiAi(0)P̂i|iST

i T2i,

B̂1i(0) = B1i(0) − λi(Ai(0)P̂i|iST
i + B̂2i(0)Q̂iT̂T

2i)T1i,

P̂i|i = (P−1
i|i + λiST

i Si)−1,

Q̂i = (Q−1
i + λiTT

2i(I + λiSiPi|iST
i )−1T2i)−1.

3) State estimate updating. Calculate x̂i+1|i+1 and
Pi+1|i+1 respectively as

Pi+1|i = Ai(0)P̂i|iAT
i (0) + B̂2i(0)Q̂iB̂T

2i(0),
Re,i+1 = Ri+1 + Ci+1(0)Pi+1|iCT

i+1(0),
Pi+1|i+1 = Pi+1|i − Pi+1|iCT

i+1(0)R−1
e,i+1Ci+1(0)Pi+1|i,

x̂i+1|i+1 = B̂1i(0)ui + Âi(0)x̂i|i + Pi+1|i+1CT
i+1(0)R−1

i+1[yi+1

− Ci+1(0)(B̂1i(0)ui + Âi(0)x̂i|i)]. (5)

Based on the above explanation, the form of the esti-
mation procedure is consistent with the time and mea-
surement update form of the robust estimator derived
in [1] and has a similar form with the one in [2, 10] in-
creased by some terms relative to the deterministic input

ui. When ui = 0, the derived state estimation procedure
collapses to the robust filter in [2,10], which means that
it is a generalization of the one in [2,10].

3 Some properties of the estimator

In this section, some important asymptotic properties
of the derived state estimator are investigated. Suppose
εi,k is normalized in magnitude to be contractive and the
set E is composed of these modelling errors. That is,
E = {ε||εi,k| � 1, k = 1, . . . ,L}. Moreover, we adopt two
assumptions for the asymptotic behaviours analysis of
the robust state estimator.

A1) Ai(0),B1i(0),B2i(0),Ci(0),Ri,Qi,Si,T1i,T2i and γi

are time invariant.
A2) The uncertain linear system of (1) is exponential-

ly stable in the sense of Lyapunov. Moreover, matrices
Ai(0),B1i(0),B2i(0),Ci(0),Ri,Qi and Π0 are bounded for
i > 0 and εi ∈ E.

Equation (5) can be rewritten as follows:

x̂i+1|i+1 =Afix̂i|i + [Bfi Pi+1|i+1CT
i+1(0)R−1

i+1]

⎡⎢⎢⎢⎢⎢⎣ ui

yi+1

⎤⎥⎥⎥⎥⎥⎦ ,
where

Afi = [I − Pi+1|i+1CT
i+1(0)R−1

i+1Ci+1(0)]Âi(0),
Bfi = [I − Pi+1|i+1CT

i+1(0)R−1
i+1Ci+1(0)]B̂1i(0).

This expression is similar to equation (6) in [14] and
the difference is that "the input" of (6) is yi+1 instead of
[ui; yi+1], therefore Theorem 1 in [14] can be generalized
directly to system (5) as follows when the convergence
of system (1) is considered.

Theorem 1 Assume that condition A1) is satisfied,
(Ai(0), C̄i) is detectable and (Ai(0) − λiBi(0)QiTT

2i(I +

λiT2iQiTT
2i)
−1Si,Bi(0)Q

1
2
i (I + λiQ

1
2
i TT

2iT2iQ
1
2
i )− 1

2 ) is stabi-
lizable. Then, for arbitrary Π0 > 0 and 0 < γi � 1,
Pi|i−1 converges exponentially to a unique positive semi-
definite matrix P, while Api converges to a constant sta-
ble matrix Ap. Here,

Api = Ai(0) − (Ai(0)Pi|i−1C̄T
i + B̄i Ji)(Wi + C̄iPi|i−1C̄T

i )−1C̄i,

Ap = Ai(0) − (Ai(0)PC̄T
i + B̄i Ji)(Wi + C̄iPC̄T

i )−1C̄i,

B̄i = Bi(0)Q
1
2
i , Ji = [0

√
λiQ

1
2
i TT

2i],

Wi =

⎡⎢⎢⎢⎢⎢⎣ I 0

0 I + λiT2iQiTT
2i

⎤⎥⎥⎥⎥⎥⎦ , C̄i =

⎡⎢⎢⎢⎢⎢⎣R
− 1

2
i Ci(0)√
λiSi

⎤⎥⎥⎥⎥⎥⎦ .
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We know that the convergence of Pi|i−1 is equivalent
to that of Pi|i from the relation between Pi|i−1 and Pi|i.
Therefore, the derived robust state estimator converges
to a time-invariant stable system when the conditions of
Theorem 1 are satisfied.

We then consider the boundedness and biasness of
estimation errors for this robust state filter. For sim-
ple denotations, define x̄i, ˆ̄xi|i and ˜̄xi|i respectively as
x̄i = [I +Ωi(0)]xi, ˆ̄xi|i = [I +Ωi(0)]x̂i|i and ˜̄xi|i = x̄i − ˆ̄xi|i,

where Ωi(εi) = Pi|i−1CT
i (0)R−1

i Ci(εi). It is obvious that
˜̄xi|i = [I+Ωi(0)](xi− x̂i|i). Then from equation (5) we can
directly prove that⎡⎢⎢⎢⎢⎢⎣ ˜̄xi+1|i+1

ˆ̄xi+1|i+1

⎤⎥⎥⎥⎥⎥⎦= Ãi(εi)

⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i
ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦+B̃2i(εi)

⎡⎢⎢⎢⎢⎢⎣ wi

vi+1

⎤⎥⎥⎥⎥⎥⎦+B̃1i(εi)ui, (6)

where matrices Ãi(εi, εi+1), B̃2i(εi, εi+1) and B̃1i(εi, εi+1)
are shown as

Ãi(εi, εi+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(I +Ωi+1(0))Ai(εi)(I +Ωi(0))−1

−Ωi+1(εi+1)Ai(εi)(I +Ωi(0))−1

(I +Ωi+1(0))Ai(εi)(I +Ωi(0))−1

−Ωi+1(εi+1)Ai(εi)(I +Ωi(0))−1

−Âi(0)(I +Ωi(0))−1

Ωi+1(εi+1)Ai(εi)(I +Ωi(0))−1 Ωi+1(εi+1)Ai(εi)(I +Ωi(0))−1

+Âi(0)(I +Ωi(0))−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B̃2i(εi, εi+1) =

⎡⎢⎢⎢⎢⎢⎣ ((I +Ωi+1(0)) −Ωi+1(εi+1))B2i(εi) −Pi+1|iCT
i+1(0)R−1

i+1

Ωi+1(εi+1)B2i(εi) Pi+1|iCT
i+1(0)R−1

i+1

⎤⎥⎥⎥⎥⎥⎦ ,
B̃1i(εi, εi+1) =

⎡⎢⎢⎢⎢⎢⎣ ((I +Ωi+1(0)) −Ωi+1(εi+1))B1i(εi) − B1i(0)

Ωi+1(εi+1)B1i(εi) + B̂1i(0)

⎤⎥⎥⎥⎥⎥⎦ .
From equation (6), we have with the whiteness of wi

and vi, as well as the assumption of unrelated wi and vi,
that

‖E{
⎡⎢⎢⎢⎢⎢⎣ ˜̄xi+1|i+1

ˆ̄xi+1|i+1

⎤⎥⎥⎥⎥⎥⎦}‖
= ‖E{Ãi(εi)

⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i
ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦ + B̃2i(εi)

⎡⎢⎢⎢⎢⎢⎣ wi

vi+1

⎤⎥⎥⎥⎥⎥⎦ + B̃1i(εi)ui}‖

= ‖E{Ãi(εi)

⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i
ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦} + B̃1i(εi)ui‖

= ‖[ i∏
l=0

Ãl(εl)]E{
⎡⎢⎢⎢⎢⎢⎣ ˜̄x0|0

ˆ̄x0|0

⎤⎥⎥⎥⎥⎥⎦} + [
i∏

l=1
Ãl(εl)]u0

+ [
i∏

l=2
Ãl(εl)]B̃11(εi)u1 + . . .

+ [
i∏

l=i
Ãl(εl)]B̃1(i−1)(εi)ui−1 + B̃1i(εi)ui‖

� ‖[ i∏
l=0

Ãl(εl)]E{
⎡⎢⎢⎢⎢⎢⎣ ˜̄x0|0

ˆ̄x0|0

⎤⎥⎥⎥⎥⎥⎦}‖ + ‖[ i∏
l=1

Ãl(εl)]u0‖

+ ‖[ i∏
l=2

Ãl(εl)]B̃11(εi)u1‖ + . . .

+ ‖[ i∏
l=i

Ãl(εl)]B̃1(i−1)(εi)ui−1‖ + ‖B̃1i(εi)ui‖

� ‖[ i∏
l=0

Ãl(εl)]E{
⎡⎢⎢⎢⎢⎢⎣ ˜̄x0|0

ˆ̄x0|0

⎤⎥⎥⎥⎥⎥⎦}‖ + ‖[ i∏
l=1

Ãl(εl)]u0‖

+ ‖[ i∏
l=2

Ãl(εl)]‖ ‖B̃11(εi)u1‖ + . . . + ‖[
i∏

l=i
Ãl(εl)]‖

× ‖B̃1(i−1)(εi)ui−1‖ + ‖B̃1i(εi)ui‖

� ‖[ i∏
l=0

Ãl(εl)]E{
⎡⎢⎢⎢⎢⎢⎣ ˜̄x0|0

ˆ̄x0|0

⎤⎥⎥⎥⎥⎥⎦}‖ + ‖[ i∏
l=1

Ãl(εl)]u0‖

+ (‖[ i∏
l=2

Ãl(εl)]‖ + . . . + ‖[
i∏

l=i
Ãl(εl)]‖ + 1)

×max{‖B̃11(εi)u1‖, . . . , ‖B̃1i(εi)ui‖}. (7)

It is proved in [14] that there are finite positive con-

stants M1,M2,M3 and 0 � ρ3 < 1 such that ‖[
k2∏

l=k1

Ãl(εl)]‖

�
(3 +

√
5)
√

M2
1 +M2

2 + (k2 − k1 + 1)2M2
3

2
ρk2−k1

3 if the
uncertain linear system is exponentially stable, then

lim
i→∞ ‖[

i∏
l=0

Ãl(εl)]E{
⎡⎢⎢⎢⎢⎢⎣ ˜̄x0|0

ˆ̄x0|0

⎤⎥⎥⎥⎥⎥⎦}‖ = 0,

lim
i→∞ ‖[

i∏
l=1

Ãl(εl)]u0‖ = 0.

From lim
n→∞

( (3 + √5)
√

M2
1 +M2

2 + (n + 1)2M2
3

2
ρn

3

) 1
n

=

ρ3 lim
n→∞

(
(n + 1)

(3 +
√

5)
2

√
M2

1 +M2
2

(n + 1)2 +M2
3

) 1
n

= ρ3 < 1,
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we can conclude that

+∞∑
n=0

(3 +
√

5)
√

M2
1 +M2

2 + (n + 1)2M2
3

2
ρn

3 = N1 < +∞,

where N1 is a finite positive constant. It means that the
summation of series in the last term of equation (7) is
finite. The fact that Ai(εi) and B1i(εi) are bounded leads
to that Ãi(εi, εi+1) and B̃1i(εi, εi+1) are bounded, which
implies that there exists a finite positive constant N2 � 0

such that lim
i→∞ ‖E{

⎡⎢⎢⎢⎢⎢⎣ ˜̄xi+1|i+1

ˆ̄xi+1|i+1

⎤⎥⎥⎥⎥⎥⎦}‖ � N2. Therefore, the esti-

mation errors of the robust filter are bounded. When
there are no deterministic input signals, that is, ui = 0,

we can obtain that lim
i→∞ ‖E{

⎡⎢⎢⎢⎢⎢⎣ ˜̄xi+1|i+1

ˆ̄xi+1|i+1

⎤⎥⎥⎥⎥⎥⎦}‖ = 0, which means

that the robust state estimator sensitivity penalization
based is asymptotically unbiased. It is consistent with
the result derived in [2,14].

Based on the relations in (6) and the stability of ma-
trix Ai(εi), as well as the aforementioned derivation, we
achieve a condition for the boundedness of estimation
errors of the robust filter as follows. Its proof is deferred
to Appendix B.

Theorem 2 Suppose that assumptions A1) and A2)
are simultaneously satisfied, (Ai(0), C̄i) is detectable
and (Ai(0)−λiBi(0)QiTT

2i(I+λiT2iQiTT
2i)
−1Si,Bi(0)Q

1
2
i (I+

λiQ
1
2
i TT

2iT2iQ
1
2
i )− 1

2 ) is stabilizable, then, the estimation er-
rors of the robust filter have a finite covariance matrix at
every sampled instant.

Remark When B1i(εi) = B2i(εi) in system (1), the
deterministic input ui together with wi can be regarded
as process noises whose expectations are not equal to
zeros. Therefore, the derived robust state estimator can
be taken as a generalization of the one in [2,10].

4 Numerical simulations

In this section, we compare the performances of the
derived state estimator with those of the Kalman filter
based on actual parameters and nominal parameters by
some examples. In these simulations, it is assumed that
modelling errors are time-invariant, and every uncer-
tainty parameter is contractive, that is, it belongs to the
interval [−1, 1]. Furthermore, 1000 time-domain input-
output data pairs are generated for plant state estima-
tion, in which all the initial states are set to zero, while
disturbances wi and vi are produced according to nor-

mal distributions. The deterministic input signal ui is
fixed or produced according to normal distributions.

500 simulations are performed for each set of nu-
merical experiment settings to calculate the ensemble-
average estimation error variance at every sampled in-
stant. The size of the ensemble-average is approximated
by the averaged value of the square of the Euclidean
distance from the actual plant state to its estimate, that

is E‖xi − x̂i|i‖2 ≈ 1
500

500∑
j=1
‖xi − x̂( j)

i|i ‖2.

This example is improved from the one in [1] and [10],
in which it is assumed that,

Ai(εi) =

⎡⎢⎢⎢⎢⎢⎣0.9802 0.0196

0.0000 0.9802

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣0.0198

0.0

⎤⎥⎥⎥⎥⎥⎦ × ε × [0.0 5.0],

B1i(εi) =

⎡⎢⎢⎢⎢⎢⎣1.0000 0.0

0.0 1.0000

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣0.0198

0.0

⎤⎥⎥⎥⎥⎥⎦ × ε × [0.0 5.0],

B2i(εi) =

⎡⎢⎢⎢⎢⎢⎣1.0000 0.0

0.0 1.0000

⎤⎥⎥⎥⎥⎥⎦ , Ci(εi) = [1.0000 −1.0000],

Ri = 1.0000, Qi =

⎡⎢⎢⎢⎢⎢⎣1.9608 0.0195

0.0195 1.9605

⎤⎥⎥⎥⎥⎥⎦ ,
Π0 =

⎡⎢⎢⎢⎢⎢⎣1.0000 0.0

0.0 1.0000

⎤⎥⎥⎥⎥⎥⎦ .
In the first set of simulations the modelling error ε is

fixed to be −0.8508 and the input signal ui is also fixed,
ui = [1.0; 0.1]. Fig. 1 shows the variations of estimation
error variances with respect to time samples and the
filter design parameter γ. When the design parameter
γ takes the empirical value which is approximately 0.8,
the difference between the performances of the Kalman
filter with actual parameter values and the robust state
estimator derived in this paper is only 1 dB and nearly
10 dB performance improvement is obtained compared
with the Kalman filter based on nominal parameter val-
ues. The same conclusion can be drawn from Fig. 2.

Fig. 2 shows that at the sampled instants i = 500
and i = 1000, if γ takes any value between 0.0000 and
1.0000, the performance of the derived robust filter is
better than that of the Kalman filter based on nominal
parameter values and the optimal γ is approximately
0.8300.

In Fig. 3, the input signal ui is fixed to be [1.0; 0.1] and
the modelling error ε is produced randomly and inde-
pendently in each simulation according to a normal dis-
tribution with truncations. The mean and the standard
variance of the normal distribution are set respectively



H. Liu, T. Zhou / Control Theory Tech, Vol. 12, No. 4, pp. 383–392, November 2014 389

to 0.0000 and 1.0000. In case that a generated ε has a
magnitude greater than 1, it will be got rid of and re-
produced until an ε with magnitude not greater than 1
is obtained. From Fig. 4, we can see that there exists

a large interval of γ which leads to a robust estimator
with better performance than the Kalman filter based on
nominal parameters at the sampled instants i = 500 and
i = 1000.

Fig. 1 Estimation error variance with fixed γs. Fig. 2 Estimation error variance at fixed instants.

Fig. 3 Estimation error variance with fixed γs. Fig. 4 Estimation error variance at fixed instants.

The deterministic input signal ui in Fig. 5 is produced
randomly and independently according to a normal dis-
tribution with truncations and the modelling error ε is
produced randomly and independently in each simula-
tion according to a normal distribution with truncations.
The mean and the standard variance of the normal dis-
tribution ε are set respectively to 0.0000 and 1.0000.

The known input vector signal ui whose entries are in-
dependent respectively is generated similarly with mean⎡⎢⎢⎢⎢⎢⎣1.00.1

⎤⎥⎥⎥⎥⎥⎦ and covariance

⎡⎢⎢⎢⎢⎢⎣1.0 0.0

0.0 1.0

⎤⎥⎥⎥⎥⎥⎦ according to normal dis-

tributions with truncations. The magnitude difference is
not greater than 1. It is observed from Fig. 6 that there
also exists a large interval of γ which leads to a robust
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estimator with better performance than the Kalman fil-
ter based on nominal parameter at the sampled instants
i = 500 and i = 1000.

Fig. 5 Estimation error variance with fixed γs.

Fig. 6 Estimation error variance at fixed instants.

From Figs. 1–6, it is obvious that the robust state esti-
mator based on the sensitivity penalization of estimation
errors to modelling uncertainties can bring about signif-
icant robustness improvements in plant state estimator
designs. The optimal design parameter γ may lead to
the robust estimator with performances close to those
of the Kalman filter based on actual plant parameter val-
ues. Moreover, there are quite a lot of selections for
the parameter γ for that the performances of the robust
state estimator are continuous functions of the design

parameter. These properties are attractive in actual filter
designs and next we aim to find the optimal filter design
parameter.

5 Conclusions

This paper investigates a robust state estimator based
on modelling errors sensitivity penalization for uncer-
tain linear systems subject to deterministic input signals
and norm-bounded parametric uncertainties. The de-
rived state estimator is biased owing to the existence of
modelling errors in the input matrix, but the covariance
matrix of estimation errors is proved to be bounded.
The simulation examples show that this approach sig-
nificantly improved the estimator’s robustness to model
uncertainties compared with the designs only based on
nominal systems.

It also remains challenging to give an estimate for the
interval of desirable penalizing factor γ, as well as an
estimate for the size of tolerable modelling errors.
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Appendix A Derivation of the estimation procedure
To estimate the initial state x0, the cost function J(α0) is set

as follows, in which e0(ε0) = y0 − C0(ε0)x0.

J(α0) =γ0[‖x0‖2Π−1
0
+ ‖y0 − C0(0)x0‖2R−1

0
]

+ (1 − γ0)
L∑

k=1
(‖∂e0(ε0)
∂ε0,k

‖2)|ε0=0.

We obtain the following estimate of the initial state

x̂0|0 = (Π̂−1
0 + CT

0 (0)R−1
0 C0(0))−1CT

0 (0)R−1
0 y0,

where Π̂−1
0 = (Π−1

0 +(1 − γ0)/γ0

L∑
k=1

(
∂CT

0 (ε0)
∂ε0,k

)(
∂C0(ε0)
∂ε0,k

)|ε0=0)−1.

Moreover, we know Cov(x0 − x̂0|0) = (Π−1
0 + CT

0 (0)R−1
0 C0(0))−1

when no modelling errors exist.
Denote αiopt,Ci+1(0)[Ai(0) B̂2i(0)],T2i − λiSiP̂i|iST

i T2i and
x̂i|i+1+λiP̂i|iST

i T2iŵi|i+1 as col(x̂i|i+1− x̂i|i, ŵi|i+1), Ĥi, T̂2i and x̃i|i+1.
From the following algebraic relation:

⎡⎢⎢⎢⎢⎢⎣P−1
i|i 0

0 Q−1
i

⎤⎥⎥⎥⎥⎥⎦ + λi[ Si T2i ]T[ Si T2i ]

=

⎡⎢⎢⎢⎢⎢⎣ I 0

λiTT
2iSiP̂i|i I

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ P̂−1

i|i 0

0 Q̂−1
i

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ I λiP̂i|iST

i T2i

0 I

⎤⎥⎥⎥⎥⎥⎦ , (a1)

instituting (a1) to (4), and multiplying [I 0;λiTT
2iSiP̂i|i I]−1 from

the left sides of (4), we can obtain that

(

⎡⎢⎢⎢⎢⎢⎣ P̂−1
i|i 0

0 Q̂−1
i

⎤⎥⎥⎥⎥⎥⎦ + ĤT
i ΨiĤi)

⎡⎢⎢⎢⎢⎢⎣ x̃i|i+1 − x̂i|i
ŵi|i+1

⎤⎥⎥⎥⎥⎥⎦
= ĤT

i Ψi(yi+1 − Ci+1(0)(Ai(0)x̂i|i + B1iui))

− λi

⎡⎢⎢⎢⎢⎢⎣ ST
i

TT
2i

⎤⎥⎥⎥⎥⎥⎦ (Six̂i|i + T1iui).

Define variable x̃i+1|i+1 = Ai(0)x̃i|i+1 + B̂2i(0)ŵi|i+1 + B1i(0)ui,
we can obtain the following two expressions, for which the

direct computation of matrix inverse is avoided.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃i|i+1 = x̂i|i + P̂i|iAT
i (0)CT

i+1(0)R−1
i+1(yi+1 − Ci+1(0)

×(B1i(0)ui + Ai(0)x̃i|i+1 + B̂2i(0)ŵi|i+1))

−λiP̂i|iST
i (Six̂i|i + T1iui),

ŵi|i+1 = Q̂iB̂T
2i(0)CT

i+1(0)R−1
i+1(yi+1 − Ci+1(0)

×(B1i(0)ui + Ai(0)x̃i|i+1 + B̂2i(0)ŵi|i+1))

−λiQ̂iT̂T
2i(Six̂i|i + T1iui).

(a2)

Therefore,

x̃i+1|i+1

=B1i(0)ui + Ai(0)(x̂i|i + P̂i|iAT
i (0)

× CT
i+1(0)R−1

i+1(yi+1 − Ci+1(0)x̃i+1|i+1))

− λiAi(0)P̂i|iST
i (Six̂i|i + T1iui)

+ B̂2i(0)(Q̂iB̂T
i (0)CT

i+1(0)R−1
i+1(yi+1 − Ci+1(0)x̃i+1|i+1))

− λiB̂2i(0)Q̂iT̂T
2i(Six̂i|i + T1iui)

=B1i(0)ui + Ai(0)x̂i|i + Ai(0)P̂i|iAT
i (0)

× CT
i+1(0)R−1

i+1(yi+1 − Ci+1(0)x̃i+1|i+1)

− λiAi(0)P̂i|iST
i (Six̂i|i + T1iui)

+ B̂2i(0)Q̂iB̂T
2i(0)CT

i+1(0)R−1
i+1(yi+1 − Ci+1(0)x̃i+1|i+1)

− λiB̂2i(0)Q̂iT̂T
2i(Six̂i|i + T1iui)

=B1i(0)ui + Ai(0)x̂i|i + (Ai(0)P̂i|iAT
i (0)

+ B̂2i(0)Q̂iB̂T
2i(0))CT

i+1(0)R−1
i+1(yi+1 − Ci+1(0)x̃i+1|i+1)

− λi(Ai(0)P̂i|iST
i + B̂2i(0)Q̂iT̂T

2i)(Six̂i|i + T1iui).

Moreover,

x̃i+1|i+1

=B1i(0)ui + Ai(0)x̂i|i + Pi+1|iCT
i+1(0)

× R−1
i+1(yi+1 − Ci+1(0)x̃i+1|i+1) − λi(Ai(0)P̂i|iST

i

+ B̂2i(0)Q̂iT̂T
2i)(Six̂i|i + T1iui).

Therefore,

(I + Pi+1|iCT
i+1(0)R−1

i+1Ci+1(0))x̃i+1|i+1

=B1i(0)ui + Ai(0)x̂i|i + Pi+1|iCT
i+1(0)R−1

i+1 yi+1

− λ(Ai(0)P̂i|iST
i + B̂2i(0)Q̂iT̂T

2i)(Six̂i|i + T1iui)

=(B1i(0) − λ(Ai(0)P̂i|iST
i + B̂2i(0)Q̂iT̂T

2i)T1i)ui

+ (Ai(0) − λ(Ai(0)P̂i|iST
i + B̂2i(0)Q̂iT̂T

2i)Si)x̂i|i
+ Pi+1|iCT

i+1(0)R−1
i+1 yi+1.

Moreover, we can obtain that [P−1
i+1|i+Ci+1(0)TR−1

i+1Ci+1(0)]−1

= [I + Pi+1|iCi+1(0)TR−1
i+1Ci+1(0)]−1Pi+1|i = Pi+1|i+1 based on the

matrix inversion lemma, then x̃i+1|i+1 = Pi+1|i+1CT
i+1(0)R−1

i+1(yi+1

−Ci+1(0)(B̂1i(0)ui + Âi(0)x̂i|i)) + (B̂1i(0)ui + Âi(0)x̂i|i). Note that
equation (a2) have the same forms as those of [1–3], which
implies that we can reasonably designate x̂i+1|i+1 as x̃i+1|i+1.

Appendix B Proof of Theorem 2
From the derivation aforementioned, we know that there

exists a finite constant N2 for every sampled instant such that

‖E{
⎡⎢⎢⎢⎢⎢⎣ ˜̄xi+1|i+1

ˆ̄xi+1|i+1

⎤⎥⎥⎥⎥⎥⎦}‖ � N2.
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Define matrix Mi = E{
⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i

ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i

ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦
T

}, then from equation (6)

and the whiteness of wi and vi, as well as the assumption that
wi and vi are unrelated, we have that

Mi+1 =Ãi(εi, εi+1)MiÃT
i (εi, εi+1)

+ B̃2i(εi, εi+1)diag{Qi,Ri+1}B̃T
2i(εi, εi+1)

+ Ãi(εi, εi+1)E{
⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i

ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦}uT
i B̃T

1i(εi, εi+1)

+ B̃1i(εi, εi+1)uiE{
⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i

ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦
T

}ÃT
i (εi, εi+1)

+ B̃1i(εi, εi+1)uiuT
i B̃T

1i(εi, εi+1).

Based on this relation, a direct application of mathematical
inductions shows that

Mi+1 =
i∑

k=0
{ i∏

j=k+1
Ãj(εi, εi+1)(B̃2i(εi)diag{Qi,Ri+1}B̃T

2i(εi)

+ Ãi(εi)E{
⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i

ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦}uT
i B̃T

1i(εi) + B̃1i(εi)uiE{
⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i

ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦
T

}ÃT
i (εi)

+ B̃1i(εi)uiuT
i B̃T

1i(εi))(
i∏

j=k+1
Ãj(εi, εi+1))T}.

Define N3 as

N3 = sup
i�0

sup
εi ,εi+1∈E

σ̄(B̃2i(εi)diag{Qi,Ri+1}B̃T
2i(εi)

+ Ãi(εi)E{
⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i

ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦}uT
i B̃T

1i(εi) + B̃1i(εi)uiE{
⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i

ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦
T

}ÃT
i (εi)

+ B̃1i(εi)uiuT
i B̃T

1i(εi)).

Then, from the boundedness of B1i(εi),B2i(εi),Ci(εi),Qi and
Ri, as well as the boundedness of estimation errors for the de-
rived estimator, we have that N3 is a finite positive number
and,

σ̄(Mi+1) �
i∑

k=0
{σ̄( i∏

j=k+1
Ãj(ε j, ε j+1))σ̄(B̃2i(εi)diag{Qi,Ri+1}B̃T

2i(εi)

+ Ãi(εi)E{
⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i

ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦}uT
i B̃T

1i(εi) + B̃1i(εi)uiE{
⎡⎢⎢⎢⎢⎢⎣ ˜̄xi|i

ˆ̄xi|i

⎤⎥⎥⎥⎥⎥⎦
T

}ÃT
i (εi)

+B̃1i(εi)uiuT
i B̃T

1i(εi))σ̄((
i∏

j=k+1
Ãj(ε j, ε j+1))T)}

� α
i∑

k=0
{σ̄( i∏

j=k+1
Ãj(ε j, ε j+1))}2

� N3

i∑
k=0
{3 +

√
5

2

√
M2

1 +M2
2 + (i − k)2M2

3ρ
i−k
3 }2

=
7 + 3

√
5

2
N3{(M2

1 +M2
2)

1 − ρ2(i+1)
3

1 − ρ2
3

+M2
3

ρ2
3(1 + ρ2

3) − ρ2(i+1)
3 [(i + 1)2 − (2i2 + 2i − 1)ρ2i

3 + i2ρ4i
3 ]

(1 − ρ2
3)3

}
< +∞.

That is, the covariance matrix of estimation errors is always
upper bounded.
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