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Abstract:

A method for electrocardiogram (ECG) pattern modeling and recognition via deterministic learning theory is presented in this

paper. Instead of recognizing ECG signals beat-to-beat, each ECG signal which contains a number of heartbeats is recognized.

The method is based entirely on the temporal features (i.e., the dynamics) of ECG patterns, which contains complete information

of ECG patterns. A dynamical model is employed to demonstrate the method, which is capable of generating synthetic ECG

signals. Based on the dynamical model, the method is shown in the following two phases: the identification (training) phase and

the recognition (test) phase. In the identification phase, the dynamics of ECG patterns is accurately modeled and expressed as

constant RBF neural weights through the deterministic learning. In the recognition phase, the modeling results are used for ECG

pattern recognition. The main feature of the proposed method is that the dynamics of ECG patterns is accurately modeled and

is used for ECG pattern recognition. Experimental studies using the Physikalisch-Technische Bundesanstalt (PTB) database are

included to demonstrate the effectiveness of the approach.
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1 Introduction

As a valuable tool for patient monitoring or diagnosis

in clinical practice, an electrocardiogram (ECG) is widely

used for the detection of a broad range of cardiac con-

ditions, e.g., heart rate variability (HRV), myocardial

ischemia and myocardial infarction. Due to the enor-

mous volume of the non-stationary ECG data available,

ECG analysis is very time consuming. Thus, automatic

ECG recognition and analysis is very important in de-

tecting cardiac disease. The process of automatic ECG

recognition generally consists of two steps: i) the ex-

traction and selection of ECG pattern features, and ii)

the design of classification systems. The performance

of ECG pattern classification strongly depends on the

characterization power of the features extracted from
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the ECG data and the design of the classification model

[1]. ECG features can be extracted in time domain, in

frequency domain, or represented as statistical mea-

sures. Lots of schemes using different techniques have

been proposed for feature extraction, such as wavelet

transform (WT) [1–10], principal component analysis

(PCA) [11–13], KL transforms [14], Hermite function

[15], and Hilbert transform [16]. For the design of

ECG classification systems, many schemes have also

been presented, including morphology method [17],

fuzzy inference engines [18], particle swarm optimiza-

tion [1, 19], support vector machines [20–22], hidden

Markov model [23], independent component analy-

sis [24, 25], nearest neighbor method [9], linear dis-

criminant analysis [26,27], and artificial neural network

(ANN). In particular, ANN has often been proposed as

tools for realizing classifiers that are able to deal even

with nonlinear discrimination between classes and to

accept incomplete or ambiguous input patterns [28].

Many promising ANN-based techniques have also been

applied to the ECG pattern recognition and classifica-

tion, including multilayer perceptrons (MLPs) [29–34],

fuzzy neural networks [35–39], modular neural net-

work [40, 41], radial basis function network [42–44],

etc.

Although much progress has been achieved, so far ful-

ly automatic classification of ECG patterns is still a chal-

lenging problem. The main difficulty lies in the signifi-

cant variations in the morphologies of ECG waveforms

for different patients and under different temporal and

physical conditions [1, 34]. For example, in some cases

patients with identical defects may not have completely

similar ECG waveforms, while in other cases two vari-

ous diseases may have nearly the same ECG signals [45].

Moreover, in healthy individuals as well as within differ-

ent patient categories, a large interindividual variability

in the ECG waveforms is presented [46]. The existence

of large variations in the morphologies of ECG wave-

forms is mainly due to the fact that ECG waveforms

are temporal or dynamical patterns describing electri-

cal activities of the heart. Thus, automatic classification

and diagnosis of ECG signals virtually belongs to the

problem of temporal pattern recognition. As a matter

of fact, recognition of temporal patterns is among the

most difficult tasks in the pattern recognition area [47].

One challenging issue is how to appropriately represent

the time-varying patterns in a time-independent manner.

Further, similarity definition and recognition of temporal

patterns are also difficult problems. It has been pointed

out that the methods for temporal pattern processing

should be fundamentally different from those for static

pattern processing [48].

Recently, a deterministic learning theory [49–51] was

proposed for representation, similarity definition and

rapid recognition of temporal patterns. This theory was

mainly developed using concepts and theories of system

identification, adaptive control, and radial basis function

(RBF) networks. By using the deterministic learning the-

ory, the dynamics of a temporal pattern is accurately

modeled and then the temporal pattern can be effec-

tively represented in a time-invariant and spatially dis-

tributed manner. That is, a temporal pattern is repre-

sented as a set of constant weights of an RBF network.

Moreover, this representation contains complete infor-

mation of its state trajectory and its underlying system

dynamics along the state trajectory. A similarity defini-

tion of temporal patterns was given based on system

dynamics. With the time-invariant representation and

the similarity definition of temporal patterns, a mech-

anism for rapid recognition of temporal patterns was

proposed in [50,51]. In the recognition mechanism, the

learned knowledge can be quickly recalled and used for

recognition. A bank of estimators are constructed us-

ing the time-invariant representation. By comparing the

set of estimators with a test pattern, a set of recogni-

tion errors are generated, and are taken as the similar-

ity measure between the training patterns and the test

pattern. The recognition of a test dynamical pattern is

achieved rapidly because the recognition process takes

place from the beginning of measuring the state of the

test pattern, without identifying the system dynamics of

the test pattern and so without comparing system dy-

namics of corresponding dynamical patterns via numer-

ical computation. Furthermore, as complete information

of temporal patterns is used in the recognition mecha-

nism, it will be more suitable for accurate recognition of

complex temporal patterns.

In this paper, we present a method for ECG pattern

modeling and recognition via deterministic learning the-

ory, aiming at classify ECG signals into different types

corresponding to different heart diseases. The proposed

method is completely based on the temporal features

(i.e., the dynamics) of ECG patterns rather than stat-

ics features. The underlying dynamics within an ECG

pattern is accurately modeled by using RBF neural net-

works (NNs). On this basis, an ECG pattern is repre-

sented by using complete information of its state tra-

jectory and its underlying system dynamics along the
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state trajectory. Based on the representation, a mech-

anism of recognition of ECG patterns with low com-

putational effort is presented. Since complete informa-

tion of ECG patterns is used for automatic classifica-

tion, the presented method is appropriate to solve the

problems caused by the large variations of ECG. To

test the proposed method, two types of ECG record-

ings, healthy recordings and myocardial infarction (MI)

recordings, taken from Physikalisch-Technische Bunde-

sanstalt (PTB) database [52] are used in the paper. Ex-

perimental results demonstrate the effectiveness of the

proposed method.

Compared with existing results on ECG pattern mod-

eling and recognition the proposed method has the fol-

lowing features: 1) In existing studies, each heartbeat

was recognized and classified as one type of beats (e.g.,

normal beat, premature ventricular contraction, atrial

premature beat). However, in this paper, each ECG sig-

nal contains a number of heartbeats, and is recognized

and classified as one type of heart diseases. The objec-

tives of the two kinds of methods are different. 2) In

most existing ECG modeling studies, it is the states of

ECG signals that were modeled. However, in this paper,

it is the underlying system dynamics rather than the

states of ECG signals that are accurately modeled and

then used for ECG pattern recognition. Especially, it is

accurately modeled by using the deterministic learning

theory. 3) The recognition process of a test ECG pattern

takes place from the beginning of measuring the state

of test ECG pattern, without numerical computation as-

sociated with identifying the test ECG pattern dynamics

and comparison of system dynamics of the two ECG pat-

terns. Thus, the recognition can be achieved with low

computational effort.

The remainder of this paper is organized as follows.

A brief introduction of the deterministic learning is

presented in Section 2. Section 3 is devoted to the dy-

namical model used for showing the proposed method.

In Section 4, on the basis of the dynamical model men-

tioned in Section 3, we present the mechanism of ECG

pattern recognition of via deterministic learning. In Sec-

tion 5, two types of ECG recordings taken from PTB

database are used to demonstrate the effectiveness of

the proposed method. Section 6 is a discussion of the

proposed method. Section 7 concludes the paper.

2 Deterministic learning

Deterministic learning theory was proposed for NN

approximation of nonlinear dynamical systems [49].

Among various types of NN architectures, a dynamical

version of the localized RBF neural networks is used in

deterministic learning theory. The RBF networks can be

considered as two-layer networks in which the hidden

layer performs a fixed nonlinear transformation with no

adjustable parameters; that is, the input space is mapped

into a new space. The output layer then combines the

outputs in the latter space linearly. Therefore, they be-

long to a class of linearly parameterized networks. It

has been proven that an RBF network can approximate

any continuous function (i.e., universal approximation)

to arbitrary accuracy. Usually, it can be described in the

following form:

f (x) =
N∑

i=1
wisi(x) =WTS(x), (1)

where x is the input vector, W = [w1 · · · wN]T ∈ RN

is the weight vector, N > 1 is the NN node number,

and S(x) = [s1(| x − ξ1 |) · · · sN(| x − ξN |)], is the

regressor vector, with si( · ) being a radial basis func-

tion, and ξi (i = 1, . . . ,N) being distinct neurons in state

space. The radial basis function used in deterministic

learning is Gaussian function, which has the following

form: φ(‖x − ξi‖) = exp[
−(x − ξi)T(x − ξi)

η2 ], where η is

the bandwidth of the each neuron.

Consider a general nonlinear dynamical system in the

following form:

ẋ = f (x; p), x(t0) = x0, (2)

where x is the state of the system which is measurable,

p is a constant vector of system parameters, and f (x; p)
is a continuous but unknown nonlinear function.

To achieve identification of the unknown system dy-

namics f (x; p), the following dynamical model using the

RBF network is employed:

˙̂x = −a(x̂ − x) + ŴTS(x), (3)

where x̂ is the state of the dynamical model, x is the

state of system (2), a > 0 is a design constant, RBF

network ŴTS(x) are used to approximate the unknown

f (x; p) in equation (2) with Ŵ = [w1 · · · wN]T ∈ RN

and S(x) = [s1(‖ x − ξ1 ‖) · · · sN(‖ x − ξN ‖)]T, si( · )
being Gaussian function, and ξi (i = 1, . . . ,N) being dis-

tinct points in state space. The weight estimates Ŵ are

updated by the following law:

˙̂W = ˙̃W = −ΓS(x)x̃− σΓŴ, (4)
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where Γ = ΓT > 0, and σ > 0 is a small value. Based

on the dynamical model (3) and the weight update law

(4), the approximation for the unknown f (x; p) can be

obtained:

f (x; p) = W̄TS(x) + ε,

where W̄ = mean
t∈[ta ,tb]

Ŵ, “mean" is the arithmetic mean,

0 < ta < tb represents a piece of time segment after

the transient process, and ε is the approximation error

which can be made arbitrarily small. Thus, the identi-

fication of f (x; p) using only the information of system

state x is achieved, and is expressed as W̄TS(x), a time-

invariant manner (For details, see [51]).

Remark 1 A temporal (dynamical) pattern is defined

as a recurrent system trajectory generated from the dy-

namical system as system (2). The class of recurrent

trajectories includes periodic, quasi-periodic, almost-

periodic, and even chaotic trajectories. This definition

of a dynamical pattern covers a wide class of temporal

patterns studied in the literature.

3 Dynamical model

A dynamical model which is capable of replicating

many of the important features of the human ECG had

been introduced in [53]. It has a variable number of

free parameters that make it adaptable to many normal

and abnormal ECG signals [54]. By changing param-

eters of the dynamical model, different morphologies

for the PQRST-complex can be generated. The effec-

tiveness of different techniques for ECG analysis could

be assessed by using the synthetic ECG. For example,

in [55], the data generated by mixing the synthetic ECG

signals with random realizations of ECG noise are used

to evaluate performance of various of ECG enhancers.

In [56], the dynamical model is used to quantify the

errors in spectral estimates of HRV due to resampling

and beat replacement. With the simplicity and flexibility,

this model can be easily used as a base for ECG process-

ing [57], some modified nonlinear dynamic models have

developed and are used for ECG denoising and baseline

wandering [54,57].

To illustrate the proposed method, a dynamical mod-

el which is a little different from the dynamical model

proposed in [53] is used in this paper. The difference

is that the baseline wander, which was modeled in the

dynamical model proposed in [53], is not considered in

our study, since the purpose of this paper is to propose a

new method for ECG pattern recognition rather than for

ECG preprocessing. It is given by a set of three ordinary

equations as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ1 = αx1 − ωx2,

ẋ2 = αx2 + ωx1,

ẋ3 = f (x; p),

(5)

where α = 1−
√

x2
1 + x2

2,Δθl = θ−θl, θ = atan2(x2, x1),

ω is the angular velocity of the trajectory as it moves

around the limit cycle in the (x1, x2) plane,

f (x; p) = −
∑

l∈{P,Q,R,S,T}
AlΔθl exp(−

Δθ2
l

2B2
l

)

with x = [x1 x2 x3], p = [Al Bl θl] being the con-

stant vector of system parameters, Al, l ∈ {P,Q,R, S,T}
represent the amplitudes of the P,Q,R, S,T waves;

Bl, l ∈ {P,Q,R, S,T} represent the width (i.e., time du-

ration) of P,Q,R, S,T waves; θl, l ∈ {P,Q,R, S,T} repre-

sent the locations on the circle where P,Q,R, S,T waves

occur [58]. A three-dimensional trajectory generated by

(5) corresponding to (x1, x2, x3) is illustrated in Fig. 1 and

is denoted as ϕζ. The x3 variable from the dynamical

model (5) yields a synthetic ECG with realistic PQRST

morphology (Fig. 2). In the following section, the dynam-

ical model and the trajectory will be used to illustrate the

proposed method.

Remark 2 In the dynamical model proposed in [53],

the baseline wander is modeled with the x30 which is

assumed to be a relatively low amplitude sinusoidal

component coupled with the respiratory frequency [54],

where

f (x; p) = −
∑

l∈{P,Q,R,S,T}
AlΔθl exp(−

Δθ2
l

2B2
l

) − (x3 − x30).

Fig. 1 Trajectory generated by the dynamical model (5) with

certain parameters.
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Fig. 2 Morphology of one PQRST-complex of the ECG with

big T-wave generated by dynamical model (5), corresponding

to the x3 variable.

4 Methods

In this section, based on the dynamical model men-

tioned in Section 3, we present an approach for recogni-

tion of ECG patterns by using the deterministic learning

theory. The approach will be shown in two phases: the

training phase and the test phase. In the training phase,

the dynamics of the ECG signals is accurately modeled

and is expressed as constant RBF networks. In the test

phase, a similarity definition of ECG patterns is given

first. Based on the constant RBF networks and the sim-

ilarity definition, we propose a mechanism for recogni-

tion of ECG patterns. For a test ECG pattern, a bank of

estimators are constructed using the constant RBF net-

works. By comparing the set of estimators with the test

ECG pattern, a set of recognition errors are generated

and are taken as the similarity measure between the

training ECG patterns and the test ECG pattern. Accord-

ing to the smallest error principle, the test ECG pattern

can be recognized.

4.1 Identification phase

In this section, we will discuss the identification of

the ECG system dynamics f (x; p). Based on the deter-

ministic learning, the following dynamical model using

the RBF networks is employed to identify the dynamics

f (x; p) of system (5).

˙̂x3 = −a(x̂3 − x3) + ŴTS(X), (6)

where X = [x1 x2], x̂3 is the estimation of x3 in system

(5), a > 0 being design constants, RBF networks ŴS(X)

are used to approximate f (x; p). The weight estimates

Ŵ are updated by the following law:

˙̂W = ˙̃W = −Γ(S(X)x̃3 + σŴ), (7)

where Γ = ΓT > 0, and σ > 0 is a small value.

Consider the adaptive system consisting of the non-

linear dynamical system (5), the dynamical model (6),

and the NN weight updating law (7). For the trajectory

ϕζ shown in Fig. 1, with initial values Ŵ(0) = 0, ac-

cording to Theorem 1 in [59], we have: i) all signals in

the adaptive system remain uniformly bounded; ii) the

state estimation error x̃3 = x̂3 − x3 converges to zero;

iii) f (x; p) = W̄TS(X) + ε, where ε is the approximation

error which can be made arbitrarily small. Thus, accu-

rate identification of ECG system dynamics is achieved

along the trajectory ϕζ. ECG patterns are effectively rep-

resented by the accurate NN approximations of system

dynamics. The representation is time-invariant in the

sense that it is independent of the time attribute. The

representation is also spatially distributed, since funda-

mental information is stored in a large number of neu-

rons distributed along the trajectory of the ECG pattern.

Thus, complete information of both the ECG pattern

state and the underlying ECG dynamics is utilized for

appropriate representation of the ECG pattern. In oth-

er words, a complete representation of ECG patterns is

achieved.

In order to show the identification effect of the pro-

posed method, synthetic ECG signal shown in Fig. 2 is

accurately identified. A dynamical model (such as (6))

corresponding to the synthetic ECG signal is first con-

structed using RBF networks. The weight estimates Ŵ of

the RBF network are updated by equation (7). According

to Theorem 1 in [59], the weights of the RBF networks

Ŵ will be converge to their optimal values W∗. The con-

vergence of the neural weights is shown in Fig. 3. It can

be seen from this figure that the neural weights indeed

converge to their optimal values. From Fig. 4, we can see

that good NN approximations of f (x; p) is obtained us-

ing the proposed method. In other words, the accurate

identification of f (x; p) is actually achieved.
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Fig. 3 Partial parameter convergence Ŵ after the transient

process. Each line corresponds to one neuron of the RBF net-

work.

Fig. 4 Function approximation, where f (x) is known, W̄TS(X)
is the approximation of f (x), and e(X) is the approximating

error.

4.2 Recognition phase

Based on the time-invariant representation of the sys-

tem dynamics of ECG patterns (i.e., constant RBF neu-

ral weights), we propose a mechanism for recognition

of ECG patterns. Using the constant RBF networks ob-

tained in the training phase, we construct a dynamical

model for each training ECG pattern [50]. For the kth

(k = 1, . . . ,M) training ECG pattern ϕk
ζ
, a dynamical

model is constructed by using the time-invariant repre-

sentation W̄kT
as

˙̄xk
3 = −b(x̄k

3 − x3) + W̄kT
S(x), (8)

where x̄k
3 is the state of the dynamical (template) model,

x = [x1 x2 x3] is the state of the input test ECG pattern

ϕς generated from equation (5), and b > 0 is a design

parameter that is kept the same for all training ECG pat-

terns and normally smaller than a (a is given in equation

(6)). Then, corresponding to the test ECG pattern ϕς
and the dynamical model (8) (for training pattern ϕk

ζ
),

we obtain the following recognition error system:

˙̃xk
3 = −bx̃k

3 + W̄kT
S(x) − f (x, p), (9)

where x̃k
3 = x̄k

3 − x3 is the state tracking (or synchroniza-

tion) error.

According to Theorem 2 in [50], the state estimation

errors x̃k
3 are approximately proportional to the differ-

ences between the system dynamics of test ECG pat-

tern ϕς and the identified system dynamics of training

ECG pattern ϕk
ζ
. Thus, the synchronization errors can be

taken as similarity measures between the test and the

training ECG patterns. Accordingly, in this paper, we

propose the following definition of similarity for ECG

patterns.

Definition 1 The test ECG pattern ϕς is recognized

as similar to the training ECG pattern ϕk
ζ

if the average

L1 norm of the state estimation error x̃k is the smallest.

‖x̃k(t)‖1 =
1
T

� t

t−T
| x̃k(τ) | dτ, t � T, (10)

where T is the period of the heart beat.

From the above analysis, we take the following

method to recognize a test ECG pattern from a set of

training ECG patterns:

� Identify the system dynamics of a set of training

ECG patterns ϕk
ζ
, k = 1, . . . ,M.

� Construct a set of dynamical models (8) for the

training dynamical patterns ϕk
ζ
.

� Take the state x(t) of a test ECG pattern ϕς as the

RBFN input to the dynamical models (8), and compute

the average L1 norm of the state estimation error x̃k.

� Take the training dynamical pattern whose corre-

sponding dynamical model yields the smallest ‖x̃k‖1 as

the one most similar to the test dynamical pattern ϕς in

the sense of similarity definition given above.

Remark 3 The recognition of a test ECG pattern can

be achieved with low computational effort because the

recognition process takes place from the beginning of

measuring the state of the test ECG pattern, without

feature extraction from test ECG pattern.

5 Results

A set of ECG records taken from PTB diagnostic ECG

database [52] is used to evaluate the proposed method.

PTB database is an ECG collection that was provided by
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the National Metrology Institute of Germany for teach-

ing and research purposes, and for algorithm evalua-

tion [60]. It contains more than 27000 ECG records, and

each record includes 15 simultaneously measured sig-

nals: the conventional 12 leads together with the three

Frank leads ECG (VX,VY,VZ). Especially, each record of

PTB database has a detailed clinical summary, includ-

ing age, gender, diagnosis and so on. In the database,

52 subject’s records diagnosed as healthy and 148 sub-

ject’s records diagnosed as myocardial infarction (MI)

by physicians. A set containing 52 healthy ECG signals

taken from the 52 healthy subjects and 148 MI ECG

signals taken from the 148 MI subjects (one recording

per patient) is used in our experiment. The data length

is 10 seconds. Since ECG signal recorded in each lead is

the projection of the heart vector onto the lead vector,

so we only use the three Frank leads ECG to recognize

and classify the ECG patterns. It is worth noting that,

no matter identify or recognize a ECG pattern, ECG pre-

processing have to be done to remove various noises,

especially the baseline wandering since it will seriously

affect the periodicity of the ECG signal.

Based on the ECG recordings taken from PTB

database, four experiments are conducted in the paper.

The performance is quantified by the following three in-

dices: accuracy, specificity (SPE) and sensitivity (SEN),

which are defined as follows:

Accuracy :
def
=

TP + TN
TP + TN + FP + FN

(%), (11)

Specificity :def
=

TP
TP + FN

(%), (12)

Sensitivity :def
=

TN
TN + FP

(%), (13)

where TP (true positives) is the number of correctly

recognized MI ECG signals, TN (true negatives) is the

number of correctly recognized healthy ECG signals, FP
(false positives) is the number of erroneously recognized

MI ECG signals, and FN (false negatives) is the number

of erroneously recognized healthy ECG signals.

In the first experiment, 10 healthy ECG signals and 25

MI ECG signals are randomly selected as training pat-

terns. The remaining ECG signals, 42 healthy ECG sig-

nals and 123 MI ECG signals, are used as test patterns.

In the second experiment, 25 healthy ECG patterns and

50 MI ECG patterns are selected as training patterns.

Correspondingly, the remaining 25 healthy ECG signals

and 98 MI ECG signals are used as test patterns. The ob-

tained test recognition accuracies of experiment 1 and

experiment 2 are 81% and 90%. Detailed results of the

two experiments are given in Table 1, where H and MI

denote healthy and MI ECG signal, N denotes the num-

ber of mis-recognized ECG signals.

To further estimate the performance of the proposed

method, k-fold cross-validation method is used in the

following two experiments. It is a standard technique in

machine learning and is popular for estimating general-

ization ability of a classifier. The data set is divided into k
subsets, and the proposed method is repeated k times.

Each time, one of the k subsets is used as the test set

and the other k − 1 subsets are put together to form a

training set. Then, the average error across all k trials is

computed. In the paper, 3- and 5-fold cross-validation

are used to further estimate the proposed method. The

obtained test recognition accuracies of 3- and 5-fold

cross-validation are 89.5% and 85.5%, respectively. De-

tailed results are given in Tables 2 and 3, where H, MI

and N are the same as in Table 1.

Table 1 Recognition results of Experiments 1 and 2.

Training number Test number
Experiment

H MI Total H MI Total
Accuracy (%) SPE (%) SEN (%) N

1 10 25 35 42 123 165 81 69 85 31

2 25 50 75 27 98 125 90 85 92 12

Table 2 Recognition results of Experiment 3.

Training number Test number
Fold

H MI Total H MI Total
Accuracy (%) SPE (%) SEN (%) N

1 35 99 134 17 49 66 87.8 70.6 91.8 9

2 35 99 134 17 49 66 90.9 88.2 91.8 6

3 34 98 132 18 50 68 89.7 77.8 94.0 7

Average results 89.5 78.9 92.5 7.3
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Table 3 Recognition results of Experiment 4.

Training number Test number
Fold

H MI Total H MI Total
Accuracy (%) SPE (%) SEN (%) N

1 42 118 160 10 30 40 87.5 70.0 93.3 5

2 42 118 160 10 30 40 85.0 70.0 90.0 6

3 42 118 160 10 30 40 87.5 80.0 90.0 5

4 41 119 160 11 29 40 87.5 81.8 89.6 5

5 42 118 160 11 29 40 80.0 63.4 85.8 8

Average results 85.5 73.0 89.9 5.8

As an example, identification results of s0302lrem (pa-

tient 116) are given as follows. After denoising, space

vector (VX,VY,VZ) of s0302lrem is shown in Fig. 5. As

mentioned in Section 4.1, three dynamical models using

the RBF networks are employed to identify the dynam-

ics of VX,VY and VZ. The neural weights estimates ŴX,

ŴY and ŴZ are updated along the trajectory shown in

Fig. 5. As described for Fig. 3 in the last paragraph of Sec-

tion 4.1, the neural weights of the three RBF networks

are converge to their optimal values. The convergence

of the neural weights is shown in Fig. 6. It can be seen

from Fig. 6 that the neural weights are essentially un-

changed during the last two seconds, in other words,

the weights estimates indeed converge to their optimal

values. The underlying system dynamics along the state

trajectory shown in Fig. 5 is identified and is shown in

Fig. 7. The dynamics of the other training ECG patterns

can also be identified by the same procedure. Then, a

pattern library can be obtained.

With a pattern library, a test ECG pattern can be rec-

ognized according to the similarity definition of ECG pat-

terns. As an example, a healthy ECG data s0336lrem (pa-

tient 185) is recognized by using the proposed method,

with the pattern library of the first experiment. A set

of dynamical models for the training ECG patterns are

constructed first, and the state of s0336lrem is used as

the RBF network input to the dynamical models. Then,

comparing the test ECG pattern s0336lrem with the dy-

namical models, we obtain a set of state tracking errors

x̃k, k = 1, 2, . . . , 35, where x̃ = (ṼX, ṼY, ṼZ). The average

L1 norms of x̃k is computed as follows:

‖x̃k‖1 =
1
3

(‖Ṽk
X‖1 + ‖Ṽ

k
Y‖1 + ‖Ṽ

k
Z‖1). (14)

The average L1 norms of x̃k for the 35 training patterns

are shown in Fig. 8. According to the smallest error prin-

ciple, test ECG pattern s0036lrem is recognized as sim-

ilar to training pattern s0302lrem. That is, ECG pattern

s0036lrem is classified into healthy group.

Fig. 5 The space vector of s0302lrem with 10 seconds length

(patient 116).
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Fig. 6 Partial parameter convergence ŴX, ŴY and ŴZ after the

transient process, which are corresponding to the three Frank

lead ECGs VX,VY,VZ. Each line corresponds to one neuron of

the RBF network.

Fig. 7 The dynamics of s0302lrem (the first 1.5 seconds) we

identified, W̄T
XS(X), W̄T

YS(Y) and W̄T
ZS(Z), corresponding to

the three Frank leads ECG.

Fig. 8 Average L1 norms of x̃k for the 35 training patterns,

where x̃k, k = 1, 2, . . . , 35 are the state tracking errors obtained

by comparing the test ECG pattern s0036lrem with the 35

training ECG patterns. The dash line corresponds to the train-

ing ECG pattern s0302lrem, a healthy ECG data (patient 116).

6 Discussion

As shown in Section 4.1, a synthetic ECG signal shown

in Fig. 2 is generated by the dynamical model (5), and

the dynamics f (x; p) of the synthetic ECG signals is ac-

curately modeled and represented as constant RBF net-

works. Likewise, the dynamics of practical ECG signals

can also be accurately modeled, an example is given in

Section 5. On this basis, four experiments with different

number of training ECG patterns are given. The number

of the training ECG patterns of the second experiment

is more than 2 times of the first experiment. From the

results of the two experiments, we can see that the

accuracy of the second experiment is higher than the

first experiment. Especially, the accuracy of the second

experiment for healthy and MI ECG patterns are 16 per-

centage points and 7 percentage points higher than the

first experiment. This shows that the accuracy can be

improved by increasing the number of the training ECG

patterns.

From Tables 2 and 3, we can see the accuracies of

3- and 5-fold cross-validation are 89.5% and 85.5%, re-

spectively. There is a little difference between the ac-

curacies of the two experiments. Additionally, the accu-

racy of experiment 2 (90%) is very close to experiment

3 (89.5%). These show the proposed method has good

generations. On the another hand, these also show the

accuracy based on the set used in the paper is difficult to

further improve, since the number of the records is very

limited and the records (52 healthy ECG signals and 148

MI ECG signals) are far from representative of all of the

healthy ECG patterns and MI ECG patterns.

As the existence of individual differences in human

heart, the recognition accuracy based on a small pattern

library is more dependent on the selection of training

ECG patterns. That is the main reason for the lower accu-

racy of the first experiment (which can be seen in Table

1). Also for the reason, there is a large variation of speci-

ficity of different folds (e.g., the difference between the

specificity of Folds 1 and 4 of 5-fold cross-validation ex-

periment is 11.8 percentage point). Moreover, the train-

ing ECG patterns used in the experiments may not be

universally representative, since the impact of various

factors (e.g., ages, gender, physical conditions) for ECG

patterns is not taken into account. However, in addition

to the individual differences, there also exist similari-

ties in the mechanism and physiological among patients

with the same disease. Thus, if there is a large pattern

library containing adequate ECG patterns with different
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ages and different physical conditions (e.g., healthy con-

ditions, various diseases), most of test ECG pattern will

be accurately recognized. With further increase of the

training ECG pattern, the accuracy will be satisfactory

for the clinical application.

Thus, the method may be used in automatic detec-

tion of heart diseases in the near future. A large number

of ECG patterns can be obtained conveniently in clini-

cal. ECG recordings of various heart diseases diagnosed

by physicians can be added in a ECG pattern library.

Based on a very large scale pattern library which con-

tains ECG patterns with various heart diseases, a more

accurate detection of heart diseases will be achieved. As

the rapid development of computer technology, the es-

tablishment and processing of a very large scale pattern

library is not a problem. As an estimated 106 ECGs per-

formed per day [61], the proposed method will be very

helpful to improve diagnosis efficiency and to reduce

workload of physicians.

7 Conclusions

In this paper, we have proposed an approach for

recognition of ECG signals. Each ECG signal is rec-

ognized rather than beat-to-beat, which is completely

different from existing studies. It includes the following

elements: a time-invariant representation for ECG pat-

terns, a similarity measure based on ECG dynamics, a

mechanism for ECG pattern recognition with low com-

putational effort. It has been shown, that the dynamics of

ECG is effectively expressed as constant RBF networks.

With the time-invariant manner, a set of estimators are

constructed. For a test ECG pattern, a set of errors are

obtained by comparing it with the set of dynamical es-

timators. Based on the similarity definition of ECG pat-

terns, the test ECG pattern is recognized according to

the smallest residual error principle. Compared with the

existing ECG recognition approaches, the main advan-

tage of the proposed method is that the dynamics which

contains complete information of ECG patterns is used

for recognition. Another advantage is that it does not

need to extract various static features from test ECG

pattern. Moreover, numerical computation associated

with identifying test ECG pattern dynamics and com-

parison of dynamics of two ECG patterns is also not

required. Accordingly, various complex algorithms for

features extraction are avoided and the recognition can

be achieved with low computational effort.
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