
Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014

Control Theory and Technology

http://link.springer.com/journal/11768

Design of high-speed and low-power
finite-word-length PID controllers

A. K. OUDJIDA 1†, N. CHAILLET 2, A. LIACHA 1, M. L. BERRANDJIA 1, M. HAMERLAIN 1

1.Centre de Développement des Technologies Avancées, Algiers, Algeria;

2.FEMTO-ST Institute, Besançon, France

Received 11 June 2012; revised 1 April 2013; accepted 2 April 2013

Abstract:
ASIC or FPGA implementation of a finite word-length PID controller requires a double expertise: in control system and

hardware design. In this paper, we only focus on the hardware side of the problem. We show how to design configurable fixed-point
PIDs to satisfy applications requiring minimal power consumption, or high control-rate, or both together. As multiply operation
is the engine of PID, we experienced three algorithms: Booth, modified Booth, and a new recursive multi-bit multiplication
algorithm. This later enables the construction of finely grained PID structures with bit-level and unit-time precision. Such a feature
permits to tailor the PID to the desired performance and power budget. All PIDs are implemented at register-transfer-level (RTL)
level as technology-independent reusable IP-cores. They are reconfigurable according to two compile-time constants: set-point
word-length and latency. To make PID design easily reproducible, all necessary implementation details are provided and discussed.

Keywords: Design-reuse; Embedded finite-word-length (FWL) controllers; Intellectual property (IP); Linear time invariant
(LTI) systems; Low-power and speed optimization; PID

DOI 10.1007/s11768-014-2131-5

1 Introduction
The PID is by far the most commonly used feedback

controller due to its simple structure and robust per-
formance [1]. An important feature of this controller is
that it does not require a precise analytical model of
the system that is being controlled, which makes it very
attractive for a large class of dynamic systems. While
PID is well adapted for linear-time-invariant (LTI) sys-
tems [2], it stands powerless for non-LTI ones. Never-

theless some solutions exist, such as partitioning the
non-LTI control algorithm into a linear portion and a
nonlinear portion [3–5]. The linear portion represents
the major control loop and is computed using an in-
tegrated PID, while the nonlinear portion that acts as
dynamic compensation to the linear one is performed
in software using a general-purpose-microprocessor or
a DSP.

In embedded control applications, such as in small-

†Corresponding author.
E-mail: a_oudjida@cdta.dz. Tel.: +213-21-351018; fax: +213-21-351039.

2014 South China University of Technology, Academy of Mathematics and Systems Science, CAS, and Springer-Verlag

A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014 69

scale mobile robot, the control-loop-cycle is very tight
and the power budget is very limited. A low sample
rate leads to poor and degraded control-performance.
Moreover, high power consumption shortens the bat-
tery lifetime. To cope with these two severe and antag-
onistic constraints, the need for both a high-speed and
low-power PID structure is of utmost importance.

Today, design-reuse [6] is a well-established design
standard that allows grasping with rapid technology
changes and increasing design complexity. It consists in
the use of predesigned technology-independent, generic
and reconfigurable IP-cores [7], most generally imple-
mented at register-transfer-level (RTL).

However, at RTL abstraction level, no significant opti-
mization results can be achieved if not undertaken at ar-
chitectural and especially at algorithmic level. To achieve
such a goal, a deep insight into PID arithmetic is neces-
sary. At this stage, a choice of a numeric representation
format is a crucial issue. Compared to floating-point,
fixed-point format is the best candidate for optimized de-
signs as it is much simpler to implement, faster, power-
efficient and requires far much less hardware resources.
However, the limited dynamic range can be source of
control instability. This problem, referred to as finite-
word-length (FWL) effect is an active research area that
aims to shorten the floating-to-fixed point conversion
time while preserving control performances [8,9].

The digital implementation of PID controllers went
through several stages of evolution, initially dominated
by the use of commercial-of-the-shelf (COTS) compo-
nents and DSP. However, over the past few years, FP-
GAs have brought a key advantage to digital control: the
inherent parallelism of FPGA architecture allows many
independent control loops to run at different determinis-
tic rates without relying on shared resources that might
slow down their responsiveness as in the case of COTS
and DSP [10,11].

A survey of recent PID related works can be clas-
sified into three categories. The biggest one includes
works that are straightforward FPGA implementations
targeting specific applications: DC-DC converter [12],
temperature control [13], motor multi-axis control [14],
liquid level control [15], and Xilinx versus Altera FPGA
implementation for result comparison [16]. The second
category proposes methodologies that analyze the FWL
effect on PID controller in order to reduce the num-
ber of hardware resources [17, 18]. Moreover, finally
the third category, paradoxically the smallest one de-
spite the large popularity of PID, comprises architecture-

optimization works. In [19], low-power serial and par-
allel multiple-channel PID architectures are proposed
for small mobile robots. In this work, the optimiza-
tion was carried out at macro-level considering sev-
eral PIDs, rather than at micro-level (optimization of
the PID itself). Nevertheless, the whole architecture will
deliver much more interesting results if combined with
an optimized PID. The second work [20] proposes se-
rial, parallel, and mixed PID architectures incorporating
different number (1 – 3) of multiplication cores. High
power consumption, even with the serial architecture,
and complex control-part are the two major shortcom-
ings of this proposal. Finally, in [21], an attractive op-
timized PID structure based on distributed arithmetic
(DA) is presented. Although this latter exhibits interest-
ing results in terms of resource utilization and power
consumption, it suffers from three serious drawbacks:
high latency (n+ 1 clock-cycles for n bit set-point word-
length), FPGA technology-dependent as it is essentially
based upon FPGA look-up-tables (LUTs), and inability
to handle time-varying PID parameters since they are
precomputed and stored into LUTs. Nevertheless, it is
considered as a reference design against which the ob-
tained results are confronted into the same conditions.

The objective of this paper is to design optimized
FWL-PID structures that overcome all the above-
mentioned shortcomings, and which are especially ded-
icated to embedded control applications. The PID cores
are described at RTL level. They are highly reconfigurable
and technology-independent, offering the possibility to
be mapped both on FPGA and ASIC.

To reach such a goal, a special focus was put on the
optimization of the inner arithmetic of PID. For that,
we considered two discrete forms of PID algorithm: the
commercial form [22], called also the standard or ISA
form, and the incremental form. These two forms went
through three successive types of FPGA implementa-
tions, using: Booth multiplication algorithm (BMA) [23],
modified Booth multiplication algorithm (MBMA) [24],
and a new developed version called recursive multibit
recoding multiplication algorithm (RMRMA) [25]. Re-
sults show gradual improvements with clear superiority
over those provided in [21]. PID control-rate and energy-
consumption savings are respectively as follows: 32%
and 25% with BMA, 177% and 23% with MBMA, 431%
and 20% with RMRMA.

Our previous paper [26] introduced a limited design-
space of PID. In this paper, we extended the design-
space to accommodate different application cases and

70 A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014

provided all necessary implementation details to make
the design easily reproducible.

The paper is organized as follows. In this section we
outlined the main requirement specifications for em-
bedded PID controller. Section 2 introduces the two
mostly-used discrete versions of PID algorithm. Sec-
tions 3, 4 and 5 deal with BMA, MBMA and RMRMA
implementations, respectively. A discussion around the
obtained results is given in Section 6. Section 7 describes
the verification method, while Section 8 shows how the
FWL-effect is tackled. Moreover, finally some conclud-
ing remarks in Section 9.

2 The two mostly-used discrete versions of
PID

A typical closed-loop system using a PID controller
is shown in Fig. 1, where uc(k), y(k), and u(k) are the
discrete signal quantities at the kth sampling instant of
the reference set-point, the process-feedback measured
output, and the PID controller output, respectively.

Fig. 1 Typical closed-loop control system using a PID.

In digital control, commercial and incremental forms
are the two mostly-used discrete PID versions [1, 22].
They are denoted by recurrent equations (1) and (2),
respectively, and their corresponding coefficients are
grouped in Table 1. Equations (1) and (2) are fully de-
tailed in the Appendix.

u(k) = P(k) + I(k) +D(k), (1)

where

P(k) = A · uc(k) + B · y(k),
I(k) = I(k − 1) + C · e(k − 1),
D(k) = H ·D(k − 1) + L · f (k),

with

e(k − 1) = uc(k − 1) − y(k − 1),
f (k) = y(k) − y(k − 1),

and

u(k) = u(k − 1) + A · e(k) + B · e(k − 1)
+C · e(k − 2), (2)

where

e(k) = uc(k) − y(k),
e(k − 1) = uc(k − 1) − y(k − 1),
e(k − 2) = uc(k − 2) − y(k − 2).

Table 1 Coefficients of discret recurrent equations.

Coefficients Commercial PID Incremental PID

A Kpb Kp(1 +
Ts

Ti
+

Td

Ts
)

B −Kp −Kp(1 + 2
Td

Ts
)

C −Kp
Ts

Ti
Kp

Td

Ts

H
Td

Td +NTs
–

L − KpTdN
Td +NTs

–

Kp is the proportional gain; Ti and Td are the integral and
derivative times, respectively; N is the maximum derivative
gain; b is the fraction of set-point in proportional term; and Ts

is the sampling period.
To satisfy different application cases, two IP versions

are developed for each equation: with constant coeffi-
cients and with varying coefficients (Fig. 2). This latter
requires a host side interface (HSI) to handle the runtime
change of the coefficients.

Fig. 2 Various PID IP-cores. (a) Commercial PID with con-
stant coefficients; (b) commercial PID with time varying co-
efficients; (c) incremental PID with constant coefficients; and
(d) incremental PID with time varying coefficients.

A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014 71

The commercial version allows the three standard PID
functioning modes (P, PI, PID) according to Mode input
value. At the end of u(k) computation, the Done output
signal toggles during one clock cycle, and the PID enters
into sleep mode (whole internal activity stopped except
for clocking and HSI) for maximum energy conservation.

3 MBA-based PID

A straightforward parallel implementation of PID
requires an amount of 7 adders/substractors and
5 multiplication cores for equation (1), and 4
adders/substractors and 3 multiplication cores for equa-
tion (2). In digital hardware, the total gate count scales
linearly with word length for an adder core, while it
scales quadratically for a multiplier core. Thus, any effort
for a low-power optimization of PID must be focused
on the implementation of the multiply-and-accumulate
(MAC) function (X · Y) [27]. In this work, the optimiza-
tion effort is rather concentrated on the double MAC
function (X · Y + T · Z) called DMAC, considered as the
main building block of our PID structures. Equations (1)
and (2) are partitioned accordingly.

For FWL-PID, two’s complement fixed-point repre-
sentation is used, which is habitually expressed in Q
notation as Qni.nf . The values are coded in ni bits before
the point (integer word length including 1 sign bit), and
nf bits after the point (fractional word length). The total
word length is n = ni + nf.

Booth multiplication algorithm [23] belongs to the
class of recoding algorithm, i.e., algorithms that recode
one of the two operands to cope with signed two’s com-
plement multiplication. Let Y be the multiplier:

Y = −yn−12n−1 +
n−1∑

j=0
yj2 j. (3)

Equation (3) can also be expressed as follows:

Y =
n−1∑

j=0
(yj−1 − yj)2 j =

n−1∑

j=0
Qj2 j, (4)

where y−1 = 0 and Qj ∈ {−1, 0, 1}.
Consequently, the multiplier Y is divided into n slices,

each of 2 bits. Each pair of two contiguous slices has one

bit in common. Thus, the DMAC becomes

X.Y + T.Z =
n−1∑

j=0
(Qj.X)2 j +

n−1∑

j=0
(Pj.T)2 j (5)

=
n−1∑

j=0
(Qj.X + Pj.T)2 j. (6)

According to (5), Booth algorithm consists in recoding
the multiplier Y into a set of ternary numbers {−1, 0, 1}
in order to generate n simple partial products which are
summed subsequently. Table 2 summarizes the 4 pos-
sibilities that may occur. The −X can be easily formed
by adding 1 to the complement of X. A direct trans-
lation of DMAC equation (5) into architecture (Fig. 3)
requires one extra adder and two registers in compar-
ison with the optimized version (Fig. 4) based on (6),
called ODMAC. Additionally, one clock cycle latency is
also needed in Fig. 3. The control-part responsible of
producing the successive couples (yj−1, yj) is insignifi-
cant: just one multiplexer driven by a counter.

Table 2 Booth algorithm.

Yj Yj−1 Operation

0 0 0
0 1 +X

1 0 −X

1 1 0

Fig. 3 Straightforward DMAC implementation.

72 A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014

Fig. 4 Optimized DMAC implementation.

Based upon ODMAC as the main building block,
PID architectures are constructed for both incremental
(Fig. 5) and commercial (Fig. 6) forms, and their imple-
mentation results (Table 3) are respectively compared to
those of [21]. Comparison was made into identical con-
ditions using the same FPGA device (Spartan XC2S50E-
7FT256), although relatively old, as well as the same
synthesis-tool version (Xilinx ISE 9.1i). In [21], only a 16-
bit word-length commercial version with constant coef-
ficients (without HSI) is implemented. PID1 and PID3
exhibits interesting results: 44%, 25%, and 32% savings
and 62%, 35%, and 38% savings in terms of gate count,
power, and speed, respectively. PID3 exhibits higher
savings but at the expense of control-quality. Latency is
rather the same (17), which is n + 1 clock cycles for all
designs (PIDX).

Optimizing latency without sacrificing the three other
issues is the main objective of the next two sections.

Fig. 5 Incremental PID architecture.

Fig. 6 Commercial PID architecture.

Table 3 Implementation result comparision of
MBA-based PID.

PID Total gate Power* Max. clock
core count (mW) freq. (MHz)

Latency

PID [21] 16728 456 47
PID1 9286 (44%) 342 (25%) 62 (32%)
PID2 10661 (36%) 359 (21%) 61 (30%) 17
PID3 6337 (62%) 297 (35%) 65 (38%)
PID4 7168 (57%) 308 (32%) 62 (32%)

* Dynamic power consumption at 47 MHz; (XX%): saving.

4 MBMA-based PID

Equation (3) can also be rewritten as follows [24]:

Y =
n
2−1∑

j=0
(y2 j−1 + y2 j − 2y2 j+1)22 j =

n
2−1∑

j=0
Qj22 j, (7)

where y−1 = 0 and Qj ∈ {−2,−1, 0, 1, 2}.
In this case, the multiplier Y is divided into n/2 slices,

each of 3 bits, with one bit overlapping between adja-
cent slices. The proof of equation (7) is given in [28].
Thus, the DMAC equation becomes:

X.Y + T.Z =
n
2−1∑

j=0
(Qj.X + Pj.T)22 j. (8)

Likewise, n/2 simple partial products are generated
(Table 4). Since ODMAC is a reconfigurable RTL block,
it is parameterized to suit equation (8). The new adapted
ODMAC architecture is depicted in Fig. 7. The only dif-

A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014 73

ference is that Mux(8:1) are used instead of Mux(4:1),
and (� 2. j) hardwired shifter instead (� 1. j). Compared
to BMA-based PID (Table 5), MBMA-based one (PID1)
shows much more interesting results, since latency is
divided by 2 while maintaining stable power consump-
tion and speed. Control rate is drastically improved as its
equal to maximum clock frequency divided by latency.
As the discrete commercial form (equation (1)) can ac-
commodate the three functioning modes, implementa-
tion of PID2 produced the following power consumption
values at 47 MHz: 268 mW, 313 mW, and 366 mW for
P, PI, and PID functioning modes, respectively.

With regard of these improvements, one is encour-
aged to pursue farther [24] in reducing latency by con-
sidering larger slices, such as

Y=
n
3−1∑

j=0
(y3 j−1+y3 j+2.y3 j+1−22y3 j+2)23 j=

n
3−1∑

j=0
Qj23 j, (9)

where y−1 = 0 and Qj ∈ {−4, . . . , 0, . . . , 4}.
However, in this case, some hard partial products are

required such as 3X and −3X which are not easy to gen-
erate. How to circumvent this obstacle is the purpose of
the next section.

Table 4 Modified booth algorithm.

Y2 j+1 Y2 j Y2 j−1 Operation

0 0 0 0
0 0 1 +X
0 1 0 +X
0 1 1 +2X
1 0 0 −2X
1 0 1 −X
1 1 0 −X
1 1 1 0

Fig. 7 Optimized DMAC architecture for r = 2.

Table 5 Implementation result comparison of
MBMA-based PID.

PID Total gate Power* Max. clock
core count (mW) freq. (MHz)

Latency

PID [21] 16728 456 47 17
PID1 10642 (36%) 350 (23%) 62 (32%)
PID2 11923 (29%) 366 (20%) 61 (30%)
PID3 7042 (58%) 303 (33%) 64 (38%)

9 (47%)

PID4 7795 (53%) 315 (31%) 62 (32%)

* Dynamic power consumption at 47 MHz; (XX%): saving.

5 RMRMA-based PID

Multiplication is a fundamental operation in digital de-
sign. Its speed and power requirements are two critical
factors limiting the whole system performances (PID in
our case). Since the publication of Booth’s algorithm in
1951, a huge number of improvement attempts were
proposed, especially after the publication of a gener-
alized version of MBA algorithm accompanied with its
proof [29]. Most of the proposals aimed to reduce the
number of partial products either by employing digital
optimization techniques [30–32] or by using larger slices
(higher radices) [33]. However, experience showed [34]
that beyond 4-bit slices (radix 8), the complexity to gen-
erate hard partial products cannot be managed in a re-
alistic way. In [34], three metrics are provided for com-
paring the tradoffs when employing higher radix Booth
recodings: partial product compression factor (gain), the
number of hard multiples that must be precomputed
(computation complexity), and partial product genera-
tion fanin (routing complexity).

To circumvent the problem of hard partial products in
higher radices, the idea proposed in [35] is to apply a re-
cursive Booth recoding on the r-bit slice. While the idea
is interesting, it relies upon a complicated mathematical
formulation, leading to a complex control circuitry and
especially to an exaggerated latency (2n/r).

According to the multibit recoding algorithm pre-
sented in [29], a n-bit two’s complement operand Y
can be written as

Y =
n
r −1∑

j=0
(yrj−1 + 20yrj + 21.yrj+1 + 22yrj+2 + . . .

+2r−2yrj+r−2 − 2r−1yrj+r−1)2rj

74 A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014

=

n
r −1∑

j=0
Qj2rj, (10)

where y−1 = 0, r ∈ N∗ and Qj ∈ {−2r−1, . . . , 0, . . . , 2r−1}.
In this general case, the multiplier Y is divided into

n/r slices, each of r+1 bits. Each pair of two contiguous
slices has one overlapping bit. To bypass the problem of
hard partial products, MBMA (equation (7)) is applied to
the Qj terms. Thus, equation (10) takes the new simpler
recursive form:

Y =
n
r −1∑

j=0
[(yrj−1 + yrj − 2.yrj+1)20

+(yrj+1 + yrj+2 − 2.yrj+3)22 + . . .

+(yrj+r−5 + yrj+r−4 − 2.yrj+r−3)2
2(

r
2
−2)

+(yrj+r−3 + yrj+r−2 − 2.yrj+r−1)2
2(

r
2
−1)

]2rj (11)

=

n
r −1∑

j=0
[

r
2−1∑

i=0
(yrj−1+2i+yrj+2i−2.yrj++1+2i)22i]2rj (12)

=

n
r −1∑

j=0
[

r
2−1∑

i=0
Qji22i]2rj (13)

with Qji ∈ {−2,−1, 0, 1, 2}.
There is no need to prove equation (11) since it is

a combination of equations (10) and (7) which were
already proven in [29] and [28], respectively. The parti-
tioning of operand Y according to equation (13) is illus-
trated by Fig. 8.

Fig. 8 Partitioning of a 16-bit Y operand with r = 8.

To avoid dealing with special cases, n and r must be
chosen as even numbers, with r as a divider of n. Thus,
the DMAC equation becomes

X.Y + T.Z =
n
r −1∑

j=0
[

r
2−1∑

i=0
(Qji.X + Pji.T)22i]2rj. (14)

Depending on r value ranging from 2 to n, PIDs

with various levels of parallelism and latencies (n/r+ 1)
can be automatically generated with slight control com-
plexity. The special cases of r = n and r = 2 corre-
spond to fully-parallel and fully-sequential PID, respec-
tively. In between (r = 4,n/2), partially-parallel PIDs are
obtained. The outstanding advantage of this algorithm
(equation (13)) is that hard partial products are gener-
ated using simple ones (2X,X) only. For a simplified
hardware and lower power consumption, the step-by-
step sign-propagate technique is employed [36].

Obviously, equation (13) does not reduce the number
of partial products, but allows a modulable space-time
partitioning of the multibit recoding algorithm (equation
(10)), where n/r sets comprising each r/2 partial prod-
ucts can be generated and summed either simultane-
ously or iteratively. Whilst the parallel implementation
of equation (13) allows an important reduction of the
critical path (using a carry-save adder CSA), it requires
too much space. Therefore, only the serial implementa-
tion is retained. In this case, latency drops from (n/2+1)
to (n/r + 1), whereas the overhead on the total critical
path, which goes through log2(r/2) adder levels and
which is equal to D in the case of MBMA, is slightly
increased D + log2(r/2). Note that we are using a loga-
rithmic summation tree and not a linear one (CSA like).

An illustrative serial example with r = 4 is described
as follows:

Y =
n
4−1∑

j=0
(y4 j−1 + y4 j + 2y4 j+1 + 22y4 j+2 − 23y4 j+3)24 j

(15)

=

n
4−1∑

j=0
[

1∑

i=0
(y4 j−1+2i + y4 j+2i − 2.y4 j+1+2i)22i]24 j (16)

=

n
4−1∑

j=0
[Qj0 +Qj122]24 j, (17)

X.Y + T.Z =
n
4−1∑

j=0
[(Qj0X + Pj0T) + (Qj1X + Pj1T)22]24 j.

(18)

The mapping of equation (18) into a serial architec-
ture is shown in Fig. 9. Such a case (r = 4) would
have required the computation of hard partial products
(7X, 5X, 3X) if the simple form of equation (15) was
used. Notice that MBMA is a special case of RMRMA
for r = 2. For r = 1, equation (10) corresponds to BMA
(equation (4)).

A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014 75

Fig. 9 Optimized DMAC architecture for r = 4.

Table 6 comprises the implementation results of PIDs
with n = 16 and r = 4, 8, 16. For instance, PID1 with
r = 4 not only achieves high improvement in latency
(71%), but also maintains positive savings in power
(14%) and speed (13%). These important achievements
are partially due to logic-trimming performed by the
synthesis tool on the constant coefficients. Such an op-
eration is impossible in the case of PID [21] since the
coefficients are stored into LUTs.

Table 6 Implementation result comparison of
RMRMA-based PID.

PID Total gate Power* Max. clock
core count (mW) freq. (MHz)

Latency

PID [21] 16728 223 47 17
PID1_4 12443 (+26%) 191 (+14%) 53 (+13%) 5 (+71%)
PID1_8 15688 (+06%) 194 (+13%) 44 (−06%) 3 (+82%)
PID1_16 23545 (−41%) 217 (+03%) 26 (−45%) 2 (+88%)
PID2_4 22962 (−37%) 256 (−15%) 43 (−08%) 5 (+71%)
PID2_8 26073 (−56%) 204 (+08%) 37 (−21%) 3 (+82%)
PID2_16 40327 (−141%) 488 (−119%) 23 (−51%) 2 (+88%)

*: Dynamic power consumption at 23 MHz; PIDY_X : X =
r; and (+AB%): saving; (−AB%): overhead.

At this stage, a key question arises: among this
panoply of PIDs, which one fits the best one’s appli-
cation case? The answer to this question is given in the
next section.

6 Discussion

In embedded control, satisfactory control-rate (with-
out performance degradation) at minimum power con-
sumption is the main requirement. To select the most
adequate PID for a given application, it is necessary to

investigate how speed, power and hardware resources
scales versus r factor for a fixed word length n. Refer-
ring to equation (14) and aided by Fig. 9, the ODMAC
architecture scales as a binary tree with one stage of
r mux(8:1) followed by log2(r) + 1 stages of adders
with a total of r adders too. Thus, the total delay cumu-
lated by the critical path which goes through log2(r)+ 2
stages increases with O(log(r)) complexity, whilst la-
tency (n/r+1) decreases linearly O(r), which makes the
maximum control-rate increases as r increases. This is
confirmed by implementation results shown in Tables 7
and 8 corresponding to PID1 and PID2, respectively. The
sole exception to this general rule is PIDX_n/2 which
always yields to the highest control-rate compared to
PIDX_n despite the numerous tests with various n val-
ues. This is justified since they exhibit very close la-
tencies (3 and 2, respectively) and one stage difference
in the critical path (n − 1 and n, respectively), but an
important multiplexer fanin difference (n/4 and n/2, re-
spectively).

Table 7 Maximum power-consumption and
control-loop-cycle of PID1.

PID Power* Max. clock Max. control loop
core (mW) freq. (MHz)

Latency
cycle (MHz)

PID [21] 456 47 17 2.76
PID1_1 342 (+25%) 62 17 3.65 (+32%)
PID1_2 350 (+23%) 62 9 7.66 (+177%)
PID1_4 431 (+05%) 53 5 10.60 (+284%)
PID1_8 365 (+20%) 44 3 14.67 (+431%)
PID1_16 244 (+46%) 26 2 13.00 (+371%)

* Dynamic power consumption at maximum clock fre-
quency; PID1_X : X = r; and Max. control loop cycle = Max.
clock frequency/Latency.

76 A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014

Table 8 Maximum power-consumption and
control-loop-cycle of PID2.

PID Power* Max. clock Max. control loop
core (mW) freq. (MHz)

Latency
cycle (MHz)

PID [21] 456 47 17 2.76
PID2_1 466 (−02%) 61 17 3.59 (+30%)
PID2_2 475 (−04%) 61 9 6.78 (+146%)
PID2_4 479 (−05%) 43 5 8.60 (+211%)
PID2_8 328 (+28%) 37 3 12.33 (+347%)
PID2_16 488 (−07%) 23 2 11.50 (+317%)

* Dynamic power consumption at maximum clock fre-
quency; PID2_X : X = r; and Max. control loop cycle = Max.
clock frequency/Latency.

In terms of resource occupation, the total complexity
grows linearly O(r) as r multiplexers and r adders are
required by ODMAC which is the most resource con-
suming block of PID architecture. This is also confirmed
by the implementation results shown in Table 6. Note
that each adder of each level of MAC and ODMAC as
well as the two ones at the output of the PID (Figs.
5 and 6) are successively extended by one bit so that
the total bit size of the control output u(k) becomes
2n + log2(r) + 2. It’s necessary to do so to prevent the
apparition of a possible overflow in the data-path which
can cause signal clipping and instabilities in the closed
loop response [37].

As for power consumption, intuitively, one would
expect to see PID1_16 of Table 7 as being the most
rapid and the most power consumer too, for the rea-
son that it exhibits the smallest latency and the biggest
total gate count! While it is almost true for the latter
(13 MHz, before the first), it is quite the opposite for the
former (244 mW, the smallest one). The explanation is
that power consumption (P = 0.5V2

ddCswFclk) depends
linearly on the frequency (Fclk), which is in this case
26 MHz (the smallest one) and also on the switched
capacitance (Csw) which describes the average capaci-
tance charged during each clock period (1/Fclk). In fact,
Csw depends on a number of parameter (circuit struc-
ture, logic function, input pattern dependence, . . .) and
not only on the total gate count (more precisely, not
only on the total physical capacitance of the circuit).
Furthermore, a study [38] that analyzed the dynamic
power consumption in Xilinx’s FPGA revealed the fol-
lowing share: 60% by routing, 16% by logic, and 14% by
clocking. The reason is that routing is intensively seg-
mented, using pass logic and buffers.

When both high control-rate close to 13 MHz and
low power are required, PID1_16 (244 mW at 13 MHz)
stands as the best candidate compared to PID1_8

(323 mW at 13 MHz). However, it is noteworthy to men-
tion that this comparison stands valid only for the special
case of 16-bit word-length PID, for a given set of coeffi-
cients, mapped on XC2S150E-7FT256 FPGA circuit and
using Xilinx’s XST synthesis tool, version 9.2. Results
could significantly change under other conditions, es-
pecially when considering the logic trimming process
which is essentially dependant on the bit-arrangement
of the coefficients. For a minimum influence of the trim-
ming operation on the synthesized results, appropriate
coefficients were used such as all Qj terms are repre-
sented except the null one to avoid generating null par-
tial products that greatly simplify the circuit logic. In fact,
constant coefficients PIDs (PID1) are somehow unpre-
dictable with regard to r. They are coefficient dependant.
Adversely, PID2 is not involved with the trimming pro-
cess since coefficients are time varying. Implementation
results comprised in Table 8 show that PID2_8 is the
best at all aspects for the same reasons cited above. In
sum, when high control-rate is the ultimate objective,
PIDX_n/2 is the best candidate whatever n value. How-
ever, in the case where both high speed and low power
are required, timing and power evaluations are neces-
sary to decide which PID to select: either PIDX_n/2 or
PIDX_n.

Finally, when only low power is targeted, PIDX_1 is
the best candidate. We dealt here with extreme situa-
tions only, but for a given couple (cr, pc) of control-rate
and power consumption, several candidates are pos-
sible. Yet, the best PID is the one which requires the
smallest gate count.

So far, speed and power have been considered in iso-
lation to area which becomes critical, and sometimes
prohibitive, for large word-length n due to the fact that
PID is basically built of a set of multipliers (three or five)
that scale quadratically with word length. The bigger is
the area, the higher is the cost. Consequently, another
advantage of RMRMA algorithm is to cope also with
the cost issue as an additional constraint to speed and
power.

We deliberately chose Spartan2e FPGA to compare
our results with those provided in [21]. A mapping on a
recent FPGA circuit (Virtex6) using XST 12.1 version of
extreme PID2 delivered state-of-the-art results grouped
in Table 9. Note that control-rate scaled with an aver-
age factor of 2, while power dissipation scaled with an
average factor of 45.

This is not surprising, since Spartan2e and Virtex6
were fabricated with two differently scaled technology
processes: 150 nm and 40 nm, respectively. Therefore,
the physical capacitances of the circuit in Virtex6 are
relatively too much smaller. Additionally, the supply-

A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014 77

voltages (Vdd) used for internal core (Vccint) and for out-
put blocks (Vcco) are respectively 1.8 V and 3.3 V for
Spartan2e, 1 V and 2.5 V for Virtex6. Furthermore, the
efficient advances made in CAD tools (from Xilinx ISE 9.1
to 12.1 versions) as well as in FPGA architecture, such
as advanced segmented-routing, much contributed to
lower the power consumption [39]. Power consump-
tion evaluation studies [38,39] based on simulation and
measurements, targeting Virtex2 and Virtex6 families re-
vealed the following results: 5.9μW per CLB per MHz,
and 1.09 mW per 100 MHz at 38% toggle rate, respec-
tively. These studies roughly confirm our power results
as proximate values are obtained.

Timing and power evaluations were performed in
the following conditions. Delays were calculated for
two types of paths: Clock-To-Setup and all paths to-
gether (Pad-To-Setup, Clock-To-Pad and Pad-To-Pad.)
The Clock-To-Setup gives more precise information on
the delays than other remaining paths, which depend in
fact on I/O Block (IOB) configuration (low/high fanout,
CMOS, TTL, LVDS, . . .). Thus, all delays (frequencies)
presented so far are clock-to-setup delays with the high-
est speed grade of the FPGA circuit. As for power, we
chose the highest Vcco voltage value (3.3 for Spartan2e
and 2.5 for Virex6) with a maximum toggle activity of
50%, which means that Flip-Flops (FFs) toggle one time
during each clock cycle. The reason is that only simple-
edge triggered FFs are used for synthesis (no double-
edge FFs).

Table 9 Maximum power-consumption and
control-loop-cycle of PID2 mapped
on Virtex6.

PID Number Power* Max. clock Max. control loop
core of slices (mW) freq. (MHz)

Latency
cycle (MHz)

PID_1 231 23 122 17 7.17
PID2_8 1060 4 90.5 3 30.16
PID2_16 1963 13 50.4 2 25.19

* Dynamic power consumption at maximum clock fre-
quency; PID2_X : X = r; and Max. control loop cycle = Max.
clock frequency/Latency.

7 Verification method

The PID design verification process went through sev-
eral steps. First, equations (12) and (14) were tested
with a random C-program. Then, a severe cycle-accurate
functional verification procedure using Modelsim sim-
ulator was applied to MAC and ODMAC as they are
the main building blocks of PID architecture. They were
challenged against a set of special test cases (visual

simulation), and then submitted to a random test for
a very large number of vectors. Once tested success-
fully, the RTL PID module written in Verilog-2001 (IEEE
1364) was integrated into Modelsim/Simulink environ-
ment for a co-simulation. At this stage, a ZOH discrete
time invariant model of a third order continuous process
(G(s) = 1/(s + 1)3) was chosen from the test set used
by Åström and Hägglund [1] as examples of represen-
tative plants for the dynamics of typical industrial pro-
cesses. To derive the PID parameters, a theoretical PID
taken from MATLAB component-library was tuned using
floating-point numerical representation (IEEE 754 dou-
ble format). The sampling period Ts was chosen based
on the magnitude of the pole time constants. For this
case Ts = 10 ms. The following parameters were ob-
tained:

Kp = 0.5913; Ti = 0.0523; Td = 0.0225 for N = 10
and b = 1. Calculations give the following floating-point
values for the coefficients of commercial PID:

A = 0.5913; B = −0.5913; C = 0.1130; D = 0.1836;
E = −1.0860.

To co-simulate the RTL PID, a conversion of the coef-
ficients to 16-bit (Q4.12) fixed-point representation was
necessary. Variations were obtained:

A = 0.5911; B = −0.5911; C = 0.1130; D = 0.1836;
E = −1.0860.

Note that to represent the original parameters with
full-precision, 44 bits are needed for the fractional part.
Varied simulations were performed to verify the cor-
rectness of the PID RTL code. First, to explore the preci-
sion effect on control quality, the control output of PIDs
with various fractional-part sizes (Q4.4,Q4.12,Q4.20) were
compared to that of the MATLAB floating-point PID com-
ponent (Fig. 10). Simulation shows different rise-times
for different precisions. The higher is the precision; the
closer is the control output from the ideal model. The
second simulation tests the behavior of the PID after
having reached the steady state (Fig.11). For that, two
perturbations are successively exerted on control output
and on the plant measure. Each time the system recov-
ers as expected. Moreover, finally, the third simulation
investigates the PID capabilities to track set-points of
arbitrary amplitudes and durations (Fig. 12).

After a successful functional verification, the RTL code
of PID was synthesized, placed, and routed on Xilinx’s
FPGA (Virtex-2). The three preceding co-simulations but
with timing backannotation were performed again as a
last necessary software verification step before hard-
ware integration of the PID into an FPGA evaluation
board (MEMEC V2MB1000).

Finally, as an ultimate validation step, a physical test

78 A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014

of our PIDs is performed. We built up a classical temper-
ature control setup (Figs. 13 and 14), which consists in
a tube comprising a halogen lamp (12 V, 21 W), a tem-
perature sensor (LM35), and a DC Fan (12 V, 1.68 W).
Temperature regulation inside the tube is achieved by
controlling either the intensity of the lamp, or the rota-
tion speed of the fan. This is carried out by the use of
two PWMs, whose duty-cycle ratios represent the PID
controller output (u(k)). These two PWMs do not act di-
rectly on the fan or on the lamp but rather on transistors
(IRF540) that control the power consumed by the lamp
and fan.

Fig. 10 Fixed-point versus floating-point.

Fig. 11 Perturbations after steady-state on control-output and
on plant measure, successively.

Fig. 12 Set-point tracking of arbitrary amplitudes and dura-
tions.

The sensing of the actual temperature of the tube is
assured by LM35 component which delivers a voltage
value that grows linearly with temperature (1.5 V cor-
responds to 150◦C). As the maximum voltage allowed
by FPGA evaluation board (V2MB1000) is 3.3 V, the cal-
culation of the real temperature (T) is done as follows:
T = [(val_opb_ADC × 3.3)/1023] × 100. This allows a
temperature control with a minimum step of 0.32◦C.

The V2MB1000 board is connected through RS232
port to a PC running a .net application which allows a
real-time display of the temperature as well as an instan-
taneous tuning of the set-point.

Fig. 13 Synoptic scheme of the setup.

Fig. 14 Setup of temperature regulation. �: FPGA evaluation
board; �: Electronic device; �: Tube containing a fun and a
lamp; and �: PC display screen.

8 The FWL effect

Fixed-point arithmetic is employed as an approxima-
tion of real numbers (floating-point), with a fixed bit-
length of the word used to represent data (finite word-
length). This limitation leads to performance degrada-
tion (FWL effect) mainly due to quantization of coef-
ficients (parametric errors) and roundoff errors subse-
quently cumulated during the computation process (nu-
meric noise). In fact, the FWL effect is more-or-less ex-
aggerated depending on the control algorithm used (I/O

A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014 79

relationship, levels of parallelism, etc.) as well as on the
way the computations are performed (number of bits,
different/unique fixed point position, round/truncation,
etc.). Compared to the reference floating-point imple-
mentation, the FWL effect can be assessed using some
indicators such as transfer function sensitivity, or pole
sensitivity [40–42].

In fact, the objective is twofold: we need to provide an
optimal ASIC/FPGA implementation of FWL PID without
degrading control performances. To achieve such a goal,
a double expertise is required in hardware design and
control system. However, usually, hardware designers
do not master control system design, and control sys-
tem experts do not have the required skills to implement
and evaluate the controllers using ASIC/FPGAs [17,43].
This is why we propose, as hardware designers, a highly
reconfigurable (n, r) and technology-independent FWL
PID that can systematically respond to control-engineer
demands after having modelled, simulated, and evalu-
ated the performances provided by different bit-width
fixed-point representations using MATLAB/Simulink en-
vironment, and finally opted for an appropriate word-
length (n) of the setpoint. As for latency value (r), it
depends on the application domain and intended objec-
tives. Precise guidelines on how to choose r value were
given in Section 6.

Now that (n, r) couple is known, the FWL problem is
tackled from hardware side by simply adjusting in the
RTL code the two compile-time constants: setpoint bit-
size (n) and latency (r). The synthesis of such a PID
generates an optimal structure that not only meets the
performances specified by control-engineers, but also
consumes minimum power and hardware resources.
This would not have been possible without the use of
the new highly serialisable multi-bit multiplication al-
gorithm (equation (13)). The incorporation of equation
(13) [25] into equations (1) and (2) as an efficient PID
engine, allows the generation of PID architectures clas-
sified as regular iterative architectures (RIA) [44], known
for their high conformity with the principles of regular-
ity and locality. In addition to equation (13), we propose
in [25] several new highly serialisable multiplication al-
gorithms, offering different features in power, space and
delay, depending on the operand size (n). Reader is en-
couraged to explore these algorithms [25] to select the
appropriate one that leads to best performances of its
controller with regard to the size (n) of the setpoint.

Regularity and locality are two important features,
highly sought in hardware design as they lead to an im-
portant gain in space and delay. Regularity is a general
space feature, where the repetitiveness of just one or few
elementary building-blocks (mux, adders and shifters of
ODMAC, Fig. 9) and their interconnection scheme (pre-
defined netlist) suffice to draw the whole architecture
(MAC/ODMAC and then PID). In the other hand, local-
ity is both space and time feature, in the sense where
each building-block can only interact with its nearest
surrounding neighbours, and any transaction from one
building-block to the next is completed in one and only
one unit time delay (clock period). Because of these two
important features, our PIDs can be finely grained at bit
level in space (setpoint bit-size n, latency r) and unit
delay in time (latency r).

Experimental results depicted in Fig. 15 illustrate the
FWL effects on temperature regulation. Reducing the
fractional-part size of the set-point beyond a certain limit
(4 bits) yields to a continuous fluctuation of the temper-
ature inside the tube (Fig. 15 (d)). The best compro-
mise is a 6-bit fractional-part (Fig. 15 (c)) which ensures
a correct regulation while consuming less power and
hardware resources. As temperature regulation system
has a very slow dynamic, speed is not a concern. There-
fore, the most appropriate PID in this case is PIDX_1 as
it is the least power consumer. Adversely, for very fast
dynamic systems, such as MEMS [45] or microrobotics
applications [46], PIDX_n/2 is the most adequate option
as it leads to the highest control rate.

80 A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014

Fig. 15 Effect of the setpoint fractional length on temper-
ature regulation. (a) Floating point PID; (b) our PID with
Qni .nf =Q8.8; (c) our PID with Qni .nf = Q8.6; and (d) our PID
with Qni .nf = Q8.4.

9 Conclusions

Despite the large popularity of PID controller, little
attention has been paid to its optimization, either for
ASIC or for FPGA integration. To break down this para-
doxical situation, a series of high-speed and low-power
PIDs, especially dedicated to embedded applications
was proposed. They are based on two discrete forms
of PID algorithm: the incremental form and the com-
mercial form, both with constant and time-varying co-
efficients. The work focused more particularly on the
commercial form with varying coefficients as it is the
most used in industry due to the higher control-quality
provided. Two types of optimizations were carried out:
architectural and algorithmic optimizations. The former
is a macro-level optimization, based on an efficient par-
titioning of PID discrete-equations, considering the dou-
ble MAC (DMAC= XY+ZT) as the main building block
of PID architecture. An optimized version of DMAC was
developed (ODMAC) for less hardware resource occu-
pation. As for the micro-level optimization (inner op-
timization of ODMAC), three multiplication algorithms
were experienced: BMA, MBMA, and a new general and
recursive version of MBMA called RMRMA. In addition,
some low-power design techniques were incorporated,
such as sleep mode, and step-by-step sign-propagation
technique.

The implementation results of PID based upon these
three algorithms yielded to gradual improvements with
a clear superiority over results presented in [21]. For
instance, concerning PID1_2 and PID1_4, savings of
177%, 23%, and 36%, and savings of 284%, 14%, and
26% are obtained in control-rate, power consumption,
and total gate count, respectively. Additionally, analyt-
ical scaling-complexity evaluations with respect to the
couple (n, r), confirmed also by software simulations,
revealed useful information which is summarized as fol-
lows:
� PIDX_n/2 is the fastest PID that yields to the high-

est control-rate (30 MHz for PID2_8 mapped on Virtex6,
with (n, r) = (16, 8));
� PIDX_1 is the most power efficient PID when speed

is not a concern;
� PIDX_n and PIDX_n/2 are the most efficient PIDs

when both high control-rate and low-power dissipation
are required.

Further extension to the present work is to apply the
same (or appropriate) partitioning in conjunction with
RMRMA algorithm to the set of recurrent equations of
an arbitrary number of multi-loop PID controllers taken
as a whole.

Finally, the new recursive multiplication algorithm
(RMRMA), well adapted to large word-lengths, and
which was behind the drastic optimization of PID, can
be efficiently applied to a variety of advanced control
algorithms such as to linear-quadratic-gaussian (LQG)
or sliding-mode controllers, etc.

References

[1] K. Åström, T. Hägglund. PID Controllers: Theory, Design, and
Tuning. 2nd ed. by the Research Triangle Park: Instrument Society
of America, 1995.

[2] D. Xue, Y. Chen, D. P. Atherton. Linear Feedback Control.
Philadelphia: Society for Industrial and Applied Mathematics
(SIAM), 2007.

[3] X. Shao, D. Sun, J. K. Mills. A new motion control hardware
architecture with FPGA based IC-design for robotic manipulators.
IEEE International Conference on Robotics and Automation
(ICRA). New York: IEEE, 2006: 3520 – 3525.

[4] J. S. Kim, H. W. Jeon, S. Jeung. Hardware implementation of
nonlinear PID controller with FPGA based on floating point
operation for 6-DOF manipulator robot arm. International
Conference on Control, Automation and Systems (ICCAS).
Piscataway: IEEE, 2007: 1066 – 1071.

[5] L. Qu, Y. Huang, L. Ling. Design and implementation of
intelligent PID controller based on FPGA. Proceedings of the
4th International Conference on Natural Computation (ICNC).
Piscataway: IEEE, 2008: 511 – 515.

A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014 81

[6] M. Keating, P. Bricaud. Reuse Methodology Manual for System
on a Chip Designs. 3rd ed. New York: The Kluwer Academic
Publishers, 2002.

[7] International Technology Roadmap for Semiconductors. ITRS
Reports, 2007/2008: http://www.itrs.net/reports.html.

[8] T. Hilaire, P. Chevrel, J. F. Whidborne. A unifying framework for
finite wordlength realizations. IEEE Transactions on Circuits and
Systems, 2007, 54(8): 1765 – 1774.

[9] T. Hilaire, D. Ménard, O. Sentieys. Bit accurate roundoff noise
analysis of fixed-point linear controllers. Proceedings of the IEEE
International Conference on Computer-Aided Control Systems
(CACSD). New York: IEEE, 2008: 607 – 612.

[10] S. Gretlein, G. Garcia, J. Sumner. DSPs, microprocessors
and FPGAs in control. Magazine of Record for the
Embedded Computing Industry (RTC Magazine), 2006: http://
www.rtcmagazine.com/articles/view/100495.

[11] E. Manmasson, L. Idkhajine, M. N. Cirstea, et al. FPGA in
industrial control applications. IEEE Transactions on Industrial
Informatics, 2011, 7(2): 224 – 243.

[12] S. Chander, P. Agarwal, I. Gupta. FPGA-based PID controller
for DC-DC converter. Proceedings of the IEEE Joint International
Conference on Power Electronics, Drives and Energy Systems
(PEDES). Piscataway: IEEE, 2010.

[13] S. Yang, M. Gao, J. Lin, et al. The IP core design of PID controller
based on SOPC. Proceedings of the IEEE International Conference
on Intelligent Control and Information Processing. Piscataway:
IEEE, 2010: 363 – 366.

[14] J. Lazaro, A. Astarloa, J. Arias, et al. Simulink/Modelsim simulable
VHDL PID core for industrial SoPC multiaxis controllers.
Proceedings of the IEEE 32nd Annual Conference on Industrial
Electronics (IECON). Piscataway: IEEE, 2006: 3007 – 3011.

[15] F. Fons, M. Fons, E. Canto. Custom-made design of a digital PID
control system. Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). Piscataway:
IEEE, 2006: 1020 – 1023.

[16] B. V. Sreenivasappa, R. Y. Udaykumar. Design and imple-
mentation of FPGA based low power digital PID controllers.
Proceedings of the IEEE International Conference on Industrial
and Information Systems (ICIIS). New York: IEEE, 2009: 568 –
573.

[17] J. Lima, R. Menotti, J. M. P. Cardoso, et al. A methodology
to design FPGA-based PID controllers. Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics.
Piscataway: IEEE, 2006: 2577 – 2583.

[18] I. Urriza, L. A. Barragan, J. I. Artigas, et al. Word Length Selection
Method based on Mixed Simulation for Digital PID Controllers
Implemented in FPGA. Proceedings of the IEEE International
Symposium on Industrial Electronics (ISIE). Piscataway: IEEE,
2008: 1965 – 1970.

[19] W. Zhao, B. H. Kim; A. C. Larson, et al. FPGA implementation
of closed-loop control system for small-scale robot. Proceedings
of the IEEE 12th International Conference on Advanced Robotics
(ICAR). Piscataway: IEEE, 2005: 70 – 77.

[20] L. Samet, N. Masmoudi, M. W. Kharrat, et al. A digital PID
controller for real-time and multi-loop control: a comparative

study. Proceedings of the IEEE International Conference on
Electronics, Circuits, and Systems (ICECS). Piscataway: IEEE, 1998:
291 – 296.

[21] Y. Fong, M. Moallem, W. Wang. Design and implementation
of modular FPGA-based PID controllers. IEEE Transactions on
Industrial Electronics, 2007, 54(4): 1898 – 1906.

[22] B. Wittenmark, K. J. Astrom, K. E. Arzenin. Computer Control:
An Overview. Lund, Sweden: Lund Institute of Technology, 2003:
http://www.control.lth.se/kursdr/ifac.pdf.

[23] A. D. Booth. A signed binary multiplication technique. The
Quarterly Journal of Mechanics and Applied Mathematics, 1951,
4(2): 236 – 240.

[24] O. L. MacSorley. High-speed arithmetic in binary computers.
Proceedings of the IRE, 1961, 49(1): 67 – 91.

[25] A. K. Oudjida, N. Chaillet, A. Liacha, et al. A New recursive
multibit recoding algorithm for high-speed and low-power
multiplier. Journal of Low Power Electronics (JOLPE), 2012, 8(5):
1 –16.

[26] A. K. Oudjida, N. Chaillet, A. Liacha, et al. High-speed and low-
power PID structures for embedded applications. Proceedings
of the 21st Edition of the International Workshop on Power and
Timing Modeling, Optimization and Simulation PATMOS. Berlin:
Springer-Verlag, 2011: 257 – 266.

[27] Y. H. Seo, D. W. Kim. A new VLSI architecture of
parallel multiplier-accumulator based on radix-2 modified Booth
algorithm. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2010, 18(2): 201 – 208.

[28] L. P. Rubinfield. A proof of the modified booth algorithm for
multiplication. IEEE Transactions On Computers, 1975, 24(10):
1014 – 1015.

[29] H. Sam, A. Gupta. A generalized multibit recoding of two’s
complement binary numbers and its proof with application in
multiplier implementations. IEEE Transactions on Computers,
1990, 39(8): 1006 – 1015.

[30] F. Lamberti. Reducing the computation time in (short bit-width)
two’s complement multiplier. IEEE Transactions on Computers,
2011, 60(2): 148 – 156.

[31] S. R. Kuang, J. Wang, C. Guo. Modified booth multipliers with
a regular partial product array. IEEE Transactions on Circuit and
Systems, 2009, 56(5): 404 – 408.

[32] J. Kang, J. L. Gaudiot. A simple high-speed multiplier design. IEEE
Transactions on Computers, 2006, 55(10): 1253 – 1258.

[33] D. Crookes, M. Jiang. Using signed digit arithmetic for low-power
multiplication. Electronics Letters, 2007, 43(11): 613 – 614.

[34] P. M. Seidel, L. D. McFearin, D. W. Matula. Secondary radix
recodings for higher radix multipliers. IEEE Transactions on
Computers, 2005, 54(2): 111 – 123.

[35] R. C. North, W. Ku. β-bit serial/parallel multipliers. Journal of VLSI
Signal Processing, 1991, 2(4): 219 – 233.

[36] D. A. Henlin, M. T. Fertsch, M. Mazin, et al. A 16 bit × 16 bit
pipelined multiplier macrocell. IEEE Journal of Solid-State Circuits,
1985, 20(2): 542 – 547.

[37] J. S. Kelly, V. S. Rao, H. J. Pottinger, et al. Design and
implementation of digital controllers for smart structures using
field programmable gate arrays. Smart Material Structure Journal,
1997, 6(5): 559 – 572.

82 A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014

[38] L. Shang, A. S. Kaviani, K. Bathala. Dynamic power consumption
in Virtex-II FPGA family. Proceedings of the ACM/SIGDA 10th
International Symposium on Field-programmable Gate Arrays.
Monterey: ACM, 2002: 157 – 164.

[39] Xilinx Inc. Virtex6 FPGA: Satisfying the Insatiable Demand for
Higher Bandwidth, 2009. http://www.xilinx.com/publications/
prod_mktg/Virtex6_Product_Brief.pdf.

[40] M. Gevers, G. Li, Parametrizations in Control, Estimation and
Filtering Probems. Berlin: Springer-Verlag, 1993.

[41] T. Hilaire, P. Chevrel. Sensitivity-based pole and input-output
errors of linear filters as indicators of the implementation
deterioration in fixed-point context. EURASIP Journal on Advances
in Signal Processing. Special Issue on Quantization of VLSI Digital
Signal Processing Systems, 2011: DOI 10.1155/2011/893760.

[42] B. Lopez, T. Hilaire, L. S. Didier. Sum-of-products evaluation
schemes with fixed-point arithmetic, and their application
to IIR filter implementation. Proceedings of the International
Conference on Design and Architecture for Signal and Image
Processing (DASIP). New York: IEEE, 2012: 1 – 8.

[43] M. Petko, G. Karpiel. Semi-automatic implementation of control
algorithms in ASIC/FPGA. Proceedings of Emerging Technologies
and Factory Automation Conference (ETFA ’03). New York: IEEE,
2003: 427 – 433.

[44] S. K. Rao, T. Kailath. Regular iterative algorithms and their
implementation on processor arrays. Proceeding of the IEEE,
1988, 76(3): 259 – 269.

[45] G. Hoover, F. Brewer, T. Sherwood, et al. Towards understanding
architectural tradeoffs in MEMS closed-loop feedback control.
Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES’07).
Salzburg: ACM, 2007: 95 – 102.

[46] R. Casanova et al. Integartion of the control electronics for a mm3-
sized autonomous microrobot into a single chip. Proceedings of
the IEEE International Conference on Robotics and Automation
(ICRA). Kobe: IEEE, 2009: 3007 – 3012.

Appendix
1) Incremental form.
The standard version of PID controller id described in a

differential equation as

u(t) = Kp(e(t) +
1
Ti

� t

0
e(τ)dτ + Td

de(t)
dt

),

where e is the system error (e(t) = uc(t) − y(t)), uc is the com-
mand signal (setpoint), y is the process variable (measured
variable). Kp is the proportional gain, Ti the integration time
constant, and Td the derivative time constant of the controller.
Using Laplace transform, u(t) is expressed in s-domain by

U(s) = Kp(E(s) +
E(s)
s · Ti

+ s · Td · E(s)).

For a small sample interval Ts, the continuous time variable

u(t) can be discretized using the following approximations:

� k·Ts

0
e(t)dt ≈ k∑

j=0
e(j) · Ts;

de(t)
dt
≈ e(k) − e(k − 1)

Ts
.

k denotes the kth sampling instant (k.Ts). Thus, u(t) can be
rewritten as

u(k) = Kp(e(k) +
1
Ti

k∑

j=0
e(j) · Ts + Td · e(k) − e(k − 1)

Ts
)

with

e(k) = uc(k) − y(k),

u(k − 1) = Kp(e(k−1) +
1
Ti

k−1∑

j=0
e(j) · Ts + Td

e(k−1)−e(k−2)
Ts

).

We calculate the difference: u(k)−u(k−1) = Kp(e(k)− e(k−
1)) +

Kp

Ti
(

k∑

j=0
e(j) · Ts −

k−1∑

j=0
e(j) · Ts) + Kp · Td · (e(k) − e(k − 1)

Ts
−

e(k − 1) − e(k − 2)
Ts

).

Developing separately each term of u(k)−u(k−1), we obtain

Kp(e(k) − e(k − 1)) = Kp · e(k) − Kp · e(k − 1),
Kp

Ti
(

k∑

j=0
e(j) · Ts −

k−1∑

j=0
e(j) · Ts) = Kp · Ts

Ti
· e(k),

Kp · Td · (e(k) − e(k − 1)
Ts

− e(k − 1) − e(k − 2)
Ts

)

= Kp · Td

Ts
· e(k) − Kp · 2 · Td

Ts
· e(k − 1) + Kp · Td

Ts
· e(k − 2).

After simplifications, we get the following recurrent equa-
tion:

u(k) = u(k − 1) + Kp · (1 + Ts

Ti
+

Td

Ts
) · e(k)

−Kp · (1 + 2
Td

Ts
) · e(k − 1) + Kp · Td

Ts
· e(k − 2)

= u(k − 1) + A · e(k) + B · e(k − 1) + C · e(k − 2).

This latter equation is called the incremental form of the
controller. A drawback with the incremental algorithm is that
it cannot be used for P or PD controllers.

2) Commercial form.
For better performances of PID, two corrections are per-

formed: limitation of the derivative gain and setpoint weight-
ing. A pure derivative action will induce a very large amplifi-
cation of measurement noise. The gain of the derivative must
thus be limited. This can be done by approximating the trans-

fer function s · Td as follows: s · Td ≈ s · Td

1 + s · Td/N
, where N is

typically in the range of 3 to 20. In addition, to avoid sudden
overshoots due to high variations of the setpoint, only a frac-
tion b of uc acts on the proportional part (b.uc − y). Hence, the

A. K. Oudjida et al. / Control Theory Tech, Vol. 12, No. 1, pp. 68–83, February 2014 83

improved PID algorithm becomes

U(s) = Kp · ((b ·U(s) − Y(s)) +
1

s · Ti
· (Uc(s) − Y(s))

− s · Td

1 + s · Td/N
· Y(s)).

U(s) expression is discretized such that the proportional, inte-
gral and derivative terms are separately obtained, as follows:
u(k) = P(k)+ I(k)+D(k), where P(k) = Kp · b ·Uc(k)−Kp ·Y(k)

and I(k) = I(k − 1) + Kp · Ts

Ti
· (Uc(k − 1) − Y(k − 1)).

To determine the derivative term D(k), we use the differ-
ential equation representing the transfer function of Gd(s):

Gd(s) =
Ud(s)
Y(s)

= −Kp
s · Td

1 + s · Td/N
. By performing cross prod-

ucts, we obtain

Ud(s) · (1 + s · Td

N
) = −Kp · Y(s) · s · Td.

Applying the inverse Laplace Transform to this latter equa-

tion, we obtain ud(t) = −Td

N
· dud(t)

dt
− Kp · Td · dyd(t)

dt
.

Consequently, the discretized form of ud(t) is

D(k) = −Td

N
· D(k) −D(k − 1)

Ts
− KpTd

Y(k) − Y(k − 1)
Ts

.

After simplification, we obtain

D(k) =
Td

Td +N · Ts
D(k − 1) − K ·N · Td

Td +N · Ts
(Y(k) − Y(k − 1)).

Finally, we can write

u(k) = P(k) + I(k) +D(k)

with

P(k) = A · uc(k) + B · y(k), I(k) = I(k − 1) + C · e(k − 1),

D(k) = H ·D(k − 1) + L · f (k), A = Kp · b, B = −Kp,

C = −KP · Ts

Ti
, H =

Td

Td +N · Ts
, L = − Kp ·N · Td

Td +N · Ts
.

Abdelkrim Kamel OUDJIDA received his
B.S. degree in Computer Engineering from
the Institut National d¯Informatique, INI,
Algiers, Algeria, in 1989. He joined the
Centre de Developpement des Technolo-
gie Avancées, CDTA, Algiers in 1990. Since
then, he has been working on the design of
high-speed and low-power digital circuits.
He is team leader specialized in digital IP

design and verification. He is currently preparing a Ph.D. at Franche-
Comté University, UFC, Besançon, France, under the supervision of
Prof. Nicolas Chaillet. His current work focuses on optimization of

arithmetic algorithms for the development of high-speed and low-
power finite-word-length controllers, dedicated to micromanipulation
applications. E-mail: a_oudjida@cdta.dz.

Nicolas CHAILLET received his B.S. degree
in Electrical Engineering from the Ecole Na-
tionale Supérieure de Physique, Strasbourg,
France, in 1990, and the Ph.D. degree in
Robotics and Automation from the Univer-
sity Louis Pasteur, Strasbourg, France, in
1993. In 1995 he became associate profes-
sor at the University of Franche-Comté in
Besançon, France. Since 2001, he is a pro-

fessor at the University of Franche-Comté and is since 2012 the Di-
rector of the FEMTO-ST Institute. His research interests are in micro-
robotics and more generally in micromechatronics fields, especially in
micromanipulation, microgrippers, smart materials, microactuators,
smart microstructures and the design and implementation of their
control. E-mail: nicolas.chaillet@femto-st.fr.

Ahmed LIACHA received his B.S. degree in
Electronics from the Université des Sciences
et de la Technologie, Houari Boumediène,
Algiers, Algeria, in 2002. In 2004 he joined
the department of microelectronics at the
Centre for Development of Advanced Tech-
nologies, CDTA, where he is currently a dig-
ital IP designer for industrial control appli-
cations. E-mail: liacha@cdta.dz.

Mohamed Lamine BERRANDJIA received
his B.S. degree in Computer Science En-
gineering from the University of Man-
touri, Constantine, Algeria, in 2003. Since
2005, he is research assistant at Cen-
tre de Développement des Technologies
avancées, CDTA, Algiers, Algeria, where he
specialized in digital IP design and embed-
ded systems for FGPA. E-mail: mberrand-

——- ——– jia@cdta.dz.

Mustapha HAMERLAIN received the Doc-
torate degree in 1993 from National In-
stitute of Applied Sciences of Toulouse
(France). He is currently the head of the
robotics department of the Advanced Tech-
nologies and Development Center (CDTA)
of Algiers, and professor at the school
(EMP). From 1988 to 1993 he was involved
in a research project in the field of robotics

PAM (Pneumatic Artificial Muscles) as a researcher in the National
Institute of Applied Sciences (INSA) of Toulouse. His current research
interests include robust control of nonlinear systems, robot motion
control, visual control, robots manipulators and pneumatic artificial
muscles actuators. E-mail: mhamerlain@cdta.dz.

