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Nonlinear model predictive control with relevance
vector regression and particle swarm optimization
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Abstract: In this paper, a nonlinear model predictive control strategy which utilizes a probabilistic sparse kernel
learning technique called relevance vector regression (RVR) and particle swarm optimization with controllable random
exploration velocity (PSO-CREV) is applied to a catalytic continuous stirred tank reactor (CSTR) process. An accurate
reliable nonlinear model is first identified by RVR with a radial basis function (RBF) kernel and then the optimization
of control sequence is speeded up by PSO-CREV. Additional stochastic behavior in PSO-CREV is omitted for faster
convergence of nonlinear optimization. An improved system performance is guaranteed by an accurate sparse predictive
model and an efficient and fast optimization algorithm. To compare the performance, model predictive control (MPC) using
a deterministic sparse kernel learning technique called Least squares support vector machines (LS-SVM) regression is done
on a CSTR. Relevance vector regression shows improved tracking performance with very less computation time which is
much essential for real time control.

Keywords: Relevance vector regression; Least squares support vector machines; Nonlinear model predictive control;
Particle swarm optimization with controllable random exploration velocity

1 Introduction

Model predictive control (MPC) is recognized as an ad-
vanced control technique which has been very successful in
practical applications [1]. This acknowledgment is due to
its ability to handle constraints imposed on process inputs
and outputs, process nonlinearities, dead times, and model
uncertainties. In earlier times, linear model predictive con-
trollers were repeatedly used in practice. However, they fail
to work with the inevitable nonlinear behavior of chemical
processes.

Linear model predictive controllers are inadequate for
highly nonlinear processes and moderately nonlinear pro-
cesses which have large operating regimes. This short-
coming coupled with increasingly stringent demands on
throughput and product quality has spurred the development
of nonlinear model predictive control [2]. Two challenging
tasks in nonlinear model predictive controller are acquir-
ing an accurate nonlinear model and solving nonlinear opti-
mization problem online.

The performance of nonlinear model predictive controller
depends on model accuracy. For a highly tuned controller
a very accurate model is necessary [3]. Thus, precise non-
linear model is expected for better controlled performance.
Neural networks were widely believed for estimation of
nonlinear system dynamics due to its simplicity besides its
poor extrapolation, poor generalization. Liu et al. [4] have
stated that training a neural network is too lengthy and the
number of training data required is more. Several schol-
ars [5–7] have approximated nonlinear models by neural
networks which show acceptable performance. Despite the
existence of many nonlinear control strategies in theory, de-
signing a suitable controller for complex process is still a
challenge in practice [4].

The sparse kernel learning is a nonlinear modeling
method originally proposed in the machine learning area
[8–9]. A deterministic nonlinear modeling method, support
vector machines (SVM) which overwhelms the over fitting
and poor generalization ability of neural network with less
number of training data and less training time providing bet-
ter tracking performance is introduced in [10]. However,
practical applications of SVMs are limited because of its
requirement of larger number of kernels to approximate the
optimal solutions. In least squares support vector machines
(LS-SVM) the regularization parameter γ and the kernel
width parameter σ are the two parameters to be tuned to im-
prove the generalization ability of predicted model. Thus,
the LS-SVM model is burdened with additional externally
determined parameters, which is a time-consuming task.
Subsequently, Tipping [11] introduced relevance vector ma-
chine (RVM) in 2000 which attracted much interest in the
research community owing to its advantages over support
vector machine. They are established on a Bayesian for-
mulation which results in using a smaller number of rele-
vance vectors leading to much more sparse representation
than support vector machine (SVM). Unlike in SVM frame-
work where the basis functions must satisfy Mercer’s kernel
theorem, in the RVM case there is no restriction on the basis
functions [10, 12]. Also, kernel width σ is the only parame-
ter to be tuned in relevance vector regression (RVR) model.
Consequently the sparse RVR model could generalize bet-
ter with very less computation time than SVM. The result
given in [11] demonstrates the comparable generalization
performance of RVM than SVM with intensely fewer ker-
nel functions.

Nonlinear system identification using RVM was success-
fully discussed in many literature [13–21] which highlight
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its significance. To our best knowledge, combinations of
RVM model and MPC approach has rarely been reported
in literature.

Despite of accurate approximation of nonlinear dynam-
ics by RVR model it suffers from computational burden as
model predictive controller does prediction and optimiza-
tion at each sampling instant. Since the particle swarm op-
timization was developed, owing to its simplicity and high
performance, it has been proven to be a powerful competitor
to other evolutionary algorithms [22–23], and been widely
used in many optimization processes [24–25]. It is a com-
putationally efficient method since it is derivative free.

In this paper, a nonlinear model predictive controller
combining relevance vector regression model and particle
swarm optimization with controllable random exploration
velocity (PSO-CREV) is presented; which merges the ad-
vantage of accurate prediction and less computational effort.
Use of RVM creates an accurate model for prediction and
PSO-CREV parameters make the predictive control faster.
Simulation results of a catalytic catalytic continuous stirred
tank reactor (CSTR) process illustrates the better tracking
performance of RVM-based MPC when compared with LS-
SVM-based MPC with much less computation time.

This paper encompasses five sections commencing with
the introduction as the first section followed by the sec-
ond section which describes theory behind relevance vector
machine. The third section explains MPC based on RVM
and particle swarm optimization. The fourth section shows
a comparative study of a CSTR with RVM based MPC and
LS-SVM-based MPC controller with suitable simulation re-
sults and the fifth section concludes the paper.

2 Relevance vector machine

RVM is a probabilistic model whose functional form is
equivalent to that of SVM. It achieves comparable recogni-
tion accuracy to the SVM, yet provides a full predictive dis-
tribution, and also requires substantially fewer kernel func-
tions [26]. RVM is based on Bayesians approach in which a
prior is introduced over the model weights and each weight
is administrated by one hyperparameter. The most probable
value of each hyper parameter is iteratively evaluated from
the data. The model is sparser since the posterior distribu-
tions of some proportion of the weights are set to zero.

Consider a given training set of M regression data points
{(xm, ym)}M

m=1, where xm ∈ R
M is the input data to the

actual plant and ym ∈ R is the output data of the actual
plant and is assumed to contain Gaussian noise ε with mean
0 and variance σ2. In high dimensional feature space z, the
outputs of an extended linear model can be expressed as a
linear combination of the response of a set of M basis func-
tions as follows:

y(x,w) =
M∑

m=1
wmϕm(x) + ε = wTϕ + ε. (1)

Now, the predicted output ŷ of the true value y is

ŷ(x,w) =
M∑

m=1
wmϕm(x) = wTϕ where w ∈ z. (2)

In the above nonlinear function estimation model, wm is
the weight vector and ϕm( · ) is an arbitrary basis func-

tion (or kernel). In the present work, RBF is used as the
kernel function because of its ability to reduce computa-
tional complexity of the training process. The vector form
of w = [w1 · · · wM ]T and the responses of all kernel func-
tion ϕ(x) = [ϕ1(x) · · · ϕM (x)]T maps the input data into
a high dimensional feature space z.

Hence, the obtained error signal could be stated as
εm = ym − ŷm = N(0, σ2). (3)

The objective of relevance vector regression is to find the
finest value of w such that ŷ(x,w) makes good predictions
for unknown input data. For the RVM model in equation
(2) let α = [α1 · · · αM ]T be the vector of M independent
hyperparameters, each associated with one model weight or
kernel function.

The Gaussian prior distributions of the RVM framework
are chosen as

p(
wm

αm
) =

M∏

m=1
(
αm

2π
)

1
2 exp{−αmw2

m

2
}. (4)

Here, αm is the hyperparameter that governs each weight
wm. The likelihood function of independent training targets
y = ym,m = 1, . . . , M can be stated as

p(
y

w
, σ2) =

M∏

m=1
p(

ym

w
, σ2) =

e−
‖(y−ŷ)2‖

2 σ2

√
(2πσ2)M

. (5)

The above likelihood function is enhanced by the prior in
equation (4) defined over each weight to reduce the com-
plexity of the model and to avoid over fitting. Now, using
Bayes’ rule, the posterior distribution over model weights
could be calculated as follows:

p(
w

y
, α, σ2) =

p( y
w , σ2)p(w

α )
p( y

α , σ2)
. (6)

The posterior distribution in equation (6) is a Gaussian dis-
tribution function,

p(
w

y
, α, σ2) = N(μ, σ2), (7)

whose covariance and mean are respectively given by
Σ = (σ−2ϕTϕ + A)−1, (8)
μ = σ−2ΣϕTy (9)

with A = diag{α}.
Marginalization of the likelihood distribution over the

training targets given by equation (5) can be obtained by in-
tegrating out the weights to acquire the marginal likelihood
for the hyperparameters.

p(
y

α
, σ2) =

�
p(

y

w
, σ2)p(

w

α
)dw = N(0, C). (10)

Here, the covariance is given by C = σ2I + ϕA−1ϕT. In
equations (8) and (9), the only unknown variables are the
hyperparameters α. The values of these hyperparameters are
estimated using the framework of type II maximum likeli-
hood [27].

log p(
y

α
, σ2)=−1

2
(M log 2π+log |C|+yTC−1y). (11)

Logarithm is included in equation (11) to reduce com-
putational complexity. Maximization of the logarithmic
marginal likelihood in equation (11) over α leads to the
most probable value αMP which provides the maximum a
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posteriori (MAP) estimate of the weights.
The ambiguity about the optimal value of the weights,

given by (6), is used to express ambiguity about the predic-
tions made by the model, i.e., given an input x∗, the prob-
ability distribution of the corresponding output y∗ is given
by the predictive distribution

p(
y∗

x∗ , α̂, σ̂2) =
�

p(
y∗

x∗ , w, σ̂2)p(
w

y
, α̂, σ̂2)dw, (12)

which has the Gaussian form

p(
y∗

x∗ , α̂, σ̂2) = N(Y ∗, σ∗2). (13)

The mean and variance of the predicted model are, respec-
tively,

Y ∗ = ϕT(x∗)μ and σ∗2 = σ̂2 + ϕT(x∗)Σϕ(x∗). (14)

Maximizing the logarithmic marginal likelihood in (11)
leads the optimal values of many of the hyperparameters αm

typically infnite yielding a posterior distribution in (6) of the
corresponding weights wm that tends to be a delta function
peaked to zero. Thus, the corresponding weights are deleted
from the model along with its accompanying kernel func-
tion. Hence, very few data points corresponding to nonzero
weights build the RVM model and are called the relevance
vectors. This results in better sparseness of RVM model than
SVM model. Thus, the computation time for prediction us-
ing RVM model is reduced significantly.

3 MPC based on RVM and particle swarm
optimization

3.1 RVM-based MPC principle

The basic structure of RVM-based nonlinear model pre-
dictive controller is shown in Fig. 1. It includes three im-
portant blocks, the actual plant to be controlled with out-
put y(k) = [y1(k) · · · yM (k)]T. Then, the RVM model
of the actual plant to be controlled with predicted out-
put ŷ(k) = [ŷ(k + 1) · · · ŷ(k + Np)] here. Np is the pre-
diction horizon of MPC which dictates how far we wish
the future to be predicted for. Next is the optimization
block which provides the optimized control signal u(k) =
[u1(k) · · · uNu(k)], where Nu is the control horizon of
MPC which dictates the number of control moves used to
attain the future control trajectory, subjected to the speci-
fied constraints which are required for the plant to achieve
the desired trajectory ref(k) = [ref(k+1) · · · ref(k+Np)].
Here, k stands for the current sampling instant.

Thus, at each sampling instant a sequence of manipulated
variable u(k) is calculated in order to minimize the formu-
lated performance index in (16), i.e., the difference between
the predicted output of the model and the desired reference
trajectory over the specified prediction horizon Np. The
number of manipulated variables in the sequence is decided
by the control horizon value Nu and only the first manipu-
lated variable in the control sequence is applied to the ac-
tual plant. This course is repeated at each sampling instant.
The basic structure of LS-SVM-based nonlinear model pre-
dictive control is obtained by replacing RVM model with
LS-SVM model in Fig. 1.

Fig. 1 Basic structure of RVM-based nonlinear model predictive
control.

3.2 Performance index formulation

For a single input single output (SISO) nonlinear process
the predicted output of RVM model is a function of the past
process outputs, Y (k) = [y(k) · · · y(k −ny + 1)] and past
process inputs, U(k − 1) = [u(k − 1) · · · u(k − nu + 1)].
The number of the past controlled outputs and past manip-
ulated inputs depends on the corresponding process orders
nu and ny , respectively.

Thus, a single step ahead prediction of a SISO nonlin-
ear process can be illustrated by the following discrete time
model:

ŷ(k + 1) = f(y(k), . . . , y(k − ny + 1), u(k), . . . ,
u(k − nu + 1)), (15)

where k is the discrete time index.
The above equation can be rewritten as

ŷ(k + 1) = f(Y (k), u(k), U(k − 1)). (16)
Here, Y (k) and U(k − 1) are the vectors holding the
past controlled outputs and past manipulated inputs, respec-
tively. Thus, after system identification using the regression
data set the one step ahead predicted output of RVR model
could be formulated as

ŷ(k + 1) =
M∑

m=0
wmϕm(x) = wTϕ, (17)

where M is the number of subsets of training samples.
Accordingly, the performance index to be minimized to

achieve the optimal control sequence u(k) can be obtained
as

J [u(k)] =
N2∑

j=N1

[ref(k + j) − ŷ(k + j)]2

+
Nu∑

j=1

λ[Δu(n + j)]2. (18)

where
N1 minimum prediction horizon,
N2 maximum prediction horizon,
Nu control horizon,
ref( · ) reference trajectory,
ŷ( · ) predicted output of LS-SVM,
Δu control input change defined as u(k + j)−

u(k + j − 1),
k current sampling instant, and
λ control input weighting factor.
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In the performance index formulated in equation (18), ŷ
depends on the kernel function which in turn is a function of
manipulated variable u, which is optimized and applied to
the actual plant in order to minimize the deviation between
the reference value and controlled variable.
3.3 Conventional particle swarm optimization

Although nonlinear predictive controller is good at con-
trolling unknown nonlinear systems, it does not mean that
practical implementation is without difficulties. The pri-
mary shortage results from its computational cost [28–29].
Usage of evolutionary algorithm for MPC optimization
overcomes this difficulty.

Inspired by the foraging behavior of birds, American psy-
chologist Kennedy and electrical engineer Eberhart devel-
oped the particle swarm optimization algorithm [23]. This
evolutionary algorithm has the capability of universality and
global optimization.

If in an n-dimensional search space, the swarm X =
[X1 X2 · · · Xm] is composed of m particles. Let the
position and velocity of ith individual particles be Xi =
[xi1 xi2 · · · xin]T and Vi = [vi1 vi2 · · · vin]T, respec-
tively, and the best position be Pi = [Pi1 Pi2 · · · Pin]T.
Let the global best position be Pg = [pg1 pg2 · · · pgn]T.
Then, the updated velocity and position of particle Xi will
be as in equations (19) and (20).

v
(t+1)
id = ωv

(t)
id +C1r1(P

(t)
id −X

(t)
id )+c2r2(P

(t)
gd −X

(t)
id ),

(19)

x
(t+1)
id = x

(t)
id + v

(t+1)
id , (20)

where d = 1, 2, . . . , n, i = 1, 2, . . . , m, and
m swarm size,
t iteration counter,
ω inertia weights,
r1, r2 random numbers in the range [0,1], and
c1, c2 learning factors.

Learning factors c1 and c2 usually equals to 2. However,
other settings were also used. Usually, c1 equals to c2 and
ranges from [0, 4].
3.4 Disadvantages of conventional PSO

From equations (19) and (20), it is understood that the
strength of exploration performance is merely determined
by the degrading rate of (P (t)

id − X
(t)
id ) and (P (t)

gd − X
(t)
id )

as r1 and r2 are supplemented as relational coefficients to
(P (t)

id − X
(t)
id ) and (P (t)

gd − X
(t)
id ), respectively. Hence, if

a swarm converges to a local minimal solution, the algo-
rithm may not have the capability to neglect it and hence the
strength of exploration behavior of the conventional PSO al-
gorithm needs improvement. This task of improving the ex-
ploration strength is achieved in a modified novel algorithm
PSO-CREV.
3.5 PSO-CREV algorithm

The intensity of exploration capability of conventional
PSO was improved significantly by Chen et al. [28–29],
after incorporating some modifications in the position and
velocity equations as shown in equations (21) and (22), re-

spectively.

v
(t+1)
id = ε(t)[ωv

(t)
id + c1r1(P

(t)
id − X

(t)
id ) + c2r2(P

(t)
gd

−X
(t)
id ) + ξ

(t)
id ], (21)

x
(t+1)
id = αx

(t)
id + v

(t+1)
id +

1 − α

φ
(t)
id

[c1r1P
(t)
id + c2r2P

(t)
gd ],

(22)

where ξ
(t)
id is a bounded random variable with continuous

uniform distribution, ε(t) tends to zero as t increases, and
∞∑

t=1
ε(n) = ∞, and α ranges between 0 and 1.

The introduction of the terms ε(n), ξ and the positive co-
efficient α makes the algorithm different from the conven-
tional PSO. ε(n) is different from inertia constant as it is op-
erating on all the three components of velocity update equa-
tion. A non-zero value of ξ(n) is very useful to drive parti-
cles into unknown solution space besides the effect brought
by cognitive and social components of the PSO algorithm.
Without additional stochastic behavior or ξ(n) = 0, PSO-
CREV behaves much like the conventional PSO, but with
relatively faster convergence. Hence, in this paper this addi-
tional stochastic behavior is omitted to achieve faster con-
vergence. A decreasing ξ(n) and a positive coefficient α
guarantee faster convergence of the algorithm [29]. Other
PSO-CREV parameters are

ε(n) =
3.5

(n + 1)0.4
,

c1 = c2 = 2 and α = 0.95.

4 Application on catalytic CSTR process

This section describes the improved performance of
RVM-based nonlinear MPC than LS-SVM-based nonlinear
MPC. A CSTR is the chemical process used for illustra-
tion. The physical arrangement of CSTR process is shown
in Fig. 2. In a catalytic reactor, the rate of catalytic reaction
is proportional to the amount of catalyst the reagents con-
tact.

Fig. 2 Schematic of the CSTR process.

The dynamic model of the catalytic CSTR process is

dh(t)
dt

= q1(t) + q2(t) − 0.2
√

h(t), (23)

dCb(t)
dt

= (Cb1 − Cb(t))
q1(t)
h(t)

+ (Cb2 − Cb(t))
q2(t)
h(t)

− k1Cb(t)
(1 + k2Cb(t))2

, (24)

where
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h(t) liquid level in the reactor,
Cb(t) product concentration at the output of the pro-

cess,
q1(t) flow rate of the concentrated feed Cb1,
q2(t) flow rate of the diluted feed Cb2, and
q0 product flow rate at the output of the process.

The nominal conditions for the feed concentrations are
set to Cb2 = 24.9 mol ·L−1 and Cb1 = 0.1 mol ·L−1. The
rate of consumption of both the feeds are associated with
the constants k1 = 1 and k2 = 1. The objective of this cat-
alytic reactor is to obtain the desired concentration Cb at
the product by adjusting the feed flow rate q1 and q2. The
illustration is made simple by setting q2(t) = 0.1 L ·min−1.
4.1 Training and testing the model

A sequence of 300 samples is used to train the sparse
Bayesian RVR model offline. Hyper parameter estimation
is carried out by expectation maximization (EM) updates on
the objective function [12]. For this RVR model RBF kernel
is used with the width parameter estimated automatically by
the learning procedure [12] which improves generalization
ability and reduces computational complexity of the training
process. Thus, unlike in LS-SVM there is no necessity for
computationally expensive determination of regularization
parameter by cross validation technique. Also in the RVR
model confidence intervals, likelihood values and posterior
probabilities could be explicitly encoded easily.

The SVR model is also trained offline using a sequence of
300 samples using the leave one out method. Leave one out
method is one in which at each iteration, one leaves out one
point and fits the model on the other data points. The per-
formance of the model is estimated based on the point left
out. This procedure is repeated for each data point. Finally,
all the different estimates of the performance are combined
(default by computing the mean). The assumption is made
that the input data is distributed independently and identi-
cally over the input space [30].

The minimum prediction horizon N1, maximum predic-
tion horizon N2 and control horizon Nu of RVM-based
MPC and LS-SVM-based MPC are set to 1, 1 and 1, re-
spectively to reduce the computational burden. The control
input weighting factor λ is set to 0.5.

Figs. 3 and 4 correspond to the modeling results of RVR
model and SVR model, respectively. The datasets are gen-
erated by providing random constrained signal as input to
the plant. The constraint to the input signal is 0 � u(t) � 4.
The training error of RVR model and SVR model are shown
in Fig. 3, which proves the better training accuracy of RVR
model when compared to SVR model.

The trained RVR model and SVR model are further tested
with 100 samples of random inputs which are beyond the
training data and there corresponding absolute prediction
errors are calculated. The comparative graph of prediction
errors of RVR model and SVR model are revealed in Fig.
4, which explores a little better extrapolation capability of
RVR model than SVR model. Thus, one can conclude that
the RVR-based empirical model can prevail little better over
the extrapolation capability of SVR model.

Fig. 3 Training performance comparison of RVR and SVR.

Fig. 4 Testing performance comparison of RVR and SVR models.
The offline trained and validated RVR model or SVR

model is then used as the nonlinear model for nonlinear
MPC. Fig. 5 illustrates the random set point tracking per-
formances of RVR model-based MPC with PSO-CREV, and
SVR model-based MPC with PSO-CREV. Fig. 6 shows the
corresponding changes in the process variable, flow rate.

Certainly the tracking performance of RVR-based MPC
is little improved when compared with SVR-based MPC’s.
Both RVR-PSO-CREV and LS-SVM-PSO-CREV-based
MPC’s are free from overshoots and undershoots due to
their accurate predictions and precise optimization using
PSO-CREV. However, RVR-PSO-CREV rises little faster
than SVR-PSO-CREV which is due to little better general-
ization and extrapolation capability of accurate RVR model.
As the PSO-CREV algorithm converges to the best solution
at each sampling instant, the control variable flow rate cor-
responding to RVM-PSO-CREV and LS-SVM-PSO-CREV
are with very less fluctuations.

The control variable u(k), i.e., flow rate of the concen-
trated feed Cb1, is shown in Fig. 6, whose smoothness
shows the index of control performance.
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Fig. 5 Tracking performance comparison of product concentration
for CSTR process.

Fig. 6 Changes in the process variable for tracking the product
concentration of CSTR process.

The unmeasured disturbance rejection capability of
RVM-PSO-CREV-based MPC and LS-SVM-PSO-CREV-
based MPC are compared by subjecting the CSTR pro-
cess with dissimilar magnitudes of disturbance at differ-
ent sampling instants as shown in Figs. 7 and 8. The
control variable, flow rate of the concentrated feed Cb1

with disturbances at different sampling instance are shown
in Fig. 7. Certainly the unmeasured disturbance rejec-
tion performance of RVM-PSO-CREV-based MPC is bet-
ter when compared to LS-SVM-PSO-CREV-based MPC.
Thus, RVM-PSO-CREV-based MPC behaves suitably for
process control industrial applications.

Fig. 7 Changes in the process variable to show unmeasured dis-
turbance.

Fig. 8 Performance comparison of unmeasured disturbance rejec-
tion.

4.2 Tabulation of performance indices for different

controlling techniques

This section enunciates the performance indices and
computational cost of both the controllers discussed in pre-
vious section. Table 1 shows the integral absolute error
(IAE) value, number of support vectors and computational
time related to each controller for the simulation results car-
ried out for 75 samples.

IAE is the performance criteria which quantifies the ac-
curacy of both controllers. The number of relevance vectors
of RVR model is very less than the number of support vec-
tors of LS-SVM model which sharply reduces the compu-
tational time of RVR-MPC to 4.71 seconds for 75 samples
(i.e., nearly 0.06 for sample), which is much shorter than
the sampling time of the catalytic CSTR process( i.e., 0.2
seconds) under simulation.

Thus, from the above tabulation it is clear that SVR-
PSO-CREV model predictive controller is the one which
consumes extra time with more IAE and RVR-PSO-CREV
model predictive controller is the best controller with very
less computational load and little less IAE which is more
important for real time applications.

Thus, when compared to LS-SVM-PSO-CREV-based
MPC, RVM-PSO-CREV-based MPC is the best controller
based on various attributes like little better prediction accu-
racy, better generalization capability, little better set point
tracking performance, better unmeasured disturbance rejec-
tion capability with very less computation time due to its
sparse model. Hence, it is well suitable for industrial pro-
cess control applications.

Table 1 Performance indices of various control strategies.

Number of Number of support vector/Conditions Control tactics
training samples

IAE
relevance vectors

Computational time/s

LS-SVM-PSO-CREV 300 0.7619 162 10.06No disturbance
RVM-PSO-CREV 300 0.6640 27 4.71

LS-SVM-PSO-CREV 300 2.8838 162 11.40Disturbance
RVM-PSO-CREV 300 2.2933 27 4.78
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5 Conclusions

A viable solution to the problem of fast implementation
of nonlinear model predictive control is proposed in this pa-
per. A probabilistic sparse kernel learning technique, RVM
is used to create an accurate for prediction model and a
derivative free optimization method, PSO-CREV is used to
achieve faster convergence. Based on the simulation results
of CSTR process the tracking performance of RVM- PSO-
CREV-based MPC is superior to LS-SVM-PSO-CREV-
based MPC with very less computational cost and better un-
measured disturbance rejection capability which confirms
its feasibility. Simulation results convey that such better per-
formance is due to better prediction accuracy, more sparse-
ness property of RVM model and fast accurate convergence
of PSO-CREV algorithm.
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