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Robust dynamic surface control of flexible joint
robots using recurrent neural networks
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Abstract: A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme
integrates H-infinity disturbance attenuation design and recurrent neural network adaptive control technique into the dy-
namic surface control framework. Two recurrent neural networks are used to adaptively learn the uncertain functions in a
flexible joint robot. Then, the effects of approximation error and filter error on the tracking performance are attenuated to a
prescribed level by the embedded H-infinity controller, so that the desired H-infinity tracking performance can be achieved.
Finally, simulation results verify the effectiveness of the proposed control scheme.
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1 Introduction

Over the past few decades, there has been much research
on the tracking control of flexible joint robots. Experimen-
tal evidence has indicated that the flexibility of the joints
should be taken into account in both modeling and control
if high performance is to be achieved. Several control tech-
niques have been proposed for flexible joint robot manip-
ulators. Among them, the feedback linearization technique
[1–2] relied on finding a diffeomorphic transformation and
a static state feedback controller that render the system lin-
ear. The method, however, depended not only on the precise
estimate of the system parameters, but also on the measure-
ment of joint acceleration and jerk. Then, the singular per-
turbation method using integral manifold [3–5] was devel-
oped to overcome these limitations. Under the assumption
of weak joint elasticity, singular perturbation modeling to-
gether with composite control design was used to improve
dynamic performance [6]. The integral manifold approach
is, however, only applicable to the weak joint elasticity case;
and its performance degrades when the manipulator joints
become significantly flexible.

The backstepping technique [7–10], in particular, has
been widely used to design controllers for flexible joint
robots. Oh and Lee [8] designed a controller for flexible
joint robot manipulators by backstepping design approach.
Bridges et al. [9] surveyed the backstepping control ap-
proach for flexible joint robots. Though such backstepping
approach solve the control problem, a major problem of the
backstepping technique is that certain unknown nonlinear
function must be ‘linear in the unknown parameters’ and te-
dious analysis is needed to determine ‘regression matrices’
[11]. Therefore, several approaches have been presented

for the adaptive control of uncertain nonlinear systems by
incorporating the backstepping technique into the existing
neural network based adaptive control design framework to
overcome these problems [11–15]. Kwan et al. [11] devel-
oped a robust controller for flexible joint robots by using
backstepping technique and neural networks. However, the
backstepping algorithm has the problem of ‘explosion of
complexity’ that is caused by the repeated differentiations
of virtual controllers [16–17]. Swaroop et al. [16] proposed
a dynamic surface control (DSC) technique adding a first-
order low-pass filter at each step of the backstepping de-
sign procedure to eliminate this problem. The DSC tech-
nique was first combined with the neural adaptive scheme
in [18] to handle nonlinear systems with arbitrary uncer-
tainty. In [20–21], a new scheme combination of the adap-
tive dynamic surface control technique and the neural net-
works for the robust control of flexible-joint robots with
model uncertainties was proposed.

In the past decade, great progress has been made in the
study of using neural networks to control uncertain non-
linear systems. Extensive works demonstrate that adaptive
neural control is particularly suitable for controlling highly
uncertain, nonlinear, and complex systems [22]. In these
neuro-adaptive control schemes, the neural network is used
to compensate the effects of nonlinearity and system un-
certainties, and so the stability, convergence and robustness
of the control system can be improved [23]. According to
the structure, the neural networks can be mainly classified
as feedforward neural networks (FNNs) and recurrent neu-
ral networks (RNNs). It is well known that FNN is capa-
ble of approximating arbitrary continuous function closely.
However, FNN is a static mapping and unable to represent
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a dynamic mapping without the aid of tapped delays [24].
On the other hand, The RNNs, which comprise both feed-
forward and feedback connections, have superior capabili-
ties than the FNNs. Since the RNN has a feedback loop, it
can capture the past information of the network and adapt
rapidly to sudden changes of the control environment [25].
The RNNs have the ability to deal with time-varying input
or output though their own natural temporal operation [26].
For this ability, the structure of the neural network is sim-
plified. Due to its dynamic characteristic and relative simple
structure, the RNN is a useful tool in real-time application.

As in practical application, strong robustness is always
an important property that a good controller should achieve.
In [20], a robust recurrent neural network controller for flex-
ible joint robots is derived by assuming that the bound of
residual approximation error is known. To overcome this
limitation, the issue of tracking with disturbance attenua-
tion for uncertain systems has been studied in the nonlin-
ear H∞ setting [27–33]. In these control schemes, the con-
trollers are generally composed of two main components.
One is an adaptive neural network system that is used to
approximate an ideal control law [27–28] or system uncer-
tainties [29–32]. The other is a robust compensator that is
designed to attenuate the effect of approximation error to a
prescribed level so that the H∞ tracking performance can
be yield. In this paper, a robust neuro-adaptive controller
for uncertain flexible joint robots is presented. This control
scheme integrates H∞ disturbance attenuation design and
the recurrent neural network adaptive control technique into
the dynamic surface control framework. First, the function
approximation capacity of RNN is exploited for adaptively
learning those uncertain dynamics in a flexible joint robot.
Second, the effects on the tracking performance of the ap-
proximation error and filter error are then attenuated to a
prescribed level by the embedded H∞ controller. Finally,
simulation results for a single link flexible joint robot ver-
ify the good tracking performance of the proposed control
scheme.

This paper is organized as follows. The model and basic
properties of flexible joint robot systems with uncertainties
is introduced in Section 2. The RNN structure is presented
in Section 3. In Section 4, a RNN-based dynamic surface
controller for uncertain flexible joint robots is designed; in
addition, the stability and robustness of the proposed control
system are analyzed based on the Lyapunov stability theo-
rem and H∞ control theory. Simulation results are discussed
in Section 5. Finally, conclusions are drawn in Section 6.

2 Flexible joint robots model and properties

In general, the model for an n-link flexible joint robot is
given by

M(q)q̈+V (q, q̇)q̇+G(q)+F (q̇)+Kq+TL =Kqf , (1)
Jq̈f + Bq̇f + K(qf − q) + TE = u, (2)

where q, q̇, q̈ denote the link position, velocity, and accel-
eration vectors, respectively, M(q) ∈ R

n×n is the inertia

matrix, V (q, q̇) ∈ R
n×n denotes the centripetal coriolis ma-

trix, G(q) ∈ R
n is the gravity vector, and F (q̇) ∈ R

n rep-
resents the friction term, and TL ∈ R

n the additive bounded
disturbance. qf , q̇f , q̈f denote the actuator position, velocity,
and acceleration vectors, respectively. The constant positive
definite diagonal matrices K ∈ R

n×n, J ∈ R
n×n, and

B ∈ R
n×n represent the joint flexibility, the actuator in-

ertia, and the natural damping term, respectively. u ∈ R
n

is the control vector used to represent the motor torque, and
TE ∈ R

n representing an additive bounded torque distur-
bance. The flexible joint robot dynamics has the following
properties:

Property 1 The inertia matrix is symmetric and posi-
tive definite, and satisfies the following inequalities:

m1‖x‖2 � xTM(q)x � m2‖x‖2, ∀x ∈ R
n, (3)

where m1 and m2 are known positive constants.
Property 2 The centripetal coriolis matrices V (q, q̇)

have the following property:
xT(Ṁ(q) − 2V (q, q̇))x = 0, ∀x ∈ R

n, (4)
Normally, the joint elasticity matrix and motor inertia ma-
trix are bounded. Property 1 is very important in generating
a positive definite function to prove stability of the closed-
loop system. Property 2 will help in simplifying the con-
troller.

As a preliminary to the control design, we define the state
space variables as x1 = q, x2 = q̇, x3 = Kqf , x4 = Kq̇f ,
and then, the flexible joint robot system is described as fol-
lows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = F1(x1, x2) + G1(x1)x3,

ẋ3 = x4,

ẋ4 = F2(x1, x3, x4) + G2u,

(5)

where
F1(x1, x2) = −M(x1)−1(V (x1, x2)x2 + G(x1)

+ F (x2) + Kx1 + TL),
F2(x1, x3, x4) = −KJ−1(BK−1x4 + x3 − Kx1 + TE),
G1(x1) = M(x1)−1, G2 = KJ−1.

Due to large uncertainties exist in the operation of flexible
joint robots, such as unmolded dynamics, parameter pertur-
bations and load variation, the nonlinear functions F1, F2,
G1, G2 are unknown. It is simple to derive that G1 and G2

are symmetric and positive definite matrices, since M(q) is
symmetric and positive definite together with K and J are
diagonal positive definite. The symmetric and positive defi-
nite property of G1 and G2 is very important in the stability
analysis of the closed-loop system in Section 4. However, if
we only define the state space variables as x1 = q, x2 = q̇,
x3 = qf , x4 = q̇f , in the case where G1 is M−1K, we
cannot obtain the symmetric and positive definite property
of G1, as the symmetric and positive definite of M and K
cannot guarantee the symmetric and positive definite of G1.
The control objective is to design an RNN-based adaptive
system (illustrated in Fig. 1) to make x1(t) = q(t) to follow
a desired trajectory x1d(t) = qd(t).
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Fig. 1 RNN-based DSC scheme.

3 Recurrent neural network

A three-layer RNN, as shown in Fig. 2, which has n1 neu-
rons in the input layer, n2 neurons in the hidden layer and
n3 neurons in the output layer, is adopted to implement the
proposed control scheme. The signal propagation and the
activation function in each layer are introduced as follows:

Layer 1 (input layer)⎧⎪⎪⎨
⎪⎪⎩

net1i (N) = χ1
i (N),

O1
i (N) = f1

i (net1i (N)) =
1

1 + exp(−net1i (N))
,

i = 1, 2, . . . , n1,

(6)

where χ1
i represents the ith input to the node of input layer;

N denotes the number of iterations; and f1
i is the activation

function, which is a sigmoid function.
Layer 2 (hidden layer)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

net2j (N) = ω2
j O2

j (N − 1) +
∑
i

ω2
ijχ

2
i (N),

O2
j (N) = f2

j (net2j (N)) =
1

1 + exp(−net2j (N))
,

j = 1, 2, . . . , n2,

(7)

where ω2
j are the weight of the self-feedback loop in the hid-

den layer; ω2
ij are the connective weights between the input

layer and the hidden layer; and f2
j is the activation function,

which is also a sigmoid function.
Layer 3 (output layer)⎧⎪⎪⎨

⎪⎪⎩

net3k(N) =
∑
j

ω3
jkχ3

j (N),

O3
k(N) = f3

k (net3k(N)) = net3k(N),
k = 1, 2, . . . , n3,

(8)

where ω3
jk are the connective weights between the hidden

layer and the output layer; f3
k is the activation function,

which is set to be unit; and O3
k the output of the RNN.

Fig. 2 Three-layer RNN structure.
Moreover, if we denote

ω = (ω3
11ω

3
21 · · ·ω3

n21, . . . , ω
3
1n3

ω3
2n3

· · ·ω3
n2n3

)T, (9)

ϑ = (ω2
11ω

2
21 · · ·ω2

n11, . . . , ω
2
1n2

ω2
2n2

· · ·ω2
n1n2

)T, (10)

α = [ω2
1 ω2

2 · · · ω2
n2

]T, (11)

θ = [ωT ϑT αT]T. (12)

The output of the RNN can be rewritten as follows:

O3 = Υ (χ,ω,ϑ,α) = Υ (χ|θ), (13)

where χ = [χ1
1 χ1

2 · · · χ1
n1

]T are the input of RNN, and
O3 = [O3

1 O3
2 · · · O3

n3
]T are the output of RNN. Accord-

ing to the neural network approximation theory, a general
function H(χ) : R

n1 → R
n3 can be written as

H(χ) = Ĥ(χ|θ∗) + ε, (14)

where Ĥ(χ|θ∗) = Υ (χ|θ∗), ε is the functional reconstruc-
tion error; and the ideal weights θ∗ can be defined as

θ∗ = arg min
θ

{sup
χ

‖H(χ) − Ĥ(χ|θ)‖}. (15)

However, the ideal weights are difficult to determine. If we
denote θ̂ as the estimation of θ∗, the Taylor expansion of
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Ĥ(χ|θ∗) is

Ĥ(χ|θ∗) = Ĥ(χ|θ̂) +
∂Ĥ(χ|θ̂)

∂θ̂
θ̃ + Δ. (16)

where θ̃ = θ∗ − θ̂, Δ is a vector of higher order terms; and
∂Ĥ(χ|θ̂)

∂θ̂
= [

∂Ĥ1(χ|θ̂)

∂θ̂

∂Ĥ2(χ|θ̂)

∂θ̂
· · · ∂Ĥn3(χ|θ̂)

∂θ̂
]T,

and
∂Ĥk(χ|θ̂)

∂θ̂
(1 � k � n3) are defined as

∂Ĥk(χ|θ̂)

∂θ̂
=[

∂Ĥk(χ|θ̂)
∂ω̂

∂Ĥk(χ|θ̂)

∂ϑ̂

∂Ĥk(χ|θ̂)
∂α̂

], (17)

∂Ĥk(χ|θ̂)
∂ω̂

=[ 0 · · · 0︸ ︷︷ ︸
(k−1)×n2

∂Ĥk

∂ω̂1,k
· · · ∂Ĥk

∂ω̂n2,k
0 · · · 0︸ ︷︷ ︸

(n3−k)×n2

],

(18)
∂Ĥk(χ|θ̂)

∂ϑ̂
=[ 0 · · · 0︸ ︷︷ ︸

(k−1)×n1

∂Ĥk

∂ϑ̂1,k

· · · ∂Ĥk

∂ϑ̂n1,k

0 · · · 0︸ ︷︷ ︸
(n2−k)×n1

],

(19)
∂Ĥk(χ|θ̂)

∂α̂
=[

∂Ĥk

∂α̂1
· · · ∂Ĥk

∂α̂n2

]. (20)

Based on the above analysis, for a arbitrarily function
H(χ), we can transform it into the following form:

H(χ) = Ĥ(χ|θ̂) +
∂Ĥ(χ|θ̂)

∂θ̂
θ̃ + (Δ + ε), (21)

where Ĥ(χ|θ̂) can be represented by an RNN output;

[
∂Ĥ(χ|θ̂)

∂θ̂
]θ̃ is a parametric linear term respect to θ̃, and

(Δ + ε) is treated as an unknown disturbance. In the fol-
lowing work, an adaptive law is designed for θ̃, and a H∞
controller is embedded to attenuate the effects of (Δ + ε)
on tracking performance.

4 Robust dynamic surface control

4.1 Dynamic surface control

Since the model (5) has a strict feedback form, the dy-
namic surface control technique is used to design the con-
troller for flexible joint robots. Recurrent neural networks
are used to adaptively learning the uncertain functions in
the flexible joint robot. The design procedure is as follows.

Step 1 Design the virtual control law for x2. The first
error surface is defined as s1 = x1 − x1d, and then, its
derivative is

ṡ1 = x2 − ẋ1d, (22)
Therefore, the virtual control vector x̄2 is

x̄2 = v1 + ẋ1d, (23)
where v1 is the robust control term to be designed. We pass
x̄2 through a first-order with the time constant τ2 to obtain
x2d:

τ2ẋ2d + x2d = x̄2, x2d(0) = x̄2(0). (24)
Step 2 Design the virtual control law for x3. The error

surface with x2d is defined as s2 = x2−x2d, differentiating
it yields
ṡ2 =F1(x1, x2) + G1(x1)x3 − ẋ2d

=−G1(x1)V (x1, x2)s2+G1(x1)(x3+H1(χ1)). (25)

where
H1(χ1) = G−1

1 (x1)(F1(x1, x2) − ẋ2d) + V (x1, x2)s2.

According to equation (21), H1(χ1) can be rewritten as

H1(χ1)=Ĥ1(χ1|θ̂1)+
∂Ĥ1(χ1|θ̂1)

∂θ̂1

θ̃1+(Δ1+ε1). (26)

Then, the virtual control vector x̄3 is chosen as
x̄3 = v2 − Ĥ1(χ1|θ̂1), (27)

where v2 is the robust control term to be designed. We pass
x̄3 through a first-order with the time constant τ3 to obtain

τ3ẋ3d + x3d = x̄3, x3d(0) = x̄3(0). (28)
Step 3 Define error surface s3 = x3 − x3d, and its

derivative is
ṡ3 = x4 − ẋ3d. (29)

The virtual control vector x̄4 is
x̄4 = v3 + ẋ3d, (30)

where v3 is the robust control term to be designed. We pass
x̄4 through a first-order with the time constant τ4 to obtain

τ4ẋ4d + x4d = x̄4, x4d(0) = x̄4(0). (31)
Step 4 Design the actual control vector u. Define the

fourth error surface s4 = x4−x4d, and using (5), its deriva-
tive is

ṡ4 =F2(x1, x3, x4)+G2u−ẋ4d =G2(u+H2(χ2)). (32)
where H2(χ2) = G−1

2 (F2(x1, x3, x4) − ẋ4d). According
to equation (21), H2(χ2) can be rewritten as

H2(χ2) = Ĥ2(χ2|θ̂2)+
∂Ĥ2(χ2|θ̂2)

∂θ̂2

θ̃2+(Δ2+ε2). (33)

The actual control vector u is chosen as
u = v4 − Ĥ2(χ2|θ̂2), (34)

where v4 is the robust control term to be designed. So far,
the dynamic surface control design procedure is finished.
The overall control law should incorporate the adaptive laws
for θ̃1, θ̃2, and the embedded H∞ controller v1, v2, v3, v4.
4.2 H∞ controller design

In this part, adaptive laws for θ̃1, θ̃2 is designed based on
the Lyapunov stability theory, and an embedded H∞ con-
troller are designed to attenuate the effects of approximation
error and filter error on the tracking performance.

First, note that
xi−x̄i =xi−xid+xid−x̄i =si+ξi, i = 2, 3, 4. (35)

We denote the filter error signal as ξi = xid − x̄i, ξi → 0 if
the time constant τi is small enough. In the standard stability
analysis of dynamic surface control method, ξi is treated as
new state variables, which complicates the matters. In this
paper, we treat filter error ξi as external disturbance as well
as approximation error (Δi + εi). Thus, a robust controller
is needed to surpass them. Based on the preceding analysis,
we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ṡ1 = v1 + s2 + ω1,

ṡ2 = −G1V s2+G1(v2+s3+
∂Ĥ1(χ1|θ̂1)

∂θ̂1

θ̃1+ω2),

ṡ3 = v3 + s4 + ω3,

ṡ4 = G2(v4 +
∂Ĥ2(χ2|θ̂2)

∂θ̂2

θ̃2 + ω4),

(36)
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where
ω1 = ξ2, ω2 = Δ1 + ε1 + ξ3, ω3 = ξ4, ω4 = Δ2 + ε2.

For ease of notation, we define
ω = [ωT

1 ωT
2 ωT

3 ωT
4 ]T,

v = [vT
1 vT

2 vT
3 vT

4 ]T,

s = [sT
1 sT

2 sT
3 sT

4 ]T,

and then, the main results are summarized as follows:
Theorem 1 Consider the system represented by (36),

the control system, illustrated in Fig. 1, is designed as (23),
(27), (30) and (34), in which the adaptive laws and the em-
bedded H∞ controller are designed as

˙̂
θ1 = Γ1[

∂Ĥ1(χ1|θ̂1)

∂θ̂1

]Ts2, (37)

˙̂
θ2 = Γ2[

∂Ĥ2(χ2|θ̂2)

∂θ̂2

]Ts4, (38)

v = −(
1
2

+
1

2γ2
+ Λ)s. (39)

Then, the overall control scheme guarantees the following
H∞ tracking performance: ∀T > 0, β ∈ R,� T

0
sT(t)s(t)dt � γ2

� T

0
ωT(t)ω(t)dt + β, (40)

where Γ1, Γ2 are symmetric and positive definite matrices,
γ is a prescribed attenuation constant; and matrix Λ is de-
fined as

Λ =

⎡
⎢⎢⎢⎢⎣

0
1 0

. . . . . .
1 0

⎤
⎥⎥⎥⎥⎦ . (41)

Proof Since G1 and G2 are symmetric and positive def-
inite matrices, we consider the following Lyapunov func-
tion:

V =
1
2
sT
1 s1 +

1
2
sT
2 G−1

1 s2 +
1
2
sT
3 s3

+
1
2
sT
4 G−1

2 s4 +
1
2

2∑
i=1

θ̃
T

i Γ−1
i θ̃i. (42)

Along the trajectories of (36), the time derivative of V is
given as

V̇ = sT
1 ṡ1 + sT

2 G−1
1 ṡ2 +

1
2
sT
2 Ġ−1

1 s2

+sT
3 ṡ3 + sT

4 G−1
2 ṡ4 +

2∑
i=1

˙̃
θT

i Γ−1
i θ̃i

= sT
1 (v1 + s2 + ω1) + sT

2 (v2 + s3 +
∂Ĥ1(χ1|θ̂1)

∂θ̂1

θ̃1

+ω2) +
1
2
sT
2 (Ġ−1

1 − 2V )s2 + sT
3 (v3 + s4 + ω3)

+sT
4 (v4 +

∂Ĥ2(χ2|θ̂2)

∂θ̂2

θ̃2 + ω4) +
2∑

i=1

˙̃
θT

i Γ−1
i θ̃i

=sT(v+ω)+sTΛs+( ˙̃
θT

1 Γ−1
1 +sT

2

∂Ĥ1(χ1|θ̂1)

∂θ̂1

)θ̃1

+( ˙̃θT
2 Γ−1

2 + sT
4

∂Ĥ2(χ2|θ̂2)

∂θ̂2

)θ̃2. (43)

Using (37) and (38), we have
V̇ � sTv + sTΛs + sTω. (44)

From Young’s inequality: ab � 1
2γ2

a2 +
γ2

2
b2, a, b ∈ R,

the following inequalities hold:

sTω � 1
2γ2

sTs +
γ2

2
ωTω. (45)

Then, substituting (39) and (45) into (44) yields

V̇ � sTv + sTΛs +
1

2γ2
sTs +

γ2

2
ωTω

= sT(v + Λs +
1

2γ2
s) +

γ2

2
ωTω

= −1
2
sTs +

γ2

2
ωTω. (46)

Integrating the above inequality from t = 0 to t = T yields

V (T ) − V (0) � −1
2

� T

0
sT(t)s(t)dt

+
γ2

2

� T

0
ωT(t)ω(t)dt. (47)

Since V (T ) � 0, (47) implies� T

0
sT(t)s(t)dt � 2V (0) + γ2

� T

0
ωT(t)ω(t)dt. (48)

Thus, the theorem is proved.
Remark 1 If ω(t) is squared integrable, that is,� T

0
ωT(t)ω(t)dt < ∞, and then, lim

t→∞ ‖s(t)‖ = 0. It is
can be easily obtained by using Barbalat’s lemma. In addi-
tion, if V (0) = 0, the H∞ tracking performance (40) can be
rewritten as

sup
ω∈L2[0,T ]

‖s‖
‖ω‖ � γ, (49)

which means the L2-gain from ω to s must be equal to or
less than a level γ.

5 Simulation results

The single link flexible joint robot (in Fig. 3) is simu-
lated to examine the effectiveness of the proposed control
scheme. The model can be written as

Iq̈ + Mgl sin q + B1q̇ + Kq = Kqf , (50)
Iq̈f + B2q̇f + K(qf − q) = u, (51)

where I = 0.1 kg · m2, J = 1 kg · m2, M = 1 kg, L =
0.1 m; g= 9.8 m · s−2, K = 100 Nm · rad−1, B1 = B2 =
1 Nm · rad−1. The desired trajectory is qd(t) = sin(2t). Two
recurrent neural networks are used to adaptively learning the
uncertain functions H1(χ1) and H2(χ2). The input of the
RNNs are χ1 = [q q̇ qd]T and χ2 = [q q̇ qf q̇f qd]T,
respectively, and the number of neurons in the hidden layer
both are 10. All the weights are initialize randomly, other
parameters used in the control scheme are: τ2 = τ3 = τ4 =
0.05, Γ1 = 1000, Γ2 = 1000.

To evaluate the effect of different values of parameter γ
on the tracking performance, we define the mean square er-
ror as

MSE =
1
K

K∑
k=1

e2(k), (52)

where e(k) = q(k) − qd(k) is the tracking error in the
kth sample time, K is the total sample number, which set
K = 100000 in this simulation. Two cases γ = 0.25
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and γ = 0.2 are simulated to examine the effectiveness
of the proposed control scheme. The simulation results for
γ = 0.25 is illustrated in Figs. 4–6, and Figs. 7–9 for
γ = 0.2. The mean square error for γ = 0.25 is 0.0003,
while 0.0001 for the γ = 0.2 case. From the simulation re-
sults, it can be concluded that the design of the controller
in this paper has good tracking performance, tracking error
may be limited to less than 5%, and has a fast response.
In addition, the mean square error for γ = 0.2 is less than
the mean square error for γ = 0.25, which indicates that it
has better tracking performance when γ = 0.2. This is con-
sistent with the physical meaning of parameter γ. We can
explain the results by high gain feedback, since from (39),
we can see that smaller γ gives higher feedback gain, which
results in smaller tracking error.

For a comparison of performance, the simulation results
of composite control method, proposed in [5], are given
in Figs. 10 and 11. The smallest MSE of several trails is
0.0032, which indicate that the proposed RNN-based con-
troller outperforms the composite control method.

Fig. 3 Model of single link flexible joint robot.

Fig. 4 Actual q(t) and desired qd(t) when γ = 0.25.

Fig. 5 Tracking error e(t) when γ = 0.25 (MSE = 0.0003).

Fig. 6 Motor torque control input u(t) when γ = 0.25.

Fig. 7 Actual q(t) and desired qd(t) when γ = 0.2.

Fig. 8 Tracking error e(t) when γ = 0.2 (MSE = 0.0001).

Fig. 9 Motor torque control input u(t) when γ = 0.2.
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Fig. 10 Tracking performance of composite controller.

Fig. 11 Tracking error of composite controller (MSE = 0.0032).

6 Conclusions

In this paper, a robust control system using RNNs ap-
proximators and adaptive DSC technique for flexible joint
robots with model uncertainties has been developed. Two
RNNs are adopted to adaptively learning the uncertain func-
tions in the flexible joint robot. Then, the effects of the ap-
proximation error and filter error are attenuated to a pre-
scribed level by the embedded H∞ controller. Though Lya-
punov stability analysis and H∞ design method, the adap-
tation laws for all weights of RNNs and the embedded H∞
controller have been derived, which guarantees the desired
H∞ tracking performance can be achieved. Finally, a simu-
lation study for a single link flexible joint robot manipulator
shows that the proposed control scheme has good tracking
performance.
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