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Adaptive sampling immune algorithm solving joint
chance-constrained programming
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Abstract: This work investigates one immune optimization algorithm in uncertain environments, solving linear or
nonlinear joint chance-constrained programming with a general distribution of the random vector. In this algorithm, an a
priori lower bound estimate is developed to deal with one joint chance constraint, while the scheme of adaptive sampling
is designed to make empirically better antibodies in the current population acquire larger sample sizes in terms of our
sample-allocation rule. Relying upon several simplified immune metaphors in the immune system, we design two immune
operators of dynamic proliferation and adaptive mutation. The first picks up those diverse antibodies to achieve proliferation
according to a dynamical suppression radius index, which can ensure empirically potential antibodies more clones, and
reduce noisy influence to the optimized quality, and the second is a module of genetic diversity, which exploits those
valuable regions and finds those diverse and excellent antibodies. Theoretically, the proposed approach is demonstrated to
be convergent. Experimentally, the statistical results show that the approach can obtain satisfactory performances including
the optimized quality, noisy suppression and efficiency.

Keywords: Joint chance-constrained programming; Immune optimization; Adaptive sampling; Reliability domi-
nance; Noisy attenuation

1 Introduction
Many real-world engineering optimization problems,

e.g., control system design, energy production and man-
agement [1], appear in uncertain environments; namely,
they involve noisy factors. Such kind of problem, so-called
stochastic optimization, is one challenging kind of opti-
mization in the context of optimization, as the solution
quality is influenced seriously by noise. Chance-constrained
programming (CCP), originally proposed by Charnes and
Cooper [2], is a special type of stochastic optimization, be-
ing composed of the expected value/deterministic objective
function and chance constraint(s). The major difficulty of
solving CCP includes two aspects. First, it is almost impos-
sible to check directly whether a given candidate solution is
feasible. Second, the feasible region is nonconvex in gen-
eral [3]. Although some researchers paid great attention to
such a hot topic, few achievements have been reported in the
literature. Some early work mainly studied how to handle
chance constraints under certain assumptions, for example,
convexity approximation [4–7], logarithmically concave or
transformation [2]. These theoretical results are greatly re-
stricted in practical applications, due to their computational
complexity or sophisticated transformation. Therefore, ad-
vanced optimization techniques are desired for CCP and es-
pecially for nonlinear CCP.

Immune optimization is a well-known hot branch in arti-
ficial immune systems [8], owing to great superiorities over
several classical intelligent approaches when solving mul-
timodal optimization problems. Although a series of excel-
lent optimization approaches based on bio-immune inspira-
tions, suitable for static or dynamic optimization problems,

appear in the literature [9–12], these works are rarely done
to study immune optimization for CCP problems. Since
such kind of problem involves many important applications,
we in this paper investigate an adaptive sampling immune
algorithm (ASIA) for joint CCP (JCCP) with a general dis-
tribution of the random vector.

2 Related work on sampling and intelligent
approaches

2.1 Sampling approaches

Chance constraints are probabilistic inequalities basi-
cally. Integral calculation and Monte Carlo approximation
(MCA) are two conventional ways in dealing with such
constraints. The first is usually adopted difficultly, due to
some inherent characteristics of the integral formula, such
as nonlinearity, discontinuation or multidimensionality, but
the second is a simple and available method from the per-
spective of numerical simulation. Despite of a wide appli-
cation, MCA arises a crucial issue, i.e., how to decide the
sample size of the random vector at an individual (we sim-
ply say the sample size of the individual). Many researchers
studied CCP problems in the precondition of static sam-
pling strategies [2–5,13–18]. For instance, Shapiro [13] an-
alyzed the limitation behavior about the sample approxima-
tion of the true JCCP problem, and accordingly obtained a
sample average approximation (SAA) method. Thereafter,
Shapiro et al. [3–5,15] claimed that the empirical minimum
acquired by SAA could approach the theoretical optimal
value when the sample size was sufficiently large. In ad-
dition, several researchers made great efforts to probe into
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a priori lower bound sample estimates [14, 19]. For exam-
ple, Luedtke and Ahmed [14] explored the relationship of
approximation between the sample approximation problem
and the true JCCP. This investigation gives us a valuable
guidance about how to decide the sample size of individual.

Adaptive sampling is an important method in reducing
computational time. Higle et al. [20] made some empiri-
cally comparative studies for adaptive and static sampling,
by means of two approaches of stochastic decomposition
(SD) and SAA mentioned. The experimental results indi-
cate that, with respect to the optimized quality, there is
slight difference between SD and SAA, but SAA causes
high computational complexity. Loughlin et al. [21] ac-
quired a Latin hypercube sampling (LHS) approach suit-
able for chance constraints. Such approach, together with
one genetic algorithm, can almost lead to the same solu-
tion quality as an excellent evolutionary algorithm with the
fixed sample size, while only requiring low computational
cost. In addition, simulation-based optimization is an im-
portant sub-area, in which the main work is to develop a
sample-allocation scheme that maximizes the probability of
correct selection. Such kind of scheme does not involve any
constraints, in particular chance constraints. For instance,
Chen and Lin [22] developed an efficient dynamic sam-
ple allocation scheme to decide the best of individuals in
a given population. Subsequently, Chen and He [23] pro-
posed an extended version of such scheme which was used
to find the top-m individuals among k individuals, only re-
lying upon observed objective values and variances of in-
dividuals. The experiments indicate that such two schemes
are excellent. However, through the process of their designs,
we notice that, although these two schemes are capable of
solving expected value optimization problems without any
constraint, they do not suit CCP problems, due to chance
constraints. Furthermore, depending on one kernel density
function, Sahin and Diwekar [24] developed a mathematical
optimization approach to the kind of CCP with probabilis-
tic objective functions, in which the computational burden
of determining the search direction was reduced in terms of
a re-weighting method. In our previous work [25–26], we
developed two kinds of adaptive sampling schemes. One de-
cides the sample size of individual according to whether an
individual is empirically feasible [25], and the other [26],
based on the hypothesis test, is designed to emphasize that
better individuals get larger sample sizes. Note that the op-
timizer in [26] is effective only for nonconstrained expected
value optimization problems, instead of CCP problems.
2.2 Intelligent approaches handling CCP

Although evolutionary algorithms are a popular opti-
mizer for CCP [3, 16–18, 21, 27], they are applied mainly
to linear stochastic programming problems which can be
equivalently formulated by analytically deterministic mod-
els. For example, Tanner [27] in his doctoral thesis inves-
tigated in detail the linear JCCP problem with the ran-
dom left-hand side, by reformulating it into an analytically
equivalent mixed-integer programming. In his work, a Tabu
search meta-heuristic procedure was provided when find-
ing good feasible solutions. Tanner and Ntaimo [28] also
studied optimality cuts called IIS (irreducibly infeasible

subsets) cuts, and hence, developed a branch-and-cut algo-
rithm based on IIS cuts. In addition, the recent research on
stochastic optimization has exposed that some researchers
keep their eyes on nonlinear stochastic programming. Brand
[19] explored the possibility of the reformulation for nonlin-
ear JCCP problems by suitably selecting penalty-type ob-
jectives. His theoretical result shows that the transformed
model can asymptotically approach the true one.

A few researchers made an encouraging attempt to in-
tegrate stochastic simulation with intelligent optimization
techniques in order to deal effectively with CCP [16–18].
For example, Liu and Xiao [16–17] presented their re-
spective optimization approaches related to the BP neu-
ral network. The main difference between them consists
in their different evolutionary fashions; namely, Liu found
the desired solution by using one conventional genetic al-
gorithm, but Xiao did so in terms of one particle swarm
optimization appraoch. Poojari et al. [18] investigated non-
joint CCP problems by developing two types of genetic al-
gorithms with subtle differences, respectively simply writ-
ten as SSGA-I and SSGA-II. Their main difference in-
volves different optimality scoring rules as associated to
fitness evaluations. Özcan [29] developed a real-world in-
dustrial production program model described by a chance-
constrained, piecewise-linear, mixed integer optimization
one, and hence, solved it by means of the simulated anneal-
ing algorithm.

Although immune optimization is a hot and potential
topic in the area of artificial immune systems, it is rarely
studied for CCP problems. Recently, we developed a simple
immune algorithm (i.e., IOM) to handle nonjoint CCP [25].
In such work, one of concerns is to investigate a sampling
scheme which guarantees that all empirically feasible in-
dividuals in the current population share the same larger
sample size than empirically infeasible ones. However, this
sampling scheme needs to make further improvements, e.g.,
different individuals should obtain different sample sizes.
In addition, Qu [30] set up a CCP model which formulated
the optional selection problem of investment projects. Then,
an immune clonal selection algorithm with the fixed sam-
ple size was designed to provide a general solution for the
model.

In our present work, we first suggest an a priori bound
estimate to handle chance constraints with a general distri-
bution of the random vector. Second, an adaptive sampling
scheme, based on the concept of reliability-dominance, is
designed to allocate the population sample size to different
individuals, and then it is integrated with an immune evolu-
tion mechanism to form ASIA as mentioned. Here, it is em-
phasized that ASIA is different from our previous IOM [25]
and other reported work. Although ASIA and IOM share
some common immune characteristics and assume solving
CCP problems, they are different optimizers with major dif-
ferences. First, their tasks are different. ASIA handles JCCP,
but IOM is effective for nonjoint CCP problems. ASIA pro-
cesses the chance constraint by an a priori estimate, and
requires that the reliability-dominance based adaptive sam-
pling scheme make different individuals get different sam-
ple sizes. This does not present in IOM. Second, their im-
mune inspirations cause different design ideas.
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3 Problem description
Consider the following JCCP problem of form (Pα):

min
x∈D

E[f(x, ξ)]

s.t.

{
Pr{G(x, ξ) � 0} � 1 − α,

g(x) � 0,h(x) = 0,

with bounded and closed domain D in R
p, decision vec-

tor x in D and significance level α in the interval (0, 1),
where ξ is a general q-dimensional real valued random vec-
tor with unknown prior distribution information; E[ · ] and
Pr{ · } are the operators of expectation and probability, re-
spectively; f( ·, · ) denotes the linear or nonlinear stochas-
tic objective function; G(x, ξ) is the linear or nonlinear
stochastic vector-valued constraint function taking values in
R

I with G(x, ξ) = [G1(x, ξ) · · · GI(x, ξ)]T; g(x) and
h(x) are the deterministic vector-valued constraint func-
tions with g(x) = [g1(x) · · · gJ(x)]T and h(x) =
[h1(x) · · · hK(x)]T. Here, we prescribe that the symbol
of x � 0 stands for xi � 0 with x = (x1, x2, . . . , xp)
and 1 � i � p . We say that x is reliable with the signifi-
cance level α, or say that x is a reliable candidate solution, if
it satisfies the above constraints; otherwise, it is called un-
reliable. A reliable candidate solution is called an optimal
reliable solution if it possesses the minimal objective value
among reliable candidate solutions. All such optimal reli-
able solutions consist of set O∗

α. Here, a constraint violation
function is introduced,

Γ (x) = max{1 − α − p(x), 0}
+

I∑
j=1

max{gj(x), 0} +
K∑

k=1

|hk(x)|, (1)

where p(x) = Pr{G(x, ξ) � 0}. Obviously, x is reli-
able if Γ (x) = 0. Additionally, if Pα includes multiple
joint chance constraints, they are similarly embedded to
such equation. Based on equation (1), we introduce the con-
cept of reliability-dominance to compare two candidate so-
lutions.

Definition 1 (Reliability-dominance) [23] Let x,y ∈
D, we say that x dominates y with a given significance
level (simply write x ≺ y), if one of the following con-
ditions holds:

a) x and y are reliable, and E[f(x, ξ)] < E[f(y, ξ)];
b) x is reliable, but y is not;
c) x and y are not reliable, but Γ (x) < Γ (y).
In the following section, we will investigate a lower

bound estimate of probability presented in the above chance
constraint, so as to find an approximate optimal reliable so-
lution. We also design a sample-allocation scheme to adjust
the sample size of individual, which helps for reducing the
magnitude of individual evaluation.

4 Approximation and adaptive sampling

4.1 Chance constraint approximation

Let n(x) be the sample size of the q-dimensional real val-
ued random vector ξ at the point x, and ξ1, ξ2, . . . , ξn(x) be
i.i.d. random vectors. Write zi = I(G(x, ξi) � 0), where
I( · ) is an indicator function taking 1 if ‘·’ is true and 0
otherwise. Thus, z1, z2, . . . , and zn(x) follow the binomial
distribution B(1, p(x)). Furthermore, through the central
limit theorem, we know that the sample average approx-

imation pn(x) asymptotically follows the normal distribu-
tion N(p(x), p(x)(1 − p(x))/n(x)) [31], where pn(x) =

n(x)−1
n(x)∑
i=1

zi. Take a random variable u,

u =
pn(x) − p(x)√
p(x)(1 − p(x))

n(x)

. (2)

Accordingly, u follows asymptotically the standard normal
distribution. Furthermore, for the above significance level
α, it is easy to obtain that

Pr{|u| � u1−α
2
} = 2Φ(u1−α

2
) − 1 = 1 − α, (3)

where Φ( · ) is the cumulative distribution function. We take

|pn(x) − p(x)| � u1−α
2

√
p(x)(1 − p(x))

n(x)
, (4)

which yields

(1+
c

n(x)
)p(x)2−(2pn(x)+

c

n(x)
)p(x)+p2

n(x) � 0,

(5)
with c = u2

1−α
2

. Therefore, equation (5) implies

p(x) � (1 +
c

n(x)
)−1[pn(x) +

c

2
n(x)

−
√

cpn(x)(1−pn(x))
n(x)

+
c2

4
n(x)2]. (6)

Since pn(x) can asymptotically approach p(x) when in-
creasing n(x), we take p̂n(x) as a lower bound estimate of
p(x),

p̂n(x) = pn(x) − u1−α
2

√
pn(x)(1 − pn(x))

n(x)
. (7)

This way, in order to find the optimal reliable solution(s)
to problem Pα, we only need to consider the following ap-
proximation problem (Pn

α )
min
x∈D

μn(x)(f)

s.t. p̂n(x) � 1 − α, g(x) � 0, h(x) = 0,

where μn(x)(f) denotes the the empirically average objec-
tive value at the point x attached sample size n(x). Mean-
while, x is said to be an empirically reliable candidate so-
lution, if it satisfies the above constraints. Notice that if
n(x) = M for all x ∈ D, i.e., all candidate solutions are
attached the same sample size M , Pn

α is a conventional ap-
proximation problem of Pα [15]. In this paper, we require
that n(x) depend on x.
4.2 Adaptive sampling

Because of random factors, it is easy to deem inferior
candidate solutions as superior ones during the solution pro-
cess, and as a result the optimized quality is influenced seri-
ously. Therefore, in order to acquire an approximate optimal
reliable solution to the above JCCP problem, we in this pa-
per require that the sample size of each candidate solution
be determined dynamically. To this point, let X be a given
population with size N . Assume that all empirical values
for elements in X at the (n− 1)th moment, i.e., empirically
average values and empirical constraint violations related to
equation (1), are known. Let Mn be the total of samples for
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all elements in X at the nth moment given by

Mn = round(m0N
√

1 + n), (8)
where round(v) is the maximal integer not beyond v; m0 is
a fixed integer taking 3 in this paper. Based on Definition 1,
assume that d(x) represents the number of individuals in X
empirically dominated by x with x ∈ X , and accordingly,

d(x) = |{y|x ≺ y,y ∈ X}|. (9)
We easily know that d(x) > d(y), if y is empirically dom-
inated by x. Especially, if all elements in X are empirically
reliable, the best candidate solution will get the largest dom-
inance number. Based on such consideration, the sample
size of candidate x in X is updated by

n(x) = round(
Mnd(x)∑
y∈X

d(y)
). (10)

Obviously, the total of sample sizes for elements in X is
not beyond Mn; in addition, we know that n(x) > n(y) if
x ≺ y with x,y ∈ X .

As related to the design of equation (10), we easily obtain
the following property by means of the law of large numbers
and equations (6) and (7).

Lemma 1 If x ∈ D is a reliable candidate solution to
Pα satisfying p(x) > 1 − α, there exists N0(x) > 0 such
that, for n > N0(x), x is an empirically reliable candidate
solution to Pn

α .

5 Immune theory and algorithm description

5.1 Clonal selection principle

The clonal selection principle essentially describes a
learning process that B cells learn the invader and ulti-
mately eliminate it. When an organism is exposed to the
invader (antigen), a second signal from Th cells stimulates
the antigenic receptors of a B-cell to bind to such invader.
This makes those high-affinity B cells create some matured
plasma cells and memory ones through proliferation and so-
matic maturation. If such plasma cells are active, they se-
crete some antibodies neutralizing the triggering invader.
In addition, the memory cells will become long-lived ones.
Once the previous invader is found in the immune system,
these memory cells commence rapidly differentiating into
plasma cells capable of producing high-affinity antibodies.
Such theory includes three main immune metaphors [32].

A) Cell selection. Those B cells with high affinities to the
invader are chosen to change their pattern structures so that
better B cells can be found.

B) Clonal expansion. Those stimulated B cells proliferate
and differentiate into two different cell types. The plasma
cells replicate their clones with their clonal sizes propor-
tional to their affinities. The memory ones will live in the
immune system for a long time.

C) Hypermutation. During the clonal expansion, genetic
drift is introduced in the variable region. Occasionally, one
such change leads to an increase in the affinity of the lym-
phocytes. This process creates a variety of new B cells,
where the mutation probability of a B-cell is inversely pro-
portional to its affinity to the antigen. After so, some worse
clonal cells will encounter suppression.

By means of taking an analogy between the two processes
of the immune response and solving JCCP, it is not diffi-
cult to know that some biological inspirations are useful for

JCCP, because the task of such response is to create excel-
lent B cells capable of eliminating the invader, and the pur-
pose of handling JCCP is to find the optimal reliable solu-
tion. From the angle of engineering applications, the process
of the above response may be simply simulated to construct
our ASIA for JCCP.
5.2 Algorithm description

As associated with problem Pn
α in Section 4, a real-

encoded reliable antibody is viewed as an empirically reli-
able candidate solution in the sense of the given significance
level α; conversely, an empirically unreliable candidate so-
lution is regarded as a unreliable antibody. The antigen is
consistent with the problem itself. Our task is to find the best
antibody (i.e., the optimal reliable solution) through running
ASIA. In this paper, ASIA is composed of three main mod-
ules including adaptive sampling, dynamic proliferation and
adaptive mutation. Given an antibody population X , each
antibody’s affinity in X at the nth moment is designed as
follows:

aff(x)=

{
−μn(x)(f), Γ (x)=0,

affmin−N(N−R(X))Γ (x), otherwise,

(11)

where Γ (x) takes the empirical constraint violation of x
with sample size n(x), depending on equation (1); affmin

and R(X) are the minimal of affinities of all the reliable
antibodies and the number of such antibodies in X , respec-
tively. Especially, when all elements in X are unreliable,
affmin takes 0. Equation (11) indicates that the affinity of
each reliable antibody is larger than that of any unreliable
one. After so, ASIA is described as follows:

Step 1 Set n ← 1. Generate an initial population An of
N random antibodies, where each antibody is specified the
same sample size m0.

Step 2 Execute adaptive sampling on An, and evaluate
all the elements in An by equation (11).

Step 3 Perform dynamic proliferation on An, and cre-
ate a clonal population Bn.

Step 4 Carry out adaptive mutation on Bn, and obtain
population Cn.

Step 5 Combine Cn and An, and select N antibod-
ies with higher affinities to constitute the next population
An+1.

Step 6 If the termination criterion is not satisfied, set
n ← n + 1 and return Step 2; otherwise, end the procedure.

In the above algorithm, each antibody acquires a rea-
sonable sample size decided by its empirical reliability-
dominance number through equation (10). Steps 2–5 are a
loop of evolution which creates those excellent antibodies.
5.3 Immune operators

A) Dynamic proliferation. This mechanism first ranks de-
creasingly all elements in a given population X with size N ,
according to equation (11). Second, the clonal size of anti-
body x is decided by

l(x)= |{y|0�aff(x)−aff(y)�r(x),y ∈ X}|, (12)

where r(x) is a suppression radius index given by

r(x)=ν

√√√√ N

1+
∑

y∈X

(aff(x)−aff(y))2
, (13)
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with an adjustable parameter ν in (0, 1). Notice that an anti-
body cannot proliferate any clone if suppressed by some an-
tibody, where we say that y is suppressed by x with y �= x
if aff(y) is between aff(x) − r(x) and aff(x). Therefore,
all clones created by those survival antibodies constitute a
clonal population with size N .

Equations (12) and (13) hint that antibody x suppress
more antibodies if l(x) and r(x) are larger, and hence, pro-
liferate more clones. This helps those survival antibodies
maintain sufficient diversity.

B) Adaptive mutation. Let Y be a given clonal popula-
tion, and X be the corresponding parent population. All
clones in Y are mutated through the well-known polyno-
mial mutation. Their mutation probabilities are conversely
proportional to the affinities of their respective parents in
X , given by

pm(x) = 1 − β exp{−(
γ

1 + n
+ w(x))}, (14)

with 0 < β < 1 and γ > 1, where

w(x) =
max
y∈X

{aff(y)} − aff(x)

max
y∈X

{aff(y)} − min
y∈X

{aff(y)} . (15)

Thereafter, each of the clones mutated is allocated the same
sample size mn, and their empirical averages and constraint
violations are also calculated.

Note that when executing theoretical analysis, we require
that mn take the sample size of the best antibody in the cur-
rent population An. In practical applications, it takes a rela-
tive rational value, e.g., 30.

6 Computational complexity and conver-
gence

In this section, some theoretical results on ASIA are de-
rived, and their proofs are given in Appendix. Through the
above description of algorithm and the designs of immune
operators, ASIA’s computational complexity is decided by
Step 2. We obtain the following conclusion.

Theorem 1 The computational complexity in the worst
case is O(m0NI

√
n + N(J + K) + N2).

We next need to make the following assumption on Pα so
as to investigate ASIA’s convergence.

H1) O∗
α is nonempty and finite; p(x∗) > 1 − α for any

x∗ ∈ O∗
α.

As we know, ASIA can be considered as an evolution
chain: An → Bn → Cn → An+1. Through the description
of ASIA, An+1 only depends on the state of An, while the
mutation rate pm(x) as in equation (14) is dependent on n.
Therefore, {An}n�1 is a nonhomogeneous Markov chain.
Assume that the decision domain D as in Section 3 is a fi-
nite set, D = {x = (x1, x2, . . . , xp)|xi ∈ Pi, 1 � i � p},
where Pi is a set of ri equal division points in the inter-
val [ai, bi]. Let S represent the antibody space (i.e., reli-
able candidate solution space of Pα); SN stands for a state
space composed of antibody populations with sizes N , and
X ∈ SN is called a state with X = (X1, X2, . . . , XN ).
Pr{X → Y } denotes the probability which X is trans-
formed into Y through the adaptive mutation above with
Y ∈ SN . As associated to ASIA’s formulation, we acquire
the following properties.

Lemma 2 For X, Y ∈ SN , there exists δ, 0 < δ < 1,
such that Pr{X → Y } � δ.

Lemma 3 If the above hypothesis H1) holds, there ex-
ists N0 > 0 such that when n > N0, Pr{An+1 ∩ O∗

α =
∅|An ∩ O∗

α �= ∅} = 0.
Lemma 4 For the same δ and N0 above, Pr{An+1 ∩

O∗
α �= ∅|An ∩ O∗

α = ∅} � δ.
Theorem 2 If H1) holds, ASIA is convergent for any

initial population distribution, i.e.,

lim
n→∞Pr{An ∩ O∗

α �= ∅} = 1.

7 Numerical experiments
To examine ASIA’s performance, four kinds of algo-

rithms suitable for CCP, i.e., three representative approaches
of HPSO [17], SSGA-I and SSGA-II [18], as well as our
previous approach IOM [25], are chosen to compare with
it, relying upon the following three test problems of Exam-
ples 1–3. Our experiments are executed on a personal com-
puter with CPU/3 GHz and RMB/2 GB. Notice that SSGA-
I and SSGA-II are two recent similar approaches as men-
tioned in Section 1. Such two approaches share the same
fixed sample size for each individual, while their parame-
ter settings, except the fixed population size taking 40 af-
ter experimental tuning, are the same as those in the lit-
erature [18]. In addition, HPSO is a hybrid method which
integrates the BP neural network into a particle swarm op-
timization approach, where the network with 3000 train-
ing samples is utilized to evaluate individuals and to check
whether an individual is empirically reliable. In such ap-
proach, we designate the population size as 30, and other
parameter settings, except those of the network given by Ta-
ble 1 (I: input layer, H: hidden layer, O: output layer, LR:
learning rate, and LT: learning times), are the same as those
in [17]. In IOM, the settings of parameters are taken in [25].
In ASIA, we specify the size of population as 40, and also
take ν = 0.1, β = 0.98 and γ = 1.5 after also experimen-
tal tuning. Furthermore, these five algorithms are required
to execute respectively 30 single runs on each test problem,
and their same termination criterion is that the total of evalu-
ations during the solution process is 1.5×105. Furthermore,
after solving all the test problems, we re-evaluate 3 × 105

times for the resultant solutions obtained by the algorithms,
and the resultant empirical values are taken as the theoreti-
cal values of the solutions.

Table 1 Parameter settings of BP network.

Example I H O LR LT

1 9 17 2 0.13 1
2 2 18 2 0.65 30
3 3 20 2 0.35 20

Example 1 (Open storage networks) [2]

min E[η +
9∑

i=1

|xi|]
s.t.

Pr

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

10�70−
4∑

i=1

xi+ξ1 �120,

20�80+x2−x5−x6+ξ2 �100,

10�60+x3−x7−x8+ξ3 �80,

0�50+x4+x6+x8−x9+ξ4 �90

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

� 0.9,

10 � x1 � 50, 0 � x2 � 10, 0 � x3 � 10,
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0 � x4 � 15, 15 � x5 � 60, −5 � x6 � 5,

15 � x7 � 60, − 5 � x8 � 5, 20 � x9 � 70,

ξ1 ∼ log N(2.24, 1.12), ξ2 ∼ log N(1.60, 1.28),
ξ3 ∼ log N(1.87, 1.45), ξ4 ∼ log N(1.30, 1.34),
η ∼ N(0, 2).

This is a nine-dimensional nonlinear JCCP problem with
significance level 10%. The main difficulty in solving it is
that the optimized quality is influenced seriously by four
logarithmically normally distributed random variables of ξ1,
ξ2, ξ3 and ξ4. Hence, solving such problem becomes diffi-
cult. After solving such problem, the statistical results ob-
tained by the five approaches can be found in Table 2 (CI:
confidence interval, AV: average of constraint violations,
and AR: average runtime), and the average searching curves
acquired by them are drawn in Fig. 1 (a). Note that the fol-
lowing figures are plotted through logarithm coordinates,
because different algorithms have different maximal itera-

tive numbers under the same maximal evaluation number
(1.5 × 105). Through Fig. 1 (a) and the statistical values in
Table 2, we can draw the following conclusions.

A) Optimized quality. The column on AV listed in Table 2
for this example shows that IOM and ASIA can obtain their
respective reliable solutions during each single execution;
other three approaches can only find some unreliable solu-
tions after some executions. Therefore, the three approaches
cannot compare with IOM and ASIA from the angle of solu-
tion quality. Through the values on mean, best, worst, stan-
dard deviation and AV, we can make a conclusion that ASIA
can acquire the best average effect, while presenting stable
average searching performance because of the small vari-
ance 3.307; IOM is secondary, even if it gets the maximal
average value (147.552). SSGA-I and SSGA-II have sim-
ilar effects, and HPSO works globally well over such two
approaches.

Table 2 Comparison of statistical results for Example 1.

Algorithm Best Worst Mean Standard deviation CI AV AR/s

HPSO 64.085 109.347 73.883 10.476 [71.431, 76.335] 0.047 16.32
SSGA-I 61.592 73.436 64.6927 2.734 [64.053, 65.333] 0.053 53.271
SSGA-II 61.898 67.721 64.420 1.659 [64.032, 64.808] 0.053 53.129

IOM 129.973 180.823 147.552 12.268 [144.680, 150.423] 0 26.199
ASIA 108.948 123.329 118.511 3.307 [117.737, 119.286] 0 17.692

Fig. 1 Comparison on average searching curves for Examples 1
and 2. (a) Example 1. (b) Example 2.

HPSO only causes a relatively small average constraint
violation, but it results in instable searching performance,

due to a large variance (10.476). This hints that the training
sample size directly influences the prediction ability of the
BP network. Although SSGA-I and SSGA-II can only gain
their inferior solution qualities, they have stable searching
characteristics, because of small variances. This illustrates
that a fixed sample size strategy helps SSGA-I and SSGA-
II achieve stable searching behaviors. We also see that, de-
spite of strong noises as in the above problem, ASIA can
effectively urge the scheme of adaptive sampling to differ-
entiate reliable and unreliable solutions, and thus enhance
the ability of noisy suppression. In addition, the column on
CI illustrates that the values on Mean acquired by the five
algorithms belong to their respective confidence intervals
with the same confidence level 90%. These intervals reveal
some attributes of such approaches; namely, ASIA can get
a narrow confidence interval, and thus converge to a desired
approximate optimal reliable solution (see Fig. 1 (a)). No-
tice that, through such figure, it seems that HPSO, SSGA-I
and SSGA-II have better searching performances than IOM
and ASIA, because their searching curves are under those
obtained by the latter two approaches when the iterative
number becomes large. In fact, the former three approaches
get early into local search, and can only find unreliable so-
lutions.

B) Execution efficiency. Through the values on AR listed
on the right side in Table 2, we know that HPSO spends a
bit less time to solve the above problem than ASIA, but the
average runtime demanded by the latter one is less than that
spent by each of the other three approaches; namely, the av-
erage runtime of ASIA is at most 41% of that consumed by
each of SSGA-I and SSGA-II, and 75% of that required by
IOM.
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Therefore, ASIA is effective and efficient for the above
example; IOM is secondary, even if it has a lower efficiency
than HPSO. Furthermore, we observe that HPSO is a static
sampling approach, as it requires that the BP neural net-
work be trained with 3000 samples before executing the op-
timization loop. Although it is efficient by comparison with
SSGA-I, SSGA-II and IOM, it appears instable searching
performance; SSGA-I and SSGA-II as static sampling op-
timization approaches have stable searching performances,
but can only obtain some worse effects than HPSO. The
above experimental results show that ASIA and IOM are
indeed superior to other three optimization approaches, and
meanwhile adaptive sampling is a more useful tool than
static sampling.

Example 2 (Oil production planning) [2]

min E[η + 2x1 + 3x2]
s.t.

Pr

{
(2 + ξ1)x1 + 6x2 � 180 + ξ3,

3x1 + (3.4 − ξ2)x2 � 162 + ξ4

}
� 0.8,

x1 + x2 � 100, x1 � 0, x2 � 0,

ξ1 ∼ U(−0.8, 0.8), ξ2 ∼ exp(0.4),
ξ3 ∼ N(0, 12), ξ4 ∼ N(0, 9), η ∼ N(0, 2).

Although this is a low-dimensional linear JCCP problem,
the random variables ξ1 and ξ2 make sure that it is difficult
to transform this problem into an analytically determinis-
tic optimization problem. Moreover, the noisy intensity im-
poses the difficulty of solving such problem. Like the above
experiment in Example 1, we acquire the statistical results

in Table 3 and the average searching curves in Fig. 1 (b).
The values on mean, best, worst, standard deviation and

AV in Table 3 show that for Example 2, IOM can find re-
liable solutions during each execution, but appears instable
searching performance. Although ASIA can only find ap-
proximate solutions with extremely small constraint viola-
tions, it presents satisfactory performance, due to a small
variance value (0.566). Whereas HPSO only causes the
small average constraint violation relative to those caused
by SSGA-I and SSGA-II, its solution quality during each
execution is extremely instable, due to its large average vari-
ance (12.763). Relatively, it is superior to either SSGA-I
or SSGA-II. Furthermore, we also note that SSGA-II and
ASIA can all gain the narrow confidence intervals, but they
expose different properties; in other words, Fig. 1 (b) in-
dicates that ASIA is globally convergent and SSGA-II is
locally convergent. Summarily, IOM can get the best ef-
fect, but it is instable; ASIA has stable searching perfor-
mance, but it can only find approximate solutions; HPSO
is instable, but it only causes the smaller constraint vio-
lation than either SSGA-I or SSGA-II. We also note that,
although SSGA-I and SSGA-II appear stable searching be-
haviors, they present large constraint violations.

Through the values on AR in Table 3, the average run-
time consumed by ASIA is at most 41% of that required
by SSGA-I and SSGA-II, and about 74% of that spent by
each of IOM; meanwhile, HPSO and ASIA have similar
performance efficiencies. Therefore, with the aspect of exe-
cution efficiency, we can make the same conclusion as that
acquired in Example 1.

Table 3 Comparison of statistical results for Example 2.

Algorithm Best Worst Mean Standard deviation CI AV AR/s

HPSO 149.036 192.043 166.933 12.763 [164.971, 168.895] 0.0014 13.264
SSGA-I 142.069 155.298 144.281 3.128 [143.800, 144.762] 0.0927 37.889
SSGA-II 141.832 143.488 142.596 0.441 [142.529, 142.664] 0.0949 37.865

IOM 147.482 161.437 152.98 3.802 [152.396, 153.565] 0 20.494
ASIA 145.986 148.632 147.616 0.566 [147.529, 147.703] 0.0005 15.251

Example 3 (Multimodal function optimization) [31]

max E[η +
3∑

k=1

xk sin(kπxk)]

s.t.

Pr

{
ξ1x1 + ξ2x2 + ξ3x3 − 10 � 0,

ς1x
2
1 + ς2x

2
2 + ς3x

2
3 − 100 � 0,

}
� 0.7,

ξ1 ∼ U(0.8, 1.2), ξ2 ∼ U(1, 1.3),
ξ3 ∼ U(0.8, 1.0), ς1 ∼ N(1, 0.5),
ς2 ∼ exp(1.2), ς3 ∼ log N(0.8, 0.6), η ∼ N(0, 2).

This is a three-dimensional, multimodal nonlinear JCCP
problem. The main difficulty in finding the desired optimal
reliable solution is that such problem includes many ran-
dom variables with different distributions. These random
variables seriously influence the process of identification
whether a candidate is reliable or not. Like the above exper-
iments, after the above five algorithms are applied to such
example with respectively 30 single runs, we acquire the
statistical results given in Table 4 and the average searching

curves drawn in Fig. 2.
We know that the conclusion on performance effect for

IOM and ASIA is the same as that obtained in Example 1.
In other words, such two approaches can all find reliable so-
lutions in any single run, but their effects are different. Ob-
viously, ASIA has the better effect than IOM. Surprisedly,
SSGA-I and SSGA-II are superior to HPSO because of their
small constraint violations and variances, which is different
from the conclusions presented in the experiments as Ex-
amples 1 and 2. The values on Mean hint that HPSO gets
easily into local search. Furthermore, the confidence inter-
vals acquired by the five approaches, together with the val-
ues on Mean and AV, show clearly that ASIA can converge
to the global optimal reliable solution but other approaches
can only be locally convergent, which can also be illustrated
by Fig. 2. Through the values on AR in Table 4, we know
that ASIA and HPSO need almost the same runtime to solve
the problem. They have the same higher performance effi-
ciency than any of other approaches. the average runtime
consumed by ASIA is at most 35% of that required by ei-
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ther SSGA-I or SSGA-II and at most 85% of that spent by
IOM.

Totally, when solving each of the above problems, ASIA
can obtain the best effect with high efficiency; IOM can get
the better effect than each of other approaches, but presents
somewhat low efficiency. HPSO has the better effect than
SSGA-I and SSGA-II, but appears instable performance.

Whereas SSGA-I and SSGA-II can only find inferior so-
lutions with low efficiencies for Examples 1 and 2, but
they have stable searching performances. In addition, all the
above experimental results also illustrate that adaptive sam-
pling is available for CCP problems, because it can make an
optimization loop find valuable candidate solutions as fast
as possible.

Table 4 Comparison of statistical results for Example 3.

Algorithm Best Worst Mean Standard deviation CI AV AR/s

HPSO 1.992 −0.787 0.124 0.473 [0.079, 0.169] 0.0112 15.967
SSGA-I 9.581 8.320 9.101 0.331 [9.069, 9.133] 0.0064 45.717
SSGA-II 9.575 8.396 9.062 0.276 [9.035, 9.089] 0.0045 45.781

IOM 9.245 6.957 8.456 0.627 [8.396, 8.516] 0 18.813
ASIA 8.919 7.499 8.598 0.338 [8.566, 8.631] 0 15.934

Fig. 2 Comparison on convergent curves for Example 3.

8 Conclusions

Stochastic optimization is an extremely challenging and
active research topic in the field of optimization. We in
this work make efforts to present a bio-inspired adaptive
sampling immune algorithm for linear or nonlinear JCCP
with a general distribution of the random vector. The fo-
cus for such approach is concentrated on how to estimate
the joint chance constraint and to develop one scheme of
sample allocation as well as immune evolution modules,
and meanwhile we also concentrate on studying ASIA’s
computational complexity and convergence. Based on the
central limit theorem, we acquire an a priori lower bound
estimate for the probability displayed in the joint chance
constraint. One such estimation, together with the concept
of reliability-dominance, is utilized to help the proposed
scheme of adaptive sampling decide sample sizes of differ-
ent antibodies. These assist the immune modules to create
valuable antibodies. Despite of strong noises presented in
JCCP problems, such approach can effectively differenti-
ate superior and inferior antibodies, and acquire the high-
quality solution. It also reveals some excellent properties
such as strong noise suppression, rapid evolution and con-
vergence. The theoretical results demonstrate that ASIA
is globally convergent. Our fundamental experiments, by
comparison with those acquired by the four compared ap-
proaches, show that the proposed algorithm is an alternative

JCCP optimizer which performs globally well over other
approaches compared.
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Appendix

Proof of Theorem 1 For a given antibody population An with
size N and population sample size Mn, each antibody x in An

needs to compute and compare an(x) times through equations (1),

(7) and (11), where an(x) = n(x)(I + 2) + J + K + 1. Thus,
Step 1 evaluate Nan(x) times. In Step 2, equation (9) indicates
that An is required to execute antibody comparison with N2 times
and compute N times for deciding sample sizes of elements in An

through equation (10), and hence, the total of computations and
comparisons in Step 2 is as follows:

bn =
P

x∈An

an(x) + N2 + N

= Mn(I + 2) + N(J + K + 2) + N2. (a1)
In Step 3, dynamic proliferation needs at most 2N times to exe-
cute computation and population division through equations (12)
and (13). In Step 4, we need at most cn times to evaluate new
antibodies and N times to calculate nutation probabilities, where
cn = N(mn(I + 2) + J + K + 1). Summarily, ASIA’s compu-
tational complexity in the worst case is decided through

dn = Nan(x) + bn + cn + N = N [(m0 + mn)(I + 2)

+3(J + K) + 4] + Mn(I + 2) + N2. (a2)
Since mn � Mn in practical applications, it follows from equa-
tions (8) and (17) that

dn � N [(m0 + mn)(I + 2) + 3(J + K) + 4]

+m0N
√

1 + n(I + 2) + N2

= O(m0NI
√

n + N(J + K) + N2). (a3)

Proof of Lemma 2 Write x = (x1, x2, . . . , xp), y =
(y1, y2, . . . , yp), X = (X1, X2, . . . , XN ) and Y =
(Y1, Y2, . . . , YN ). Through the definition of the polynomial mu-
tation, if xi is mutated into yi, we acquire

yi = xi + diΔi, (a4)

di =

(
(2w)

1
1+η − 1, if w � 0.5,

1 − [2(1 − w)]
1

1+η , if w > 0.5,
(a5)

with η > 0 and Δi = [ai bi], where w is supposed to be a dis-
crete random variable with uniform distribution on the set of equal
division points in the interval [0, 1]. If xi � yi, it follows that

Pr{xi → yi} =
1

2
Pr{w =

1

2
(1 +

yi − xi

bi − ai
)1+η}

=
1

2m(ai, xi)
� 1

2ri
, (a6)

where Pr{xi → yi} and m(ai, xi) are the transformation proba-
bility from xi to yi and the number of points between ai and xi in
Pi, respectively. Similarly, if xi < yi, we can obtain

Pr{xi → yi} =
1

2
Pr{w = 1 − 1

2
(1 − yi − xi

bi − ai
)1+η}

=
1

2m(xi, bi)
� 1

2ri
. (a7)

Thereby, as associated to the design of the mutation rate of pm(x),
the transformation probability Pr{x → y} from x to y is given
by

Pr{x → y} =
pQ

i=1

Pr{xi → yi}

� δ1 ≡ 1

{max{2ri}}p
> 0. (a8)

Hence, for X, Y ∈ SN , it follows from equation (a8) that

Pr{X → Y } =
NQ

i=1

pm(Xi) Pr{Xi → Yi}

� δ ≡ [δ1(1 − β)]N > 0. (a9)
In this way, the proof is completed.

Proof of Lemma 3 Through hypothesis H1) and Lemma 1,
there exists N0 > 0 such that when n > N0, each element x∗

in O∗
α is feasible in P n

α . Therefore, for n > N0, if x∗ ∈ An, x∗

is a feasible candidate of P n
α , and hence, we have that aff(x∗) �

aff(x) with x ∈ An by the law of large number, that is, x∗ is
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best in An. Furthermore, if there exists some element x in Cn as
in Step 4 of ASIA which is not inferior to x∗, x must be a fea-
sible candidate of P n

α because mn > N0, and hence, x must be
an optimal reliable solution to Pα. Summarily, when n > N0, we
have that An+1 ∩ O∗

α �= ∅ if An ∩ O∗
α �= ∅. This shows that the

conclusion is true.
Proof of Lemma 4 Let An = X and An+1 = Y with

X ∩O∗
α = ∅ and Y ⊆ O∗

α. Since the operation of proliferation in
Step 3 is deterministic, there exists a unique state Z0 ∈ SN such
that Pr{Bn = Z0|An = X} = 1. Hence, through K-C equation,
it derives that

Pr{An+1 = Y |An = X}
=

P
Z∈SN

Pr{Cn = Z|Bn = Z0}Pr{An+1 = Y |Cn = Z}.

(a10)
Furthermore, through Step 5 and the proof of Lemma 3, there ex-
ists N0 > 0 such that Pr{An+1 = Y |Cn = Y } = 1, and accord-
ingly Lemma 2 and equation (a10) imply

Pr{An+1 = Y |An = X}
= Pr{Cn = Y |Bn = Z0} � δ. (a11)

Consequently, we obtain
Pr{An+1 ∩ O∗

α �= ∅|An ∩ O∗
α = ∅}

� Pr{An+1 = Y |An = X} � δ. (a12)

Proof of Theorem 2 For the same N0 as in Lemma 3, Lem-
mas 2 and 3 imply

Pr{An+1 ∩ O∗
α = ∅}

= Pr{An+1 ∩ O∗
α =∅|An∩O∗

α =∅}Pr{An∩O∗
α =∅}

+Pr{An+1∩O∗
α =∅|An∩O∗

α �= ∅}Pr{An∩O∗
α �=∅}

� (1 − δ) Pr{An ∩ O∗
α =∅}. (a13)

Furthermore, by induction, it follows from equation (a13) that

Pr{An ∩ O∗
α = ∅} � (1 − δ)n−N0 . (a14)

Thus, the conclusion is true.
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