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Second-order terminal sliding mode control for
hypersonic vehicle in cruising flight with sliding

mode disturbance observer
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Abstract: This paper focuses on the design of nonlinear robust controller and disturbance observer for the longitudinal
dynamics of a hypersonic vehicle (HSV) in the presence of parameter uncertainties and external disturbances. First, by
combining terminal sliding mode control (TSMC) and second-order sliding mode control (SOSMC) approach, the second-
order terminal sliding control (2TSMC) is proposed for the velocity and altitude tracking control of the HSV. The 2TSMC
possesses the merits of both TSMC and SOSMC, which can provide fast convergence, continuous control law and high-
tracking precision. Then, in order to increase the robustness of the control system and improve the control performance,
the sliding mode disturbance observer (SMDO) is presented. The closed-loop stability is analyzed using the Lyapunov
technique. Finally, simulation results illustrate the effectiveness of the proposed method, as well as the improved overall
performance over the conventional sliding mode control (SMC).

Keywords: Hypersonic vehicle; Second-order sliding mode control; Terminal sliding mode control; Sliding mode
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1 Introduction

The flight control design of the hypersonic vehicle (HSV)
is a significant challenge due to the particular character-
istics of its dynamics. Airframe/engine integrated design
leads to strong coupling between the propulsion system, the
structural dynamics and the airframe. High Mach numbers
and altitude make the flight control extremely sensitive to
changes in atmospheric conditions as well as physical and
aerodynamic parameters. As a result, HSV is a highly non-
linear, strongly coupling, uncertain system. Several nonlin-
ear controllers have been presented in the literatures for the
tracking control of the HSV. A backstepping control ap-
proach was used by [1–2] to design nonlinear controllers
to achieve good-tracking performance. In [3–4], neural net-
work technique was used to develop nonlinear adaptive
controllers. The proposed neural adaptive controllers can
guarantee the stability of the closed-loop system under pa-
rameter uncertainties. Durmaz [5] designed a sliding mode
controller with adaptive sliding surfaces which was robust
to external disturbances. In addition, some nonlinear con-
trol strategies based on input-output linearization technique
have been proposed to design tracking control systems, such
as sliding mode control [6–9], dynamic inversion control
[10].

Among these control approaches, SMC attracts extensive
attention due to its simplicity and robustness to parame-
ter uncertainties and external disturbances. However, there
are also some disadvantages in SMC. The first is the well-

known chattering phenomenon which can be harmful to the
actuators. Especially, when large parameter uncertainties or
external disturbances appear, chattering will be aggravated.
In order to alleviate chattering, a boundary layer approach is
usually adopted [6–8]. However, this implies a small dete-
rioration in accuracy and robustness. The second is that the
convergence rate of conventional SMC with a linear sliding
surface is relatively slow. By contrast, TSMC has some su-
perior properties such as fast, finite time convergence and
higher-tracking precision [11]. Therefore, a terminal slid-
ing mode controller in [9] was proposed to achieve fast-
tracking control for the HSV. Moreover, chattering still ex-
ists in TSMC.

In order to eliminate chattering and improve convergence
rate, motivated by Feng’s work [11–12], we combine TSMC
with SOSMC to design the 2TSMC for the tracking con-
trol of the HSV longitudinal dynamic model. 2TSMC owns
the common advantages of TSMC and SOSMC, which not
only eliminates chattering, but also speeds up system con-
vergence and improves tracking precision.

Anyway, there is still the reaching phase problem in
SMC. That is to say, SMC’s robustness is invalid during the
reaching phase, which also exists in 2TSMC. To solve this
problem, the SMDO is presented to compensate for param-
eter uncertainties and external disturbances and increase the
robustness of the control system. Thus, the whole phase in-
cluding reaching phase and sliding phase possesses robust-
ness.
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Moreover, most of studies for the longitudinal model
of the HSV only consider parameter uncertainties, such
as [6–10]. Few consider external disturbances except [5],
which actually exist due to rigorous atmospheric conditions.
However, the study in [5] does not involve the parameter
uncertainties. Therefore, it is significative that both parame-
ter uncertainties and external disturbances are considered to
design a control system with satisfied performance.

For the above analysis, we propose a second-order termi-
nal sliding mode controller with SMDO for the longitudinal
model of the HSV under parameter uncertainties and exter-
nal disturbances. The proposed method provides a continu-
ous control input and achieves fast convergence and robust
tracking performance. Compared with conventional SMC,
our method has a better control performance.

2 Problem formulation

2.1 Hypersonic vehicle model

Consider the longitudinal dynamic model of a hypersonic
vehicle developed by NASA Langley Research Center [6].
The differential equations are given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇ =
T cos α − D

m
− μ sin γ

r2
,

γ̇ =
L + T sin α

mV
− (μ − V 2r) cos γ

V r2
,

ḣ = V sin γ,

α̇ = q − γ̇,

q̇ =
Myy

Iyy
,

(1)

where V, γ, h, α, q represent the vehicle’s velocity, flight
path angle, altitude, angle of attack and pitch rate, respec-
tively. m, Iyy, r represent the mass of vehicle, moment of
inertia and the radial distance from center of the earth,
respectively. T, D, L, Myy represent thrust, drag, lift and
pitching moment, respectively.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L = 0.5ρV 2SCL,

D = 0.5ρV 2SCD,

T = 0.5ρV 2SCT ,

Myy = 0.5ρV 2Sc̄[CM(α) + CM(δe) + CM(q)],
r = h + RE,

(2)

where ρ is the density; S is the reference area, δe is eleva-
tor deflection; and CT , CL, CD, CM are the corresponding
force and moment coefficients, respectively.

The engine dynamics are modeled by the following
second-order system:

β̈ = −2ξwnβ̇ − w2
nβ + w2

nβc.

The control inputs are throttle settings βc and the elevator
deflection δe; and the outputs are the velocity V and the al-
titude h, i.e., u = [βc δe]T, y = [V h]T.
2.2 Parameter uncertainties and external disturbances

Because the variability of the vehicle characteristics with
flight conditions (such as fuel consumption, uncertain at-
mosphere), significant parameter uncertainties and external
disturbances affect the vehicle model.

Parameter uncertainties are taken into account the same

as [6], which are adopted as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m = m0(1 + Δm), Iyy = I0(1 + ΔIyy),
S = S0(1 + ΔS), c̄ = c̄0(1 + Δc̄),
ce = ce0(1 + Δce), ρ = ρ0(1 + Δρ),
|Δm| � 0.03, |ΔIyy| � 0.02, |ΔS| � 0.03,

|Δc̄| � 0.02, |Δρ| � 0.03, |Δce| � 0.02,

(3)

where m0, I0, S0, c̄0, ce, ρ0 are nominal values.
For external disturbances, we only consider wind distur-

bance similar as [5]. Wind disturbance affects the related
aerodynamic coefficients by changing the angle of attack of
the vehicle relative to the wind. It is assumed that the dis-
turbance effect is additive and affects only the aerodynamic
coefficients about the angle of attack. The additional distur-
bance terms are given below:

CLw = 0.6203Δαw,

CDw = 0.6405Δα2
w + 0.0043378Δαw + 0.003772,

CMw = −0.035Δα2
w + 0.036617Δαw + 5.3261×10−6.

Here, Δαw is the additional angle of attack and equal to the
difference between the vehicle angle of attack α and the an-
gle of attack relative to the wind αw.The additional angle of
attack is assumed to be a fluctuating variable around its non
zero mean value, which is expressed as follows:

Δαw = −0.25◦ + 0.025◦(sin t) + sin(
√

3t) + sin(
√

5t).

The lift and drag forces and the pitching moment, rep-
resented by equation (2), are affected by wind disturbance
through the additional angle of attack. That is to say, addi-
tional lift, drag forces and pitching moment are expressed
as follows: ⎧⎪⎨

⎪⎩
Lw = 0.5ρV 2SCLw,

Dw = 0.5ρV 2SCDw,

Myyw = 0.5ρV 2Sc̄CMw.

(4)

The aim of control design is to track the velocity and al-
titude commands yd = [Vd hd]T and achieve good perfor-
mance under the above-mentioned parameter uncertainties
and external disturbances.

3 Input-output linearization

To facilitate the control design, the input-output lin-
earization technique is applied to transform the longitudinal
model of the HSV into the affine form [6], as follows:{

V (3) =fv + Δfv + (b11 + Δb11)βc + (b12 + Δb12)δe,

h(4) =fh + Δfh + (b21 + Δb21)βc + (b22 + Δb22)δe,

(5)
where fv, fh, b11, b12, b21, b22 are defined as

fv =
w1ẍ0 + ẋΩ2ẋ

m
,

fh = 3V̈ γ̇ cos γ − 3V̇ γ̇2 sin γ + 3V̇ γ̈ cos γ − 3V γ̇γ̈ sin γ

−V γ̇3 cos γ + (w1ẋ0 + xΩ2ẋ)
sin γ

m
+V cos γ(π1Ẍ0 + ẊTΠ2Ẋ),

b11 = [ρV 2Scβ
w2

n

2
m] cos α,

b12 =−(ceρV 2S
c̄

2
mIyy)(T sin α + Da),
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b21 = (ρV 2Scβ
w2

n

2
m) sin(a + γ),

b22 = (ceρV 2S
c̄

2
mIyy)[T cos(α + γ) + La cos γ

−Da sin γ],
where Δfv,Δfh,Δb11,Δb12,Δb21,Δb22 are bounded un-
certain terms induced by parameter uncertainties and exter-
nal disturbances. For convenience, we define Δ1, Δ2 as the
lumped uncertainties Δ1 = Δfv +Δb11βc +Δb12δe, Δ2 =
Δfh + Δb21βc + Δb22δe.The unknown lumped uncertain-
ties are assumed bounded, i.e., |Δi| � Li, Li is a positive
constant (i = 1, 2).

4 Control design

In this section, we develop a robust control approach
based on the combination of 2TSMC and SMDO. The con-
trol design consists of the following steps.

The first step is to develop the 2TSMC to achieve robust
tracking of the velocity and altitude commands. The sec-
ond is to design the SMDO to increase the robustness of the
control system and improve control performance.
4.1 Second-order terminal sliding mode controller

First, two linear sliding surfaces are defined respectively
as ⎧⎨

⎩
s1 = ė1 + λ1e1, e1 = V − Vd,

s2 = (
d
dt

+ λ2)2e2, e2 = h − hd,
(6)

where λ1, λ2 > 0, Vd , hd are the velocity and altitude com-
mands.

Next, two terminal sliding surfaces are chosen respec-
tively as [13] to guarantee the sliding surfaces s1, s2 con-
verge to zero in finite time and achieve the second-order
sliding mode control.

σi = ṡi + βisg(si)γi , i = 1, 2, (7)
where βi > 0, 0.5 < γi < 1, sg(si)γi = |si|γi sgn si.

Furthermore, select the following continuous terminal
sliding mode type reaching law [13] to enhance finite-time
reaching phase and achieve continuous control:

σ̇i = −ki1σi − ki2sg(σi)pi , i = 1, 2, (8)
where ki1, ki2 > 0, 0 < pi < 1.

By designing an appropriate controller, the reaching law
(8) can drive terminal sliding surfaces (7) to zero in finite
time. Assume that tri is the time when σi reaches zero from
σi(0) �= 0. Solving the differential equation (8) analytically,
we can obtain the finite time tri.

tri =
ln(1 + ki1

ki2
|σi(0)|1−pi)

k1(1 − pi)
, i = 1, 2.

Then, σi = 0, t � tri and the system dynamics is deter-
mined by ṡi + βisg(si)γi = 0, i = 1, 2. Similarly, we
also can get the finite time tsi which is taken to travel from
s(tri) �= 0 to s(tri + tsi) = 0.

tsi =
|si(tri)|1−γi

βi(1 − γi)
, i = 1, 2.

As a result, the second-order sliding mode control is re-
alized for si. Both si and ṡi reach zero in finite time and the
system will stay on the sliding mode si = ṡi = 0. After

sliding surface si reaches zero, the errors ei will converge
to zero asymptotically according to (6).

According to the above analysis, we consider the second
time derivatives of s1, s2.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s̈1 = e
(3)
1 + λ1ë1

= −V
(3)
d + fv + λ1ë1 + Δ1 + b11βc + b12δe,

s̈2 = e
(4)
2 + 2λ2e

(3)
2 + λ2

2ë2

= −h
(4)
d + fh + 2λ2e

(3)
2 + λ2

2ë2 + Δ2 + b21βc

+b22δe.

(9)

By differentiating the sliding variable σ1 and σ2 with re-
spect to time, we have{

σ̇1 = s̈1 + β1γ1 |s1|γ1−1
ṡ1,

σ̇2 = s̈2 + β2γ2 |s2|γ2−1
ṡ2.

(10)

Substituting (9) into (10), we obtain[
σ̇1

σ̇2

]
=

[
ϕ1

ϕ2

]
+

[
Δ1

Δ2

]
+

[
b11 b12

b21 b22

][
βc

δe

]
, (11)

ϕ1 = −V
(3)
d + fv + λ1ë1 + β1γ1 |s1|γ1−1

ṡ1,

ϕ2 = −h
(4)
d + fh + 2λ2e

(3)
2 + λ2

2ë2 + β2γ2 |s2|γ2−1
ṡ2.

From (8) and (11), the second-order terminal sliding
mode controller can be designed as

u = B−1

[
−ϕ1 − k11σ1 − k12sg(σ1)p1

−ϕ2 − k21σ2 − k22sg(σ2)p2

]

−B−1

[
Δ1

Δ2

]
= u0 − B−1Δ, (12)

where B =

[
b11 b12

b21 b22

]
, Δ = [Δ1 Δ2]T, and

u0 = B−1

[
−ϕ1 − k11σ1 − k12sg(σ1)p1

−ϕ2 − k21σ2 − k22sg(σ2)p2

]

denotes the control law for the nominal system of the longi-
tudinal model. Δ is unknown and not available in general.
In order to increase the robustness of the controller and im-
prove control performance, the SMDO is proposed to esti-
mate the uncertain terms.

It can be seen from (11) that ϕi contains the term
|si|γi−1

ṡi which has negative fractional power γi − 1, and
so the singularity may occur if si = 0 and ṡi �= 0. However,
once the system enters the sliding mode, this situation will
never occur because σi = 0 leads to ṡi = −βi |si|γi sgn si

and then |si|γi−1
ṡi = −βi |si|2γi−1 sgn si; and it is easy

to be concluded that if γi is chosen as 0.5 < γi < 1,
the term −βi |si|2ri−1 sgn si will be nonsingular. Therefore,
the singularity may only occur during the reaching phase
(i = 1, 2).

To solve the singularity problem, the approach proposed
in [14] is used.

Define a new variable s̄i as

s̄i =

⎧⎪⎨
⎪⎩

|si|γi−1
ṡi, if si �= 0 and ṡi �= 0,

|δ|γi−1
ṡi, if si = 0 and ṡi �= 0,

0, if si = 0 and ṡi = 0,

i = 1, 2,

where δ is a small positive constant.
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Thus, ϕ1 and ϕ2 can be rewritten as

ϕ1 = −V
(3)
d + fv + λ1ë1 + β1γ1s̄1,

ϕ2 = −h
(4)
d + fh + 2λ2e

(3)
2 + λ2

2ë2 + β2γ2s̄2.

As a result, the singularity is avoided in control design.
4.2 Sliding mode disturbance observer

The SMDO is an effective method to compensate for pa-
rameter uncertainties and external disturbances which has
some advantages such as finite time estimation, low compu-
tation effort and simple structure [15–16].

Because control inputs βc, δe on the right hand side of
(11) are cross coupling to the sliding variables σ1 and σ2,
so a new control variable is introduced to eliminate the cou-
pling: ū = Bu. Then, (11) can be rewritten as

σ̇i = ϕi + Δi + ūi, i = 1, 2. (13)
In order to design the SMDO to estimate uncertain term Δi

The auxiliary sliding variables are introduced:{
li = σi + zi,

żi = −ϕi − ūi − vi,
i = 1, 2, (14)

where li and zi are auxiliary sliding variable and intermedi-
ate variable, respectively. vi is auxiliary sliding mode con-
trol.

By differentiating li with respect to time, we have
l̇i = σ̇i + żi = Δi − vi, i = 1, 2. (15)

Then, we design auxiliary sliding mode control vi to stabi-
lize the sliding variable li to zero

vi = wisgn li, wi > Li + ηi, ηi > 0. (16)
It is easy to verify that sliding variable li is driven to zero in
finite time based on the Lyapunov approach.

Introducing a Laypunov function Vi =
1
2
l2i and differen-

tiating it, we obtain
V̇i = li l̇i = li(Δi − vi) � |li| (Li − wi) � −ηi |li| . (17)
By analyzing (17), it can be inferred that li converges to

zero in finite time tai (tai � |li(0)|
ηi

).

Once sliding variable li reaches zero, the system dynam-
ics is governed by equivalent control veqi which can be ob-
tained by filtering the control input vi using a low pass filter
(LPF).

veqi = LPF (vi) =
1

τs + 1
vi. (18)

Thus, (15) becomes
Δi − veqi = 0, i = 1, 2. (19)

Therefore, uncertain term Δi is exactly estimated by Δ̂i =
veqi in finite time tai (i = 1, 2).

Then, the final second-order terminal sliding mode con-
troller with SMDO is designed as

u = B−1

[
−ϕ1 − k11σ1 − k12sg(σ1)p1 − Δ̂1

−ϕ2 − k21σ2 − k22sg(σ2)p2 − Δ̂2

]
. (20)

Remark 1 The parameters of controller kij , pi, wi (i, j =
1, 2) must be selected to ensure that the convergence of aux-
iliary sliding variable li is faster than that of σi (i = 1, 2).
In other words, sliding variable σi (i = 1, 2) is stabilized to
zero only after the uncertain term is estimated.

5 Stability analysis

In this section, the stability of the proposed approach is
analyzed. First, we introduce the following lemma.

Lemma 1 [17] Assume that a continuous, the positive
definite function V (t) satisfies the following differential in-
equality:

V̇ (t) � −aV η(t), ∀t � t0, V (t0) � 0,

where a > 0, 0 < η < 1 are constants. Then, for any given
t0, V (t) satisfies the following inequality:

V 1−η(t) � V 1−η(t0) − a(1 − η)(t − t0), t0 � t � t1,

and V (t) = 0, ∀t � t1 with t1 given by t1 = t0 +
V 1−η(t0)
a(1 − η)

.

Then, Theorem 1 is given below to prove the stability and
robustness of the proposed approach.

Theorem 1 For HSV’s dynamic model in (1), if the
control law (20) based on the combination of 2TSMC and
SMDO is applied, the robust stability of the closed-loop sys-
tem in the presence of the parameter uncertainties and ex-
ternal disturbances is guaranteed.

Proof Rewrite equations (11) and (20) in a compact
form:

σ̇ = ϕ + Δ + Bu, u = B−1(−ϕ − φ − Δ̂),

where σ = [σ1 σ2]
T, ϕ = [ϕ1 ϕ2]T, Δ̂ = [Δ̂1 Δ̂2]T, and

φ =

[
k11σ1 + k12sg(σ1)p1

k21σ2 + k22sg(σ2)p2

]
.

Then, consider the following Lyapunov function:

V =
1
2
σTσ.

Differentiating V with respect to time, we have

V̇ =
1
2
σTσ = σTσ̇ = σT(ϕ + Δ + Bu)

= σT{ϕ + Δ + B(B−1(−ϕ − φ − Δ̂))}
= σT(−φ + Δ − Δ̂) = −σTφ + σTΔ̃,

where Δ̃ = Δ − Δ̂, because sliding variable σi converges
to zero only after the uncertain term Δi is estimated in fi-
nite time tai. Therefore, Δ̃i = Δi − Δ̂i → 0, t > t̄a, t̄a =
max(ta1, ta2).

Therefore, for t > t̄a, we have

V̇ = −σTφ

= −(k11σ
2
1 + k12 |σ1|p1+1 + k21σ

2
2 + k22 |σ2|p2+1)

� −(k12 |σ1|p1+1 + k22 |σ2|p2+1)
� −k(|σ1|p1+1 + |σ2|p2+1)|k=min(k12,k22)

= −k{(σ2
1)

p1+1
2 + (σ2

2)
p2+1

2 }
� −k(σ2

1 + σ2
2)

p+1
2 |p=max(p1,p2)

= −k(σTσ)
p+1
2 = −k2

p+1
2 V

p+1
2

By Lemma 1, the sliding variables σ1, σ2 will be driven to
zero in finite time with the controller (20). Then, according
to (7), s1, s2 reach zero within finite time. Thus, the proof
is completed.



R. Zhang et al. / J Control Theory Appl 2013 11 (2) 299–305 303

6 Simulations
This section presents the simulation results to demon-

strate the performance of the proposed design. The simu-
lations are carried out for the HSV at trimmed cruise con-
ditions with V = 15060 ft · s−1 and h = 110000 ft. The
velocity and altitude commands are chosen to be Vd =
15160 ft · s−1, hd = 110500 ft. The model parameters are
set in accordance with the ones in [6].

The conventional SMC approach with integral sliding
surface is also simulated for the comparative study. To de-
sign conventional sliding mode controller, integral sliding
surfaces are chosen as in [6–7].⎧⎪⎨

⎪⎩
s1 = (

d
dt

+ μ1)3
� t

0
e1(τ)dτ, e1 = V − Vd,

s2 = (
d
dt

+ μ2)4
� t

0
e2(τ)dτ, e2 = h − hd.

(21)

The constant rate reaching law is chosen as [6–8].
ṡi = −kisgn si, i = 1, 2. (22)

Combining (21) with (22), we obtain the conventional
sliding mode controller as follows:

uSMC = B−1

[
v1 − k1sgn s1

v2 − k2sgn s2

]
, (23)

v1 =
...
V d − 3μ1ë1 − 3μ2

1ė − μ3
1e1,

v2 = h
(4)
d − 4μ2e

(3)
2 − 6μ2

2ë − 4μ3
2ė2 − μ4

2e2.

First, we consider the tracking control problem for the
nominal model, i.e., no parameter uncertainties and exter-
nal disturbances. The 2TSMC without SMDO is used. The
parameters of the 2TSMC in (20) are selected as λ1 =
1.5, λ2 = 1.1, β1 = β2 = 2, γ1 = γ2 = 0.85, k11 = k21 =
1.8, k12 = k22 = 0.01, p1 = p2 = 0.5, δ = 0.01.

The parameters of conventional sliding mode controller
(23) are set as μ1 = μ2 = 0.5, k1 = k2 = 10.

Fig. 1 shows the closed-loop tracking performance using
both control approaches.

Fig. 1 Tracking performance of 2TSMC and SMC for the nominal
model.

Two controllers show satisfied performances in the track-
ing of the velocity and altitude commands. However, the

performance of the 2TSMC is better than that of the conven-
tional SMC due to the 2TSMC possesses fast and higher-
precision tracking characteristics.

In Fig. 2, the simulation result shows that control in-
puts produced by 2TSMC are continuous and the chattering
has been eliminated. Apparently control chattering appears,
when using conventional SMC.

Fig. 2 Control inputs of 2TSMC and SMC for the nominal model.
Second, the tracking control problem under the parameter

uncertainties and external disturbances is considered.
The parameters of 2TSMC are set the same as the ones

for nominal model.
The parameters of conventional sliding mode controller

in (23) are chosen as μ1 = μ2 = 0.5, k1 = k2 = 30.
Fig. 3 shows the tracking performance of the 2TSMC

without SMDO under Δ �= 0 and Δ = 0, respectively. From
Fig. 3, it can be concluded that 2TSMC reveals its robust-
ness, and but it is evident that the performance is lowered
under Δ �= 0. Therefore, SMDO is applied to improve the
control performance. The parameters of SMDO are chosen
to be w1 = w2 = 5, τ = 0.01.

Fig. 3 Control performance of 2TSMC under Δ = 0 and Δ �= 0.
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Fig. 4 shows that 2STMC with SMDO exhibits excellent
tracking perfomance. The velocity and altitude converge to
the desired commands in a short time in spite of parame-
ter uncertainties and external disturbances. From Fig. 4, we
also can see that the control performance of conventional
SMC is deteriorated. Moreover, Fig. 5 demonstrates that
the chattering becomes more severe in conventional SMC.
However, our approach still produces continuous control in-
put and avoids chattering phenomenon.

Fig. 6 shows the responses of the flight-path angle, angle
of attack and pitch rate, respectively, which all converge in
a short time. Fig. 7 shows that the sliding variables and their
derivatives converge to zero quickly and it can be concluded
that SOSMC is realized.

Fig. 4 Control performance of 2TSMC with SMDO and SMC.

Fig. 5 Control inputs of 2TSMC with SMDO and SMC.

Fig. 6 Flight-path angle, angle of attack and pitch rate versus time.

Fig. 7 Sliding variables si and its derivative ṡi (i = 1, 2) versus
time.

7 Conclusions

In this paper, a robust control approach based on 2TSMC
and SMDO is developed to solve the tracking control
problem for the longitudinal model of the HSV. First,
input-output linearization is used to transform the no-affine
nonlinear model into an affine nonlinear model. Second,
second-order terminal sliding mode controller is designed to
provide fast convergence and high tracking precision. Then,
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SMDO is employed to increase the robustness of the control
system and improve the control performance. The combina-
tion of 2TSMC and SMDO enables to obtain high control
performance in spite of parameter uncertainties and external
disturbances. Simulation results demonstrate the effective-
ness and superiority of the proposed method compared with
the conventional SMC.
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