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Input-output finite-time stability of time-varying
linear singular systems
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Abstract: This paper studies the input-output finite-time stabilization problem for time-varying linear singular sys-
tems. The output and the input refer to the controlled output and the disturbance input, respectively. Two classes of dis-
turbance inputs are considered, which belong to L-two and L-infinity. Sufficient conditions are firstly provided which
guarantee the input-output finite-time stability. Based on this, state feedback controllers are designed such that the resultant
closed-loop systems are input-output finite-time stable. The conditions are presented in terms of differential linear matrix
inequalities. Finally, an example is presented to show the validity of the proposed results.
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1 Introduction

Singular systems, also known as generalized state sys-
tems, have been widely studied in the past several decades.
They have broad applications and can be found in many
practical systems, such as power systems, electronic circuit
systems, socio-economic systems, constrained control sys-
tems, chemical processes, network analysis and other engi-
neering fields, see [1–2], just to mention a few. Due to their
extensive applications, singular systems attract much atten-
tion and great progress has been made in both theory and
applications, such as controllability, observability and sta-
bility analysis [1–4], robust control and filtering [5].

Stability is an important performance for a system. Many
results about stability of singular systems have been pro-
posed, especially Lyapunov stability and asymptotic stabil-
ity. However, neither of them can reflect the transient per-
formance of systems. A system could be stable but its tran-
sient response is undesirable (e.g., large overshoot), which
causes an adverse performance or even is impossible for ap-
plication. In practice, for the short time working systems
(such as missile systems, communication network systems,
robot control systems), system trajectories required certain
performance (e.g., system trajectories within a certain spec-
ified bound) are more concerned rather than their stability
(mostly in the sense of Lyapunov stability) [6]. Thus, it is
reasonable to study the transient behavior of dynamical sys-
tems over a finite-time interval. To study the transient per-
formance, short-time stability was proposed by Peter Dorato
in 1961 [7]. It, latter known as finite-time stability, has been
more extensively studied.

Many results about finite-time stability have been re-
ported, such as [8–10] for linear systems, and [11–13] for
singular systems. It should be pointed out that the current
literature is about state finite-time stability. But sometimes
only the output, not the state, is required to be restrained

within a bound. In this case, it is just needed to consider the
input-output finite-time stability of a system. The concept of
input-output finite-time stability of linear systems has been
proposed in [14]. In this paper, the concept is generalized to
linear singular systems and the corresponding control prob-
lem via state feedback is also discussed.

Notation Throughout this paper, R
n and deg(·) de-

note the n-dimensional Euclidean space and the degree of
the polynomial, respectively. The superscript ‘T’ means
the transpose of the matrix. The symbol L2 and L∞ re-
fer to the space of square integrable signals and the space
of essentially bounded signals, respectively. For a given
set Ω ⊆ R, a positive definite matrix R and a signal
σ(·) : Ω → R

l, ‖σ(·)‖Ω,R represents the weighted norm
(
�

Ω
σ(τ)TRσ(τ)dτ)1/2.

2 Input-output finite-time stability

Consider a time-varying singular system described by{
Eẋ(t) = A(t)x(t) + B(t)w(t), x(0) = 0,

y(t) = C(t)x(t),
(1)

where x(t) ∈ R
n is the state; w(t) ∈ R

l is the disturbance
input; y(t) ∈ R

q is the output. A(·), B(·) and C(·) are
piecewise continuous matrix-valued functions. The constant
matrix E may be singular; we assume that rank(E) = r �
n. In this paper we consider the following two classes of
disturbance inputs, belonging to L2 and L∞, respectively:

i) The set of norm bounded square integrable signals over
[0, T ]

W2(T, R, d) := {w(·) ∈ L2,[0,T ] : ‖w‖[0,T ],R � d};
ii) The set of the uniformly bounded signals over [0, T ]

W∞(T, R, d)
:= {w(·) ∈ L∞,[0,T ] : w(t)TRw(t) � d, t ∈ [0, T ]},
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where R and d denote a positive definite symmetric matrix
and a positive scalar, respectively. In this section we study
the input-output finite-time stability of system (1). First, we
give the following definitions.

Definition 1 [15] The linear singular system Eẋ(t) =
A(t)x(t)+B(t)w(t) is said to be impulse-free in time inter-
val [0, T ], if deg(det(sE −A(t))) = rank(E), ∀t ∈ [0, T ].

Definition 2 Given two positive scalars T and c, a class
of disturbances W defined over [0, T ], a positive definite
matrix-valued function Q(·), system (1) is said to be input-
output finite-time stable with respect to (W, Q(·), T, c), if

w(·) ∈ W ⇒ y(t)TQ(t)y(t) < c, t ∈ (0, T ].
By the assumption of rank(E) = r, for system Eẋ(t) =

A(t)x(t) + B(t)w(t), we can choose two nonsingular ma-
trices M and N such that

MEN =

(
I 0
0 0

)
, MA(t)N =

(
A1(t) A2(t)
A3(t) A4(t)

)
.

According to Definition 1, we have the following lemma.
Lemma 1 [5] The linear singular system Eẋ(t) =

A(t)x(t) + B(t)w(t) is impulse-free in time interval [0, T ],
if and only if A4(t) is nonsingular for all t ∈ [0, T ].

For the two classes of disturbance inputs W2(T, R, d)
and W∞(T, R, d), we will consider the input-output finite-
time stability with respect to (W2(T, R, d), Q(·), T, c) and
(W∞(T, R, d), Q(·), T, c). First, we have the following
lemma.

Lemma 2 For the two classes of disturbance inputs, the
two following statements hold:

1) Given the class of disturbance inputs W2(T, R, d),
there exists a positive definite matrix R̃ such that
W2(T, R, d) = W2(T, R̃, 1). Similar result holds for the
class of disturbance inputs W∞(T, R, d).

2) Given (W, Q(·), T, c), there exists a positive definite
matrix-valued function Q̃(·) such that a system is input-
output finite-time stable with respect to (W, Q(·), T, c) is
equivalent to the system is input-output finite-time stable
with respect to (W, Q̃(·), T, 1).

Proof Taking R̃ = R/d2 and Q̃(t) = Q(t)/c, the re-
sults can be derived easily.

Thus, in the following part, we just need to con-
sider the input-output finite-time stability with respect to
(W2(T, R, 1), Q(·), T, 1) and (W∞(T, R, 1), Q(·), T, 1),
for simplicity. In this section, we study the input-output
finite-time stability of singular systems. For system (1), we
will provide sufficient conditions for input-output finite-
time stability respectively with respect to (W2(T, R, 1),
Q(·), T, 1) and (W∞(T, R, 1),Q(·), T, 1).

Theorem 1 Linear singular system (1) is impulse-
free and input-output finite-time stable with respect to
(W2(T, R, 1), Q(·), T, 1), if for all t ∈ [0, T ], there exists a
nonsingular and piecewise continuously differential matrix-
valued function P (·) such that(

ETṖ (t) + A(t)TP (t) + P (t)TA(t) P (t)TB(t)
B(t)TP (t) −R

)
< 0,

(2a)
P (t)TE = ETP (t) � C(t)TQ(t)C(t) � 0. (2b)

Proof By Schur complement, it is easy to check that
inequality (2a) holds if and only if for all t ∈ [0, T ], the
following inequality holds

ETṖ (t) + A(t)TP (t) + P (t)TA(t)
+P (t)TB(t)R−1B(t)TP (t) < 0. (3)

First we show that linear singular system (1) is impulse-free,
and later derive the input-output finite-time stability of the
system. Since rank(E) = r, we can choose two nonsingu-
lar matrices M and N such that

MEN =

(
I 0
0 0

)
, MA(t)N =

(
A1(t) A2(t)
A3(t) A4(t)

)
. (4)

Write

M−TP (t)N =

(
P1(t) P2(t)
P3(t) P4(t)

)
, (5)

where the partition is compatible with that of E in (4). Then,
by (2b), it can be shown that P2(t) = 0, and P1(t) =
P1(t)T. Noting (3) and R > 0, we have

ETṖ (t) + A(t)TP (t) + P (t)TA(t) < 0. (6)
Now, pre- and post-multiplying (6) by NT and N , respec-
tively, and then using the expressions in (4) and (5), we have(

Ṗ1(t) 0
0 0

)
+

(
U1 U2

UT
2 U3

)
< 0, (7)

where
U1 = AT

1 (t)P1(t) + P1(t)A1(t) + AT
3 (t)P3(t)

+PT
3 (t)A3(t),

U2 = P1(t)A2(t) + PT
3 (t)A4(t) + AT

3 (t)P4(t),
U3 = A4(t)TP4(t) + P4(t)TA4(t).

Then, the 2-2 block in (7) gives
A4(t)TP4(t) + P4(t)TA4(t) < 0,

which implies A4(t) is nonsingular. By Lemma 1, system
(1) is impulse-free.

Next, we show that system (1) is input-output finite-time
stable. Consider the generalized Lyapunov function

V (τ, x) = x(τ)TETP (τ)x(τ).
Then, differentiating V (τ, x) with respect to time τ along
with the solution to (1), we obtain (time argument is omit-
ted for brevity)

d
dτ

(xTETPx) = xTETṖ x + ẋTETPx + xTPTEẋ

= xT(ETṖ + ATP + PTA)x
+wTBTPx + xTPTBw.

By (3), it is easy to see that
d
dτ

(xTETPx)

< wTBTPx + xTPTBw − xTPTBR−1BTPx.

Let z = (R1/2w − R−1/2BTPx), then
zTz = wTRw + xTPTBR−1BTPx − wTBTPx

−xTPTBw.

It follows that
d
dτ

(xTETPx) < wTRw − zTz < wTRw. (8)

Integrating both sides of (8) from 0 to t � T and noting that
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x(0) = 0 and w(·) belongs to W2(T, R, 1), we obtain

x(t)TETP (t)x(t)

<
� t

0
w(s)TRw(s)ds<‖w‖2

[0,t],R <‖w‖2
[0,T ],R �1.

Considering the condition (2b), we get

y(t)TQ(t)y(t)
= x(t)TC(t)TQ(t)C(t)x(t)
� x(t)TETP (t)x(t) < 1.

The proof is completed.
When system (1) is time-invariant, it is reduced to{

Eẋ(t) = Ax(t) + Bw(t), x(0) = 0,

y(t) = Cx(t).
(9)

Given a positive scalar T , a positive definite matrix
Q, and two classes of disturbance inputs, W2(T, R, 1)
and W∞(T, R, 1), we study the input-output finite-
time stability with respect to (W2(T, R, 1), Q, T, 1) and
(W∞(T, R, 1), Q, T, 1) for system (9). For the class of dis-
turbance inputs W2(T, R, 1), we have the following corol-
lary.

Corollary 1 Time-invariant system (9) is impulse-
free and input-output finite-time stable with respect to
(W2(T, R, 1), Q, T, 1), if there exists a nonsingular matrix
P such that (

ATP + PTA PTB

BTP − R

)
< 0,

PTE = ETP � CTQC � 0.

Sufficient conditions for input-output finite-time stabil-
ity with respect to (W2(T, R, 1), Q(·), T, 1) have been pro-
vided. In a similar way, we can develop the sufficient con-
ditions for the case of W∞(T, R, 1).

Theorem 2 Linear singular system (1) is impulse-
free and input-output finite-time stable with respect to
(W∞(T, R, 1), Q(·), T, 1), if there exists a nonsingular and
piecewise continuously differential matrix-valued function
P (·) such that(

ETṖ (t)+A(t)TP (t)+P (t)TA(t) P (t)TB(t)
B(t)TP (t) − R

)
<0,

∀t ∈ [0, T ], (10a)
P (t)TE = ETP (t) � C(t)TQ̃(t)C(t) � 0,

∀t ∈ [0, T ], (10b)

where Q̃(t) = tQ(t).
Proof Taking the same line as Theorem 1, it turns out

that inequality (8) holds. As u(·) ∈ W∞, it is easy to see
that

d
dτ

(xTETPx) < 1. (11)

Integrating (11) from 0 to t � T , with x(0) = 0, we obtain
x(t)TETP (t)x(t) < t. Considering the condition (10b)
and Q̄(t) = tQ(t), it follows that y(t)TQ(t)y(t) < 1. The
proof is completed.

Corollary 2 Time-invariant system (9) is impulse-
free and input-output finite-time stable with respect to
(W∞(T, R, 1), Q, T, 1), if there exists a nonsingular matrix

P such that (
ATP + PTA PTB

BTP − R

)
< 0,

PTE = ETP � TCTQC � 0.

3 Input-output finite-time stabilization via
state feedback

In this section, we will study the following finite-time
control problem, that is, investigating the design of state
feedback controllers such that the closed-loop systems are
impulse-free and input-output finite-time stable.

Problem 1 (Stabilization via state feedback) Consider
the following linear singular system{

Eẋ(t)=A(t)x(t)+F (t)u(t)+B(t)w(t), x(0)=0,

y(t) = C(t)x(t),
(12)

where x(t) ∈ R
n is the state; u(·) ∈ R

m is the control input;
w(t) ∈ R

l is the disturbance input. Given a positive scalar
T , a class of disturbances W2(T, R, 1) (or W∞(T, R, 1))
defined over [0, T ], and a positive definite matrix-valued
function Q(·), find a state feedback control law

u(t) = K(t)x(t), (13)
such that the closed-loop system{

Eẋ(t) = Ac(t)x(t) + B(t)w(t),
y(t) = C(t)x(t),

(14)

with Ac(t) = (A(t)+F (t)K(t)), is impulse-free and input-
output finite-time stable with respect to (W2(T, R, 1), Q(·),
T, 1) (or (W∞(T, R, 1), Q(·), T, 1)).

When system (12) is time-invariant, try to find a
state feedback control law u(t) = Kx(t) such the
closed-loop system is impulse-free and input-output finite-
time stable with respect to (W2(T, R, 1), Q, T, 1) (or
(W∞(T, R, 1), Q, T, 1)).

Our aim is to design the state feedback controller (13)
such that the closed-loop system (14) is input-output finite-
time stable. On the basis of Theorems 1–2, we have the fol-
lowing results.

Theorem 3 For the class of disturbances W2(T, R, 1),
Problem 1 is solvable if there exist a nonsingular and piece-
wise continuously differential matrix-valued function P̄ (·),
and a matrix-valued function L(·) such that(

Γ1(t) B(t)
B(t)T −R

)
< 0, ∀t ∈ [0, T ], (15a)

(
EP̄ (t) P̄ (t)TC(t)T

C(t)P̄ (t) Q(t)−1

)
� 0, ∀t ∈ [0, T ]. (15b)

Then a desired controller (13) is obtained with K(t) =
L(t)P̄ (t)−1, where

Γ1(t) = −E ˙̄P (t) + P̄ (t)TA(t)T + A(t)P̄ (t)
+L(t)TF (t)T + F (t)L(t).

Proof Applying the state feedback controller K(t) =
L(t)P̄ (t)−1 to (12), we can get the following closed-loop
system {

Eẋ(t) = Ac(t)x(t) + B(t)w(t),
y(t) = C(t)x(t),

(16)
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where Ac(t) = A(t)+F (t)L(t)P̄ (t)−1. On the other hand,
it is easy to see that (15) can be rewritten as(

Γ2(t) B(t)
B(t)T −R

)
< 0,

EP̄ (t) = P̄ (t)TET � P̄ (t)TC(t)TQ(t)C(t)P̄ (t) � 0,

where
Γ2(t) =−E ˙̄P (t) + P̄ (t)T(A(t) + F (t)L(t)P̄ (t)−1)T

+(A(t) + F (t)L(t)P̄ (t)−1)P̄ (t).
Noting Ac(t) = A(t) + F (t)L(t)P̄ (t)−1, we have(

−E ˙̄P (t) + P̄ (t)TAc(t)T + Ac(t)P̄ (t) B(t)
B(t)T −R

)
< 0,

(17a)
EP̄ (t) = P̄ (t)TET � P̄ (t)TC(t)TQ(t)C(t)P̄ (t) � 0.

(17b)
Taking P (t) = P̄ (t)−1, and pre- and post-multiplying (17a)
by diag{P (t)T, I} and its transpose, (17b) by P (t)T and
P (t), we have(

Γ3(t) P (t)TB(t)
B(t)TP (t) −R

)
< 0,

P (t)TE = ETP (t) � C(t)TQ(t)C(t) � 0.

where
Γ3(t) = −P (t)TE ˙̄P (t)P (t) + Ac(t)TP (t) + P (t)TAc(t).
Since P (t) = P̄ (t)−1, we get I = P̄ (t)P (t). Consider-
ing the derivation, we have 0 = ˙̄P (t)P (t) + P̄ (t)Ṗ (t).
It is easy to see that Ṗ (t) = −P (t) ˙̄P (t)P (t). Noting
that P (t)TE = ETP (t), it derives −P (t)TE ˙̄P (t)P (t) =
−ETP (t) ˙̄P (t)P (t) = ETṖ (t). It turns out that(

Γ4(t) P (t)TB(t)
B(t)TP (t) −R

)
< 0, ∀t ∈ [0, T ],

P (t)TE = ETP (t) � C(t)TQ(t)C(t) � 0, ∀t ∈ [0, T ],
where Γ4(t) = ETṖ (t) + Ac(t)TP (t) + P (t)TAc(t).
By Theorem 1, it is easy to see closed-loop system (7) is
impulse-free and input-output finite-time stable. The proof
is completed.

Corollary 3 For the time-invariant case, given the class
of disturbances W2(T, R, 1), Problem 1 is solvable if there
exist a nonsingular matrix P̄ and a matrix L such that(

P̄TAT + AP̄ + LTFT + FL B

BT −R

)
< 0,

(
EP̄ P̄TCT

CP̄ Q−1

)
� 0.

(18)

Then a desired controller is obtained with K = LP̄−1.
In a similar way, we can develop the results for the case

of W∞(T, R, 1).
Theorem 4 Given the class of disturbances

W∞(T, R, 1), Problem 1 is solvable if there exist a nonsin-
gular and piecewise continuously differential matrix-valued
function P̄ (·), and a matrix-valued function L(·) such that(

Γ1(t) B(t)
B(t)T −R

)
< 0, ∀t ∈ [0, T ],

(
EP̄ (t) P̄ (t)TC(t)T

C(t)P̄ (t) (tQ(t))−1

)
� 0, ∀t ∈ [0, T ].

Then a desired controller (13) is obtained with K(t) =
L(t)P̄ (t)−1.

Corollary 4 For the time-invariant case, given the class
of disturbances W∞(T, R, 1), Problem 1 is solvable if there
exist a nonsingular matrix P̄ and a matrix L such that

(
P̄TAT + AP̄ + LTFT + FL B

BT −R

)
< 0,

(
EP̄ P̄TCT

CP̄ (TQ)−1

)
� 0.

Then a desired controller is obtained with K = LP̄−1.
Remark 1 When E = I , system (1) is reduced to a

state-space system. It is easy to check that Theorems 1-4
coincide with the results in [14]. Therefor, the results can be
regarded as an extension of the input-output finite-time sta-
bility theory from state-space systems to singular systems.

4 Example

For simplicity, we take a time-invariant linear singular
system as an example. Consider a linear singular system
(12) with parameters as follows:

E =

⎛
⎜⎝1 0 0

0 1 0
0 0 0

⎞
⎟⎠ , A =

⎛
⎜⎝4.5 − 2 0

2 3 1
1 − 1 1

⎞
⎟⎠ ,

F =

⎛
⎜⎝ 0.05 − 0.1 0

0 0 0.1
−0.1 0 0.1

⎞
⎟⎠ , B =

⎛
⎜⎝0.2

0.7
−1

⎞
⎟⎠ ,

C = (2 − 1 0).

Let R = 1, Q = 1, T = 2 and c = d = 1. Set u(t) = 0
and take w(t) = e−t ∈ L2, t ∈ [0, 2]. From Fig. 1, it is easy
to see the free system is not input-output finite-time stable
with respect to (W2(T, R, 1), Q, T, 1).

Fig. 1 The open-loop system output.
Then we can design a state feedback controller such

that the closed-loop system is input-output finite-time sta-
ble with respect to (W2(T, R, 1), Q, T, 1). Solving LMIs in



J. Yao et al. / J Control Theory Appl 2012 10 (3) 287–291 291

(18), we obtain

P =

⎛
⎜⎝ 0.3731 0.5562 0

0.5562 1.2075 0
−0.6151 −6.9320 5.5865

⎞
⎟⎠ ,

L =

⎛
⎜⎝ 2.4333 −37.9787 44.4600

14.4995 0.3882 9.0837
−0.8314 12.2168 −23.5814

⎞
⎟⎠ ,

and the desired state feedback controller with

K =

⎛
⎜⎝−5.0463 16.5603 7.9584

86.6657 −30.2675 1.6260
37.8515 −31.5524 −4.2211

⎞
⎟⎠ .

With w(t) = e−t, the output of the closed-loop system per-
forms as Fig. 2. It is obvious that the closed-loop system is
input-output finite-time stable.

Fig. 2 The closed-loop system output.

5 Conclusions

In this paper, input-output finite-time stability has been
analyzed for time-varying linear singular systems. The defi-
nition of input-output finite-time stability has been extended
to singular systems. Sufficient conditions for input-output
finite-time stability with the disturbance belonging to the
space L2 and L∞ have been derived, respectively. Then sta-
bilization problems via state feedback control have been in-
vestigated such that the resultant closed-loop systems are
input-output finite-time stable. The conditions are given in
terms of differential linear matrix inequalities. Finally, an
example was presented to show the solvability and practi-
cality.
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