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Nonlinear robust H-infinity filtering for a class of
uncertain systems via convex optimization
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Abstract: A new approach for robust H-infinity filtering for a class of Lipschitz nonlinear systems with time-varying
uncertainties both in the linear and nonlinear parts of the system is proposed in an LMI framework. The admissible Lipschitz
constant of the system and the disturbance attenuation level are maximized simultaneously through convex multi-objective
optimization. The resulting H-infinity filter guarantees asymptotic stability of the estimation error dynamics with exponen-
tial convergence and is robust against nonlinear additive uncertainty and time-varying parametric uncertainties. Explicit
bounds on the nonlinear uncertainty are derived based on norm-wise and element-wise robustness analysis.
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1 Introduction

The problem of observer design for nonlinear continuous-
time uncertain systems has been tackled in various ap-
proaches. Early studies in this area go back to the works of
de Souza et al. where they considered a class of continuous-
time Lipschitz nonlinear systems with time-varying para-
metric uncertainties and obtained Riccati-based sufficient
conditions for the stability of the proposed H∞ observer
with guaranteed disturbance attenuation level, when the
Lipschitz constant is assumed to be known and fixed [1–2].
In an H∞ observer, the L2-induced gain from the norm-
bounded exogenous disturbance signals to the observer er-
ror is guaranteed to be below a prescribed level. They also
derived matrix inequalities helpful in solving this type of
problems. Since then, various methods have been reported
in the literature to design robust observers for nonlinear sys-
tems [3–12]. On the other hand, the restrictive regularity
assumptions in the Riccati approach can be relaxed using
linear matrix inequalities (LMIs). An LMI solution for non-
linear H∞ filtering is proposed for Lipschitz nonlinear sys-
tems with a given and fixed Lipschitz constant [11–12]. The
resulting observer is robust against time-varying parametric
uncertainties with guaranteed disturbance attenuation level.

In a recent paper the authors considered the nonlinear ob-
server design problem and presented a solution that has the
following features [7]:

� (Stability) In the absence of external disturbances the
observer error converges to zero exponentially with a guar-
anteed convergence rate. Moreover, our design is such that
it can maximize the size of the Lipschitz constant that can
be tolerated in the system.

� (Robustness) The design is robust with respect to uncer-
tainties in the nonlinear plant model.

� (Filtering) The effect of exogenous disturbances on the

observer error can be minimized.
In this article, we consider a similar problem but consider

an important extension to the case where there exist para-
metric uncertainties in the state space model of the plant.
The extension is significant because uncertainty in the state
space model of the plant is always encountered in a any ac-
tual application. Ignoring this form of uncertainty requires
lumping all model uncertainty on the nonlinear (Lipschitz)
term, thus resulting in excessively conservative results. This
extension, is though obtained through a completely differ-
ent solution from that given in [7]. The price of robustness
against parametric uncertainties is a stability requirement of
the plant model which makes the solution, different and yet
a nontrivial extension to that of [7]. We will see this in de-
tail in Section 3. Our solution is based on the use of linear
matrix inequalities and has the property that the Lipschitz
constant is one the LMI variables. This property allows us
to obtain a solution in which the admissible Lipschitz con-
stant is maximized through convex optimization. As we will
see, this maximization adds an extra important feature to
the observer, making it robust against nonlinear uncertain-
ties. Furthermore, since the maximum admissible Lipschitz
constant is directly related to the nature of nonlinearity and
the size of the operating region (since the Lipschitz constant
is usually region based and increases with the enlargement
of the operating region), this means that the filter with a
maximized Lipschitz constant can handle a larger class of
systems or can work in a larger operating region.

The result is an H∞ observer with a prespecified distur-
bance attenuation level which guarantees asymptotic stabil-
ity of the estimation error dynamics with guaranteed speed
of convergence and is robust against Lipschitz nonlinear un-
certainties as well as time-varying parametric uncertainties,
simultaneously. Explicit bound on the nonlinear uncertainty

Received 24 November 2010; revised 26 June 2011.
This work was partly supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

c© South China University of Technology and Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2012



M. Abbaszadeh et al. / J Control Theory Appl 2012 10 (2) 152–158 153

are derived through a norm-wise analysis. Some related re-
sults were recently presented by the authors in references [7]
and [8] for continues-time and for discrete-time systems,
respectively. The rest of the paper is organized as follows.
In Section 2, the problem statement and some preliminar-
ies are mentioned. In Section 3, we propose a new method
for robust H∞ observer design for nonlinear uncertain sys-
tems. Section 4 is devoted to robustness analysis in which
explicit bounds on the tolerable nonlinear uncertainty are
derived. In Section 5, a combined observer performance is
optimized using multi-objective optimization followed by a
design example.

2 Problem statement

Consider the following class of continuous-time uncer-
tain nonlinear systems:

(Σ) : ẋ(t) = (A + ΔA(t))x(t) + Φ(x, u) + Bw(t), (1)
y(t) = (C + ΔC(t))x(t) + Dw(t), (2)

where x ∈ R
n, u ∈ R

m, y ∈ R
p, and Φ(x, u) contains non-

linearities of second order or higher. We assume that when
w = 0, the system is robustly asymptotically stable. We also
assume system (1)–(2) is locally Lipschitz with respect to x
in a region D containing the origin, uniformly in u, i.e.,

Φ(0, u∗) = 0, (3)
‖Φ(x1, u

∗) − Φ(x2, u
∗)‖ � γ‖x1 − x2‖,

∀ x1, x2 ∈ D, (4)
where ‖ · ‖ is the induced 2-norm, u∗ is any admissible con-
trol signal, and γ > 0 is called the Lipschitz constant. If the
nonlinear function Φ satisfies the Lipschitz continuity con-
dition globally in R

n, then the results will be valid globally.
w(t) ∈ L2[0,∞) is an unknown exogenous disturbance,
and ΔA(t) and ΔC(t) are unknown matrices representing
time-varying parameter uncertainties, and are assumed to be
of the form

ΔA(t) = M1F (t)N1, (5)
ΔC(t) = M2F (t)N2, (6)

where M1, M2, N1, and N2 are known real constant matri-
ces, and F (t) is an unknown real-valued time-varying ma-
trix satisfying

FT(t)F (t) � I, ∀t ∈ [0,∞). (7)
The parameter uncertainty in the linear terms can be re-
garded as the variation of the operating point of the non-
linear system. It is also worth noting that the structure of
parameter uncertainties in (5)–(6) has been widely used
in the problems of robust control and robust filtering for
both continuous-time and discrete-time systems and can
capture the uncertainty in a number of practical situations
[1, 13–14].
2.1 Disturbance attenuation level

Considering an observer of the following form:
˙̂x(t) = Ax̂(t) + Φ(x̂, u) + L(y − Cx̂), (8)

the observer error dynamics is given by
e(t) � x(t) − x̂(t), (9)
ė(t) = (A − LC)e + Φ(x, u) − Φ(x̂, u)

+(B − LD)w + (ΔA − LΔC)x. (10)

Suppose that
z(t) = He(t) (11)

stands for the controlled output for error state where H is a
known matrix. Our purpose is to design the observer param-
eter L such that the observer error dynamics is asymptoti-
cally stable with maximum admissible Lipschitz constant
and the following specified H∞ norm upper bound is si-
multaneously guaranteed

‖z‖ � μ‖w‖. (12)
Furthermore, we want the observer to have a guaranteed de-
cay rate.
2.2 Guaranteed decay rate

Consider the nominal system (Σ) with w(t) = 0. Then,
the maximum decay rate of system (10) is defined to be the
largest β∗ > 0 such that

lim
t→∞ exp(β∗t)‖e(t)‖ = 0 (13)

holds for all trajectories e. We can use the quadratic Lya-
punov function V (e) = eTPe to establish a lower bound

on the decay rate of the (10). If
dV (e(t))

dt
� −2βV (e(t))

for all trajectories where 0 < β � β∗, then V (e(t)) �
exp(−2βt)V (e(0)), so that

‖e(t)‖ � exp(−βt)κ(P )
1
2 ‖e(0)‖

for all trajectories, where κ(P ) is the condition number of
P and therefore the decay rate of the (10) is at least β [15].
In fact, decay rate is a measure of observer speed of conver-
gence.

3 H∞ observer synthesis

In this section, an H∞ observer with guaranteed decay
rate β and disturbance attenuation level μ is proposed. The
admissible Lipschitz constant is maximized through LMI
optimization. Theorem 1 introduces a design method for
such an observer but first we mention a lemma to be used in
the proof of our result. It worths mentioning that unlike the
Riccati approach of [1], in the LMI approach no regularity
assumption is needed.

Lemma 1 [2] Let D, S and F be real matrices of ap-
propriate dimensions and F satisfying FTF � I . Then, for
any scaler ε > 0 and vectors x, y ∈ R

n, we have
2xTDFSy � ε−1xTDDTx + εyTSTSy. (14)

Theorem 1 Consider the Lipschitz nonlinear system
(Σ) along with the observer (8). The observer error dynam-
ics is (globally) asymptotically stable with maximum ad-
missible Lipschitz constant, γ∗, decay rate β and L2 (w →
z) gain, μ, if there exists a fixed scalar β > 0, scalars γ > 0
and μ > 0, and matrices P1 > 0, P2 > 0 and G, such that
the following LMI optimization problem has a solution:

max (γ),

s.t.

⎡
⎢⎣Ψ1 0 Ω1

∗ Ψ2 Ω2

∗ ∗ −μ2I

⎤
⎥⎦ < 0, (15)

where
Q = −(ATP1+P1A+2βP1−CTGT−GC), (16)
R = ATP2 + P2A + 2NT

1 N1 + NT
2 N2, (17)
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S = (I + M1M
T
1 )

1
2 , (18)

Ψ1 =

⎡
⎢⎢⎢⎣

HTH−Q γI P1S GM2

∗ −I 0 0
∗ ∗ −I 0
∗ ∗ ∗ −I

⎤
⎥⎥⎥⎦ , (19)

Ψ2 =

⎡
⎢⎣R γI P2S

∗ −I 0
∗ ∗ −I

⎤
⎥⎦ , (20)

Ω1 = [P1B−GD 0 0 0 ]T, (21)

Ω2 = [P2B 0 0 ]T. (22)
Once the problem is solved

L = P−1
1 G, (23)

γ∗ � max(γ). (24)
Proof From (10), the observer error dynamics is
ė = (A − LC)e + Φ(x, u) − Φ(x̂, u) + (B − LD)w

+(ΔA − LΔC)x. (25)
For simplicity, let

Φ(x, u) � Φ, Φ(x̂, u) � Φ̂. (26)
Consider the Lyapunov function candidate

V = V1 + V2, (27)
where V1 = eTP1e, V2 = xTP2x. For the nominal system,
we have then

V̇1(t) = ėT(t)P1e(t) + eT(t)P1ė(t)
=−eTQe + 2eTP1(Φ(x, u) − Φ(x̂, u))T. (28)

To have V̇1(t) � −2βV1(t), it suffices that (28) be less than
zero, where

(A − LC)TP1 + PT
1 (A − LC) + 2βP1 = −Q. (29)

The above can be written as
ATP1+P1A−CTLTP1−P1LC+2βP1 = −Q. (30)

Defining the new variable
G � P1L ⇒ LTPT

1 = LTP1 = GT, (31)
it becomes

ATP1 + P1A − CTGT − GC + 2βP1 = −Q. (32)
Now, consider the systems (Σ) with uncertainties and dis-
turbance. The derivative of V along the trajectories of (Σ)
is

V̇1 = ėTP1e + eTP1ė

=−eTQe + 2eTP1(Φ − Φ̂) + 2eTP1(B − LD)w
+2eTP1M1FN1x − 2eTGM2FN2x. (33)

Using Lemma 1, it can be written
2eTP1M1FN1x � eTP1M1M

T
1 P1e+xTNT

1 N1x, (34)
2eTGM2FN2x � eTGM2M

T
2 GTe+xTNT

2 N2x, (35)
2xTP2M1FN1x�xTP2M1M

T
1 P2x+xTNT

1 N1x, (36)
2eTP1(Φ − Φ̂) � eTP 2

1 e + (Φ − Φ̂)T(Φ − Φ̂)
� eTP 2

1 e + γ2eTe, (37)
2xTP2Φ � xTP 2

2 x + ΦTΦ � xTP 2
2 x + γ2xTx (38)

substituting from (34), (35) and (37)
V̇1 �−eTQe + eTP 2

1 e + γ2eTe + eTP1M1M
T
1 P1e

+xT(NT
1 N1 + NT

2 N2)x + eTGM2M
T
2 GTe

+2eTP1(B − LD)w. (39)

V̇2 = xT(ATP2 + P2A)x
+2xTP2Φ + 2xTP2M1FN1x + 2xTP2Bw (40)

substituting from (36) and (38)
V̇2 � xT(ATP2 + P2A)x + xTP 2

2 x + γ2xTx

+xTP2M1M
T
1 P2x+xTNT

1 N1x+2xTP2Bw. (41)
Thus,
V̇ � eT[−Q + P1(I + M1M

T
1 )P1 + GM2M

T
2 GT

+γ2I]e
+xT

[
ATP2 + P2A + P2(I + M1M

T
1 )P2 + γ2I

]
x

+xT(2NT
1 N1 + NT

2 N2)x + 2eTP1(B − LD)w
+2xTP2Bw.

Therefore, when w = 0, a sufficient condition for the sta-
bility with guaranteed decay rate β is that

−Q + P1SSTP1 + GM2M
T
2 GT + γ2I < 0, (42)

R + P2SSTP2 + γ2I < 0. (43)
R and S are as in (17) and (18). Note that I + M1M

T
1 is

positive definite and so always has a square root. Now, we
define

J �
� ∞

0
(zTz − ζwTw)dt, (44)

where ζ = μ2. Therefore,

J <
� ∞

0
(zTz − ζwTw + V̇ )dt, (45)

and a sufficient condition for J � 0 is
∀t ∈ [0,∞), zTz − ζwTw + V̇ � 0. (46)

We have
zTz − ζwTw + V̇

� eT(HTH − Q + P1SSTP1 + GM2M
T
2 GT

+γ2I)e + xT(R + P2SSTP2 + γ2I)x
+2eTP1(B − LD)w + 2xTP2Bw − ζwTw.

Therefore, a sufficient condition for J � 0 is that the right
hand side of the above inequity be less than zero which by
means of Schur complements is equivalent to (15). Note that
(42) and (43) are already included in (15). Then,

zTz − ζwTw � 0 → ‖z‖ �
√

ζ‖w‖. (47)
Remark 1 The proposed LMIs are linear in both γ and

ζ (= μ2). Thus, either can be a fixed constant or an opti-
mization variable. If one wants to design an observer for a
given system with known Lipschitz constant, then the LMI
optimization problem can be reduced to an LMI feasibility
problem (just satisfying the constraints) which is easier.

Remark 2 This observer is robust against two type
of uncertainties. Lipschitz nonlinear uncertainty in Φ(x, u)
and time-varying parametric uncertainty in the pair (A,C)
while the disturbance attenuation level is guaranteed, simul-
taneously.

4 Robustness against nonlinear uncertainty

As mentioned earlier, the maximization of Lipschitz con-
stant makes the proposed observer robust against some Lip-
schitz nonlinear uncertainties. In this section, this robust-
ness feature is studied and both norm-wise and element-
wise bounds on the nonlinear uncertainty are derived. The
norm-wise analysis provides an upper bound on the Lips-
chitz constant of the nonlinear uncertainty and the norm of
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the Jacobian matrix of the corresponding nonlinear func-
tion. Furthermore, we will find upper and lower bounds on
the elements of the Jacobian matrix through and element-
wise analysis.
4.1 Norm-wise analysis

Assume a nonlinear uncertainty as follows:
ΦΔ(x, u) = Φ(x, u) + ΔΦ(x, u), (48)
ẋ(t) = (A + ΔA)x(t) + ΦΔ(x, u), (49)

where
‖ΔΦ(x1, u) − ΔΦ(x2, u)‖ � Δγ‖x1 − x2‖. (50)

Proposition 1 Suppose that the actual Lipschitz con-
stant of the system is γ and the maximum admissible Lips-
chitz constant achieved by Theorem 1 is γ∗. Then, the ob-
server designed based on Theorem 1, can tolerate any addi-
tive Lipschitz nonlinear uncertainty with Lipschitz constant
less than or equal γ∗ − γ.

Proof Based on Schwartz inequality, we have
‖ΦΔ(x1, u) − ΦΔ(x2, u)‖
� ‖Φ(x1, u)−Φ(x2, u)‖ + ‖ΔΦ(x1, u)−ΔΦ(x2, u)‖
� γ‖x1 − x2‖ + Δγ‖x1 − x2‖. (51)

According to Theorem 1, ΦΔ(x, u) can be any Lipschitz
nonlinear function with Lipschitz constant less than or equal
to γ∗,

‖ΦΔ(x1, u) − ΦΔ(x2, u)‖ � γ∗‖x1 − x2‖, (52)
and there must be

γ + Δγ � γ∗ → Δγ � γ∗ − γ. (53)

In addition, we know that for any continuously differen-
tiable function ΔΦ,

‖ΔΦ(x1, u) − ΔΦ(x2, u)‖ � ‖∂ΔΦ

∂x
(x1 − x2)‖, (54)

where
∂ΔΦ

∂x
is the Jacobian matrix [16]. Therefore,

ΔΦ(x, u) can be any additive uncertainty with ‖∂ΔΦ

∂x
‖ �

γ∗ − γ.
4.2 Element-wise analysis

Assume that there exists a matrix Γ ∈ R
n×n such that

‖Φ(x1, u) − Φ(x2, u)‖ � ‖Γ (x1 − x2)‖. (55)
Γ can be considered as a matrix-type Lipschitz constant.
Suppose that the nonlinear uncertainty is as in (49) and

‖ΦΔ(x1, u) − ΦΔ(x2, u)‖ � ‖ΓΔ(x1 − x2)‖. (56)
Assuming

‖ΔΦ(x1, u) − ΔΦ(x2, u)‖ � ‖ΔΓ (x1 − x2)‖, (57)
based on Proposition 1, ΔΓ can be any matrix with
‖ΔΓ‖ � γ∗ − ‖Γ‖. In the following, we will look at
the problem from a different point of view. It is clear that
ΓΔ = [γΔi,j ]n is a perturbed version of Γ due to ΔΦ(x, u).
The question is that how much perturbation can be tolerated
on the elements of Γ without loosing the observer features
stated in Theorem 1. This is important in the sense that it
gives us an insight about the amount of uncertainty that can
be tolerated in different directions of the nonlinear function.
Here, we propose a novel approach to optimize the elements
of Γ and provide specific upper and lower bounds on toler-
able perturbations. Before stating the result of this section,

we need to recall some matrix notations.
For matrices A = [ai,j ]m×n, B = [bi,j ]m×n, A 	 B

means ai,j � bi,j ,∀ 1 � i � m, 1 � j � n. For square
A, diag(A) is a vector containing the elements on the main
diagonal and diag(x), where x is a vector is a diagonal ma-
trix with the elements of x on the main diagonal. |A| is the
element-wise absolute value of A, i.e., [|ai,j |]n. A◦B stands
for the element-wise product (Hadamard product) of A and
B.

Corollary 1 Consider Lipschitz nonlinear system (Σ)
satisfying (55), along with the observer (8). The observer
error dynamics is (globally) asymptotically stable with the
matrix-type Lipschitz constant Γ ∗ = [γ∗

i,j ]n with maxi-
mized admissible elements, decay rate β and L2(w → z)
gain, μ, if there exist fixed scalars β > 0 and ci,j >
0,∀ 1 � i, j � n, scalars ω > 0 and μ > 0, and matri-
ces Γ = [γi,j ]n � 0, P1 > 0, P2 > 0 and G, such that the
following LMI optimization problem has a solution:

max ω,

s.t. ci,jγi,j > ω, ∀ 1 � i, j � n, (58)⎡
⎢⎣Ψ1 0 Ω1

∗ Ψ2 Ω2

∗ ∗ −μ2I

⎤
⎥⎦ < 0, (59)

where Ψ1, Ψ2, Ω1, and Ω2 are as in Theorem 1 replacing γI
by Γ . Once the problem is solved

L = P−1
1 G, γ∗

i,j � max(γi,j).

Proof The proof is similar to the proof of Theorem 1
with replacing γI by Γ .

Remark 3 By appropriate selection of the weights ci,j ,
it is possible to put more emphasis on the directions in
which the tolerance against nonlinear uncertainty is more
important. To this goal, one can take advantage of the
knowledge about the structure of the nonlinear function
Φ(x, u).

According to the norm-wise analysis, it is clear that ΔΓ
in (57) can be any matrix with ‖ΔΓ‖ � ‖Γ ∗‖ − ‖Γ‖. We
will now proceed by deriving bounds on the elements of ΓΔ.

Lemma 2 For any T = [ti,j ]n and U = [ui,j ]n, if
|T | 	 U , then TTT � UUT ◦ nI .

Proof Assume any x = [xi]n×1, then, it is easy to show

that TTx = [(
n∑

i=1

ti,jxi)j ]n×1. Therefore,

xTTTTx

= 〈TTx, TTx〉 =
n∑

j=1

(
n∑

i=1

ti,jxi)2

�
n∑

j=1

n∑
i=1

t2i,jx
2
i +

n∑
j=1

n−1∑
i=1

n∑
k=i+1

(t2i,jx
2
i + t2k,jx

2
k)

�
n∑

j=1

n∑
i=1

u2
i,jx

2
i +

n∑
j=1

n−1∑
i=1

n∑
k=i+1

(u2
i,jx

2
i + u2

k,jx
2
k)

=
n∑

j=1

[
n∑

i=1

u2
i,jx

2
i +

n−1∑
i=1

n∑
k=i+1

(u2
i,jx

2
i + u2

k,jx
2
k)]

= n
n∑

i=1

n∑
j=1

u2
i,jx

2
i = n xTdiag(diag(UUT))x

⇒ TTT � ndiag(diag(UUT)) = UUT ◦ nI.
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Now, we are ready to state the element-wise robustness
result. Assume additive uncertainty in the form of (49),
where ‖ΦΔ(x1, u) − ΦΔ(x2, u)‖ � ‖ΓΔ(x1 − x2)‖. It is
clear that ΓΔ = [γΔi,j ]n is a perturbed version of Γ .

Proposition 2 Suppose that the actual matrix-type Lip-
schitz constant of the system is Γ and the maximized ad-
missible matrix-type Lipschitz constant achieved by Corol-
lary 1 is Γ ∗. Then, ΔΦ can be any additive nonlinear uncer-
tainty such that |ΓΔ| 	 n− 3

4 Γ ∗.
Proof According to Proposition 1, it suffices to show

that σmax(ΓΔ) � σmax(Γ ∗). Using Lemma 2, we have

σ2
max(ΓΔ)

= λmax(ΓΔΓT
Δ)

� λmax(n diag(diag(n− 3
2 Γ ∗Γ ∗T)))

� σmax(n diag(diag(n− 3
2 Γ ∗Γ ∗T)))

= max
i

(n− 1
2

n∑
j=1

γ∗
i,j

2) =
1√
n
‖Γ ∗ ◦ Γ ∗‖∞

� ‖Γ ∗ ◦ Γ ∗‖2 � ‖Γ ∗‖2
2 = σ2

max(Γ
∗).

The first inequality follows from Lemma 2 and the symme-
try of ΓΔΓT

Δ and diag(diag(Γ ∗Γ ∗T)) [17]. The last two
inequalities are due to the relation between the induced in-
finity and 2 norms [17] and the fact that the spectral norm
is submultiplicative with respect to the Hadamard product
[18], respectively. Since the singular values are nonnega-
tive, we can conclude that σmax(ΓΔ) � σmax(Γ ∗).

Therefore, denoting the elements of ΓΔ as γΔi.j =
γi,j + δi,j , the bound on the element-wise perturbations is
obtained, −n− 3

4 γ∗
i,j − γi,j � δi,j � n− 3

4 γ∗
i,j − γi,j .

In addition, ΔΦ(x, u) can be any continuously differen-

tiable additive uncertainty which makes |∂ΦΔ

∂x
| 	 n− 3

4 Γ ∗.

5 Combined performance using multi-
objective optimization

The LMIs proposed in Theorem 1 are linear in both
admissible Lipschitz constant and disturbance attenuation
level. Therefore, as mentioned earlier, each can be opti-
mized. A more realistic problem is to choose the observer
gain matrix by combining these two performance measures.
This leads to a Pareto multi-objective optimization in which
the optimal point is a trade-off between two or more linearly
combined optimality criterions. Having a fixed decay rate,
the optimization is over γ (maximization) and μ (minimiza-
tion), simultaneously.

Theorem 2 Consider Lipschitz nonlinear system (Σ)
along with the observer (8). The observer error dynamics is
(globally) asymptotically stable with decay rate β and si-
multaneously maximized admissible Lipschitz constant, γ∗

and minimized L2 (w → z) gain, μ∗, if there exists fixed
scalars β > 0 and 0 � λ � 1, scalars γ > 0 and ζ > 0, and
matrices P1 > 0, P2 > 0 and G, such that the following
LMI optimization problem has a solution:

min [λ(−γ) + (1 − λ)ζ] ,

s.t.

⎡
⎢⎣Ψ1 0 Ω1

∗ Ψ2 Ω2

∗ ∗ −ζI

⎤
⎥⎦ < 0, (60)

where Ψ1, Ψ2, Ω1, and Ω2 are as in Theorem 1. Once the
problem is solved

L = P−1
1 G, (61)

γ∗ � max(γ) = min(−γ), (62)

μ∗ � min(μ) =
√

ζ. (63)
Proof The above is a scalarization of a multi-objective

optimization with two optimality criterions. Since each of
these optimization problems is convex, the scalarized prob-
lem is also convex [19]. The rest of the proof is the same as
the proof of Theorem 1.

Remark 4 The matrix-type Lipschitz constant Γ may
also be considered in place of γ in Theorem 2.

Since the observer gain directly amplifies the measure-
ment noise, sometimes, it is better to have an observer gain
with smaller elements. There might also be practical dif-
ficulties in implementing high gains. We can control the
Frobenius norm of L either by changing the feasibility ra-
dius of the LMI solver or by decreasing λ−1

min(P1) which is
λmax(P−1

1 ), to decrease σ̄(L) as in (23). The latter can be
done by replacing P1 > 0 with P1 > θI , in which θ > 0
can be either a fixed scalar or an LMI variable. Consider-
ing σ̄(L) as another performance index, note that it is even
possible to have a triply combined cost function in the LMI
optimization problem of Theorem 2. Now, we show the use-
fulness of this Theorem through a design example.

Example Consider a system of the form of (Σ) where

A =

[
0 1

−1 −1

]
, Φ(x) =

[
0

0.2 sin x1

]
,

M1 =

[
0.1 0.05
−2 0.1

]
, M2 = [−0.2 0.8 ],

C = [1 0 ], N1 = N2 =

[
0.1 0
0 0.1

]
.

Assuming β = 0.35, λ = 0.95, B = [1 1 ]T, D = 0.2,
and H = 0.5I2, we get γ∗ = 0.3016, μ∗ = 3.5, and
L = [5.0498 4.9486 ]T. Fig. 1 shows the true and estimated
values of states.

Fig. 1 The true and estimated states of the example.
The values of γ∗, μ∗ and σ̄(L), and the optimal trade-

off curve between γ∗ and μ∗ over the range of λ when the
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decay rate is fixed (β = 0.35) are shown in Fig. 2.
The optimal surfaces of γ∗, μ∗ and σ̄(L) over the range of

λ when the decay rate is variable are shown in Figs. 3, 4 and
5, respectively. The maximum value of γ∗ is 0.34 obtained

when λ = 1. According to Fig. 5, in the range of 0 � λ � 1
and 0 � β � 0.8, the norm of L is almost constant. As β
increases over 0.8, σ̄(L) rapidly increases and for β = 1.2,
the LMIs are infeasible.

Fig. 2 γ∗, μ∗ and σ̄(L), and the optimal trade-off curve.

Fig. 3 The optimal surface of γ∗.

Fig. 4 The optimal surface of μ∗.

Fig. 5 The optimal surface of σ̄(L).

6 Conclusions

A new nonlinear H∞ observer design method for a
class of Lipschitz nonlinear uncertain systems is proposed
through LMI optimization. The developed LMIs are linear
both in the admissible Lipschitz constant and at the distur-
bance attenuation level allowing both to be an LMI opti-
mization variable. The combined performance of the two
optimality criterions is optimized using Pareto optimization.
The achieved H∞ observer guarantees asymptotic stability
of the error dynamics with a prespecified decay rate (expo-
nential convergence) and is robust against Lipschitz additive
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nonlinear uncertainty as well as time-varying parametric un-
certainty. Explicit bounds on the nonlinear uncertainty are
derived through norm-wise and element-wise analysis.
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