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Abstract: In this paper, the problem of global output feedback stabilization for a class of upper-triangular nonlinear
systems with time-varying time-delay in the state is considered. The uncertain nonlinearities are assumed to be higher-order
in the unmeasurable states. Based on the extended homogeneous domination approach, using a low gain observer in combi-
nation with controller, the delay-independent output feedback controller makes closed-loop system globally asymptotically
stable under a homogeneous growth condition.
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1 Introduction
Since time-delay which exists in many control systems

such as chemical progress, manufacture progress and high-
speed networks often has great influence on the stability
and performance of controlled systems and can’t be elim-
inated due to its inherent nature, there have been consid-
erable efforts in stability analysis of time-delay systems
(see [1–7] and references therein). The well-known tech-
niques that deals with stability analysis for linear time-delay
systems is Lyapunov-Razumikhin method (see [8]). The re-
sults are often obtained in the form of linear matrix inequal-
ities (LMI). The paper [9] presented a new delay-dependant
and parameter-dependant robust stability criterion for lin-
ear continuous time systems using LMI. However the use-
ful tools such as LMI are hard to apply to nonlinear sys-
tems with time-delay. In recent years, a class of Lyapunov-
Krasovskii functionals have been used as checking criteria
for time-delay nonlinear systems stability. The uncertain-
ties of unknown time-delay were compensated for using
appropriate Lyapunov-Krasovskii functionals for a class of
parametric-strict-feedback nonlinear systems in [10].

Over the past few years, the global stabilization problem
of triangular structural nonlinear systems by output feed-
back control has been addressed in numerous studies (see
[11–12]). As investigated in [11], by using high gain ob-
server and observer backstepping globally asymptotically
stabilizing output feedback was designed for lower trian-
gular systems. The problem of robust feedback control is
considered for systems in lower triangular form under the
global Lipschitz-like condition on the unmeasurable states
with output dependent incremental rate in [12]. However
little attention has been focused on nonlinear time-delay
upper-triangular structure systems.

In general, from both practical and theoretical points of
view, it is somewhat difficult to design controllers for upper-
triangular systems with nonlinearities satisfying a linear

growth. Recently, a homogeneous nonlinear observer de-
sign is introduced in [13]. It has been shown under the linear
growth assumption that the problem of global output feed-
back stabilization of a class of upper-triangular nonlinear
systems is solved by homogeneous domination approach.
However the problem of how to globally stabilize the upper-
triangular system with time-delay is still quite open. For ex-
ample, the global output feedback stabilization problem of
the following system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = x2 + x3(t − d(t)) · sin x3,

ẋ2 = x3 + u3,

ẋ3 = u,

y = x1,

(1)

remains unsolved due to the presence of time-delay. There-
fore, the problem of how to globally stabilize the upper-
triangular system is of practical and theoretical importance.
The purpose of this paper is to tackle this problem and pro-
vide a systematic design method.

In order to solve this problem, we extend the homoge-
neous domination method for output feedback stabilization
to the case with time-delay. The novelty of the homoge-
neous domination approach is that no precise information of
the nonlinearities and time-delay is needed. Therefore this
is different from most of conventional approaches. Then we
use the extended homogeneous domination approach and
low gain observer and controller to deal with the upper-
triangular systems even when the nonlinearities are inher-
ently of higher-order.

The paper will generalize the results for the systems con-
sidered in [13] to systems with delays in the state. The
global output stabilization problem for uncertain strict feed-
back upper-triangular nonlinear systems with output depen-
dant incremental rate is solved in this paper. While in [11],
it was only considered the global output stabilization prob-
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lem for uncertain strict feedback nonlinear systems with
constant incremental rate. Particularly we extend properties
of homogeneous systems with time-delay and give the ex-
tended homogeneous domination approach.

2 Problem formulation
This paper considers a class of upper-triangular nonlinear

systems with time-delay of the form:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2 + φ1(t, x3, . . . , xn, x3d, . . . , xnd, u),
ẋ2 = x3 + φ2(t, x4, . . . , xn, x4d, . . . , xnd, u),

...

ẋn−1 = xn + φn−1(t, u),
ẋn = u, y = x1,

(2)

where x ∈ R
n, u ∈ R and y ∈ R are the system state,

input and output, respectively. The continuous functions
φi(·), 1 � i � n−1 represent nonlinear perturbation, which
are supposed possibly unknown.

The time-varying delay function d(t) is assumed to sat-

isfy the condition: 0 � d(t) � r, ḋ(t) � η < 1, where
r and η are given non-negative constants. The assumption
shows that the time delay may change from time to time
and because of the upper bound the delay cannot increase as
fast as the time itself, but the rate of changing is bounded.
In this paper, for simplicity of notation, we write the de-
layed state variables xid = xi(t − d(t)), i = 3, . . . , n.
x(t) = ϕ(t) ∈ C, t ∈ [−r, 0], where C = C([−r, 0], Rn)
denotes the space of continuous functions that map the inter-
val [−r, 0] into R

n, ϕ(t) is continuous vector valued initial
function with the norm ‖ϕ‖ = sup

s∈[−r,0]

‖ϕ(s)‖.

The general notion of homogeneous differential equa-
tion, review of the corresponding theoretical results and
numerous references can be found in [14–15]. Through-
out this paper, for fixed coordinates (x, xd) = (x1, . . . , xn,
x1d, . . . , xnd) ∈ R

2n and real number ri > 0, i = 1, . . . ,
n, we propose the following notions based on properties of
homogeneous systems.

Definition 1 The dilation Δεd(x, xd) is defined by
Δεd(x, xd) = (εr1x1, . . . , ε

rnxn, εr1x1d, . . . , ε
rnxnd),∀ε

> 0 with ri being called as the weights of the coordi-
nates (we definite dilation weight with time-delay Δd =
(r1, . . . , rn, r1, . . . , rn)).

Definition 2 A function V ∈ C(R2n, R) is said to be
homogeneous of degree τ if there is a real number τ ∈ R

such that ∀(x, xd) ∈ R
2n\{0}, ε > 0, V (Δεd(x, xd)) =

ετV (x, xd).
Definition 3 A vector field f ∈ C(R2n, R) is said to be

homogeneous of degree τ if there is a real number τ ∈ R

such that for i = 1, . . . , 2n, ∀(x, xd) ∈ R
2n\{0}, ε >

0, fi(Δεd(x, xd)) = ετ+rifi(x, xd).
Definition 4 A homogeneous p − norm is defined as

‖(x, xd)‖Δd,p = (
n∑

i=1

|xi|p/ri +
n∑

i=1

|xid|p/ri)1/p for a con-

stant p � 1, here we choose p = 2 for simplicity and write
‖(x, xd)‖Δd

.

Next, we give the following lemmas based on the ho-
mogeneous properties before giving the extended homoge-

neous theorem.

Lemma 1 Suppose V : R
N → R is a homogeneous

function of degree τ with respect to the dilation Δ, then
∂V

∂xi
is homogeneous of degree τ − ri with ri being the ho-

mogeneous weight of xi.

Lemma 2 Given a dilation weight Δ = (r1, . . . , rn),
suppose V1(x) and V2(x) are homogeneous functions of de-
gree τ1 and τ2, respectively, then V1(x)V2(x) is also homo-
geneous with respect to the same dilation weight Δ. More-
over, the homogeneous degree of V1V2 is τ1 + τ2.

With the help of aforementioned lemmas, we are ready to
prove the following homogeneous domination theorem with
time-delay.

Theorem 1 (Homogeneous domination theorem with
time-delay) Suppose that the following conditions hold:

H1) L̇ = F (L), F (0) = 0, is globally asymptotically
stable where F : R

N → R
N is a homogeneous vec-

tor field of degree τ with respect to dilation weight Δ =
(r1, r2, . . . , rN ).

H2) For i = 1, . . . , N , there are positive constants Ki

and Ci such that

|Gi(t, ε,L,L(t − d(t)))|
� Ciε

1+Ki(‖L‖τ+ri

Δ + ‖L(t − d(t))‖τ+ri

Δd
),

then there is a small enough constant ε > 0 such that the
following system L̇ = εF (L) + G(t, ε,L,L(t − d(t))) is
uniformly globally asymptotically stable.

Proof From H1), we know L̇ = F (L) is globally
asymptotically stable. By Lemmas 1 and 2, there is a pos-
itive definite Lyapunov function V1(L), which is homoge-
neous with a degree of μ(τ + μ > 0) for the same dila-

tion weight Δ = (r1, r2, . . . , rN ) and
∂V1

∂L F (L) is homo-

geneous of degree of τ + μ, such that

∂V1

∂L F (L) =
n∑

i=1

∂V1

∂Li
Fi(L) � −Ĉ‖L‖τ+μ

Δ ,

for a constant Ĉ > 0. By condition H2) and Young’s in-
equality, we have

∂V1

∂L G(t, ε,L,L(t − d(t)))

=
N∑

i=1

∂V1

∂Li
Gi(t, ε,L,L(t − d(t)))

�
N∑

i=1

(‖L‖τ−ri

Δ )(Ciε
1+Ki(‖L‖τ+ri

Δ +‖L(t−d(t))‖τ+ri

Δd
))

� ε1+KC̄(‖L‖τ+μ
Δ + ‖L(t − d(t))‖τ+μ

Δd ),
where K = min{Ki} > 0, C̄ > 0.

Consider the following Lyapunov-Krasovskii functional:

V2(t) = ε
� t

t−d(t)
‖L(s)‖τ+μ

Δ ds, ε > 0

then, we have

V̇2 = ε‖L‖τ+μ
Δ − ε(1 − ḋ(t)‖L(t − d(t))‖τ+μ

Δd
, ε > 0.

Taking V = V1 + V2, and we have

V̇ = V̇1 + V̇2

=
∂V1

∂L (εF (L) + G(t, ε,L,L(t − d(t)))) + V̇2

� −εĈ‖L‖τ+μ
Δ + ε1+KC̄(‖L‖τ+μ

Δ + ‖L(t − d)‖τ+μ
Δd

)
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+ε‖L‖τ+μ
Δ − ε(1 − η)‖L(t − d(t))‖τ+μ

Δd

� −(εĈ − ε1+KC̄ − ε)‖L‖τ+μ
Δ −((1 − η)ε−ε1+KC̄)

·‖L(t − d(t))‖τ+μ
Δd

.

Obviously, if the constant ε is small enough, i.e. 0 <

ε < 1, then we can make (1 − η)ε − ε1+KC̄ > 0, εĈ −
ε1+KC̄ − ε = ε(Ĉ − 1) − ε1+KC̄ > 0. As a result, the

system L̇ = εF (L) + G(t, ε,L,L(t − d(t))) is uniformly
globally asymptotically stable.

The homogeneous domination approach for output feed-
back stabilization was used in [13] without time-delay. It
has been proven to be useful to deal with upper-triangular
systems with linear growth condition. In this paper, to deal
with time-delay, Theorem 1 employs Lyapunov-Krasovskii
functional to dominate time-delay term.

3 Preliminary results
In this section, we briefly review a new output feedback

stabilization result presented in [13]. Based on the homo-
geneous theory, the result provides a systematic design tool
for the construction of dynamic compensation.

Consider a linear system

żi = zi+1, i = 1, . . . , n − 1, żn = v, y = z1, (3)

where v is input, y is output. For system (3), one can con-
struct a reduced homogeneous observer⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

˙̂η2 = fn+1(z1, η̂2) = −λ1ẑ2,

ẑ2 = sgn(η̂2 + λ1z1)|η̂2 + λ1z1|r2/r1 ,

...

˙̂ηk = fn+k−1(z1, η̂2, . . . , η̂k) = −λk−1ẑk,

ẑk = sgn(η̂k + λk−1ẑk−1)|η̂k + λk−1ẑk−1|rk/rk−1

(4)

where k = 3, . . . , n, and r1 = 1, ri = ri−1 + m,m =
−q

p
, q is a positive even integer, p is a positive odd integer.

ri are the homogeneous dilations and λi > 0, i = 1, . . . ,
n − 1 are observer gains. The sign function is defined by

sgn s =
{1, if s > 0,

−1, if s < 0.

The controller can be constructed as

v = −bn(ẑ1/rn
n + bn−1(ẑ

1/rn−1
n−1 + . . .

+b2(ẑ
1/r2
2 + b1z1)))rn+m, (5)

with ẑ1 = z1, bi = β
1/ri−1
i , i = 1, . . . , n − 1, bn = βn and

ẑ∗1 = 0, ξ̂1 = ẑ1 − ẑ∗1
...

ẑ∗k = −ξ̂rk

k−1βk−1, ξ̂k = ẑ
1/rk

k − ẑ
∗1/rk

k ,

for appropriate controller constants βk > 0, k = 1, . . . , n.
Denote

L = (z1 · · · zn η̂2 · · · η̂n)T, (6)

F (L) = (z2 · · · zn v fn+1 · · · f2n−1)T. (7)

The closed-loop system (3)–(5) can be rewritten in a com-
pact form L̇ = F (L). Moreover, F (L) is homogeneous of
degree m with dilation weight

Δ = (r2, r2, . . . , r2n−1) = (1, m + 1, . . . , (n − 1)m

+1, 1, m + 1, . . . , (n − 2)m + 1). (8)

Lemma 3 For linear system (3), for any constant m ∈
(− 1

n
, 0), there is a homogeneous output feedback controller

(5) of degree m rendering system (3) uniformly asymptoti-
cally stable.

4 Main results
The objective of this paper is to design a state feedback

controller u which globally stabilizes system (2) in the pres-
ence of the commonly required higher-order or linear condi-
tion. To solve the problem, we make the following assump-
tion on system (2).

Assumption 1 There is a constant m(− 1
n

< m � 0)
such that for i = 1, . . . , n − 1,

φi(t, xi+2, . . ., xn, xi+2(t−d(t)), . . ., xn(t−d(t)), u)
� c(|xi+2|(im+1)/((i+1)m+1) + . . .

+|xn|(im+1)/((n−1)m+1)

+|xi+2(t − d(t))|(im+1)/((i+1)m+1) + . . .

+|xn(t−d(t))|(im+1)/((n−1)m+1)+|u|(im+1)/(nm+1)).

In this section, we show that under Assumption 1, the
problem of global stabilization for system (2) is solvable.
We apply the extended homogeneous domination approach
(Theorem 1) to design a scaled output feedback controller
that globally stabilizes the time-varying time-delay upper-
triangular system (2).

Theorem 2 Under Assumption 1, there is an output
feedback controller globally stabilizing the upper triangu-
lar system (2).

Proof Supposed ri is the same as the notation, ri ∈
(0, 1] is a ratio of two positive odd integers. Defining new
coordinates

zi =
xi

εi−1
, zi(t − d(t)) =

xi(t − d(t))
εi−1

, v =
u

εn
,

with i = 1, . . . , n, 0 < ε < 1, here v is as same as (5).
Under the new coordinates, system (2) can be rewritten as
the following system:

żi = εzi+1 +
φi

εi−1
, i = 1, . . . , n,

żn =
u

εn−1
= εv.

By Assumption 1, we have

φi(t, xi+2, . . . , xn, xi+2,d, . . . , xnd, u)

� c(|εi+1zi+2|(im+1)/((i+1)m+1) + . . . +
|εn−1zn|(im+1)/((n−1)m+1) +
|εi+1zi+2(t − d)|(im+1)/((i+1)m+1) + . . . +
|εn−1zn(t−d)|(im+1)/((n−1)m+1)+|εnv|(im+1)/(nm+1)).

Because ε < 1, thus

| φi

εi−1
|

� cε2[(|z(im+1)/(i+1)m+1
i+2 + . . . + |zn|(im+1)/(i+1)m+1

+|v|(im+1)/(nm+1)) + (|zi+2(t − d)|(im+1)/((i+1)m+1)

+ . . . + |zn(t − d)|(im+1)/((n−1)m+1)

+|v|(im+1)/(nm+1))]
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� c̃ε2(‖L‖im+1
Δ + ‖L(t − d(t))‖im+1

Δd
), i = 1, . . . , n.

Utilizing the observer with a scaling gain ε :

˙̂η2 = −ελ1ẑ2, ˙̂η3 = −ελ2ẑ3, . . . , ˙̂ηn = −ελn−1ẑn,

ẑ2 = sgn(η̂2 + λ1z1)r2/r1 |η̂2 + λ1z1|r2/r1 ,

ẑ3 = sgn(η̂3 + λ2ẑ2)r3/r2 |η̂3 + λ2ẑ2|r3/r2 ,

ẑn =sgn(η̂n+λn−1ẑn−1)rn/rn−1 |η̂n+λn−1ẑn−1|rn/rn−1 ,

where the observer gains λi, i = 1, . . . , n − 1 are exactly
chosen as [13]. Thus the closed-loop system can be descri-
bed as

L̇ = εF (L) + (φ1(·), φ2

ε
, . . . ,

φn−1

εn−2
, 0, . . . , 0)T.

Choose the same construction V1 = U(L) in [13], we have

∂U(L)
∂L F (L) � −c1‖L‖2+m

Δ ,

which implies the system L̇ = F (L) with homogeneous of
degree m asymptotically stable.

By Theorem 1, we can choose a small enough gain ε
such that the scaled homogeneous output feedback con-
troller renders systems (2) uniformly globally asymptoti-
cally stable.

Now we extend the result obtained in the preceding the-
orem(Theorem 2) to a more general nonlinear systems that
are not necessarily in the triangular form. Consider the fol-
lowing non-triangular nonlinear system:{

ẋi =xi+1+φi(t, x, x(t−d(t)), u), i=1, . . . , n−1,

ẋn = u, y = x1.
(9)

Since φi is not in the upper-triangular form, Theorem 2 is
not applicable to system (9). However, based on Theorem
1,Theorem 2 can be extended to systems under the follow-
ing assumption.

Assumption 2 There are a negative constant m ∈
(− 1

n
, 0] and positive constants μi > 0, i = 1, . . . , n − 1

such that ∀ε ∈ (0, 1),∀(t, z, v) ∈ R
n+2

|φi(t, z1, εz2, . . . , ε
n−1zn, z1(t − d), εz2(t − d), . . . ,

εn−1zn(t − d), εnv)|
� cεi+μi(

n∑
k=1

|zk|im+1/(k−1)m+1

+
n∑

k=1

|zk(t − d)|im+1/(k−1)m+1 + |v|im+1/nm+1).

Theorem 3 Under Assumption 2, the problem of global
output feedback stabilization of non-triangular system can
be solved.

Proof Using the same argument in the proof of Theo-
rem 2, for system (9) we use the exactly same observer and
controller, system (9) can be rewritten as

L̇ = εF (L) + (φ1(·) φ2

ε
· · · φn−1

εn−2
0 · · · 0)T.

Assumption 2 leads to

|Gi(t, ε,L,L(t − d))|
= |φi(t, z1, . . . , ε

n−1zn, z1d, . . . , ε
n−1znd, ε

nv)
εi−1

|

� cε1+μi(
n∑

k=1

|zk|(im+1)/((k−1)m+1)

+
n∑

k=1

|zk(t − d)|(im+1)/((k−1)m+1)+|v|(im+1)/(nm+1),

for ∀ε ∈ (0, 1), zid = zi(t− d), (t, z, z(t− d), v) ∈ R
2n+2.

As a direct consequence of Theorem 1, the global output
feedback stabilization of (9) can be achieved.

5 Examples
We now present two examples to illustrate the effective-

ness of the proposed method.

Example 1 Consider the upper-triangular system (1),
here we choose d(t) = 0.5(1 + sin t) and ḋ(t) � 0.5. By
taking

m = −2
7
∈ (−1

3
, 0),

system (1) satisfies Assumption 3.1. As a matter of fact, by
Young’s inequality, we have

|x3(t − d(t)) sin x3|
� 3

5
|x3(t − d)|3/5 +

2
5
| sin x3|5/2

� 3
5
|x3(t − d)|3/5 +

2
5
| sin x3|5/3

� |x3(t − d)|3/5 + |x3|5/3

= |x3(t − d)|(m+1)/(2m+1) + |x3|(m+1)/(2m+1),

|u3| � |u|3 = |u|(2m+1)/(3m+1).

Construct the nonsmooth observer⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂η2 = −ελ1ẑ2,

˙̂η3 = −ελ2ẑ3,

ẑ2 = sgn(η̂2 + λ1z1)5/7|η̂2 + λ1z1|5/7,

ẑ3 = sgn(η̂3 + λ2ẑ2)3/5|η̂3 + λ2ẑ2|3/5,

(10)

u = −ε3b3(ẑ
7/3
3 + b2(ẑ

7/5
2 + b1z1))1/7, (11)

where λ1, λ2, b1, b2 and b3 are appropriate positive con-
stants.

Here we choose λ1 = 3, λ2 = 3.1, b1 = 0.5, b2 = 1,
b3 = 3. By Theorem 2, there is a small gain 0 < ε =
0.8 < 1 such that the output feedback controller (11) ren-
ders system (1) globally asymptotically stable. Figs. 1–
4 show the response of the closed-loop system (1), (10)
and (11) with initial conditions [x1(t) x2(t) x3(t)] =
[1 2 3], [η̂2(t) η̂3(t)] = [5 4], for t ∈ [−0.5, 0].

Fig. 1 Trajectories of the state x(t).
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Fig. 2 Trajectory of control input u(t).

Fig. 3 Trajectories of x2 and η̂2.

Fig. 4 Trajectories of x3 and η̂3.

Remark 1 The observer (10) and the controller (11) are
constructed only based on the nominal system (3). No pre-
cise information of the nonlinearities is needed. It means
that the same dynamic controller (10)–(11) can be applied
to different nonlinear systems as long as Assumption 3.1 is
satisfied. This advantage can greatly reduce the design com-
plexity normally associated with dynamic output feedback
design.

Note that system (2) is a special case of system (9), so
Theorem 3 can deal with general cases.

Example 2 Consider a non-triangular system with time-

delay ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = x2 + x
5/3
3 (t − d(t)),

ẋ2 = x3 + ln (1 + x2
1)u,

ẋ3 = u,

y = x1,

(12)

here we choose d(t) = 0.3(1+cos t) and ḋ(t) � 0.3. Obvi-

ously, by taking m = −2
7
∈ (−1

3
, 0), system satisfies As-

sumption 3.2. When λ1 = 4, λ2 = 4.1, b1 = 0.5, b2 = 1
and b3 = 3, ε = 0.7, system (12) with initial condition
[x1(t) x2(t) x3(t)] = [5 8 3], [η̂2(t) η̂3(t)] = [5 4],
for t ∈ [−0.3, 0], by Theorem 3 we can explicitly construct
output feedback controller (10)–(11), it guarantees that the
system is globally asymptotically stable. Figs. 5–6 show the
effectiveness of the proposed method.

Fig. 5 Trajectories of the state x(t).

Fig. 6 Trajectory of the control input u(t).

6 Conclusions
In this paper, the output feedback stabilization prob-

lem of a class of upper-triangular nonlinear systems with
time-varying time-delay has been addressed. Several lin-
ear growth conditions that guarantee the existence of state
feedback controller have been given. By utilizing the ex-
tended homogeneous domination theorem, the stabilization
of a nonlinear system output feedback controller was con-
structed. Illustrative examples and simulations are given. It
is also shown that design approach is applicable to more
general cases.
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