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with uncertain state delay and

arbitrary initial error
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Abstract: Most of the existing iterative learning control algorithms proposed for time-delay systems are based on the
condition that the time-delay is precisely available, and the initial state is reset to the desired one or a fixed value at the
start of each operation, which makes great limitation on the practical application of corresponding results. In this paper, a
new iterative learning control algorithm is studied for a class of nonlinear system with uncertain state delay and arbitrary
initial error. This algorithm needs to know only the boundary estimation of the state delay, and the initial state is updated,
while the convergence of the system is guaranteed. Without state disturbance and output measurement noise, the system
output will strictly track the desired trajectory after successive iteration. Furthermore, in the presence of state disturbance
and measurement noise, the tracking error will be bounded uniformly. The convergence is strictly proved mathematically,
and sufficient conditions are obtained. A numerical example is shown to demonstrate the effectiveness of the proposed
approach.
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1 Introduction

The iterative learning control (ILC) method is a branch
of intelligent control with strict mathematical description.
When the same tasks are performed by a controlled system
through repetitive high-speed operations, a controller in an
iterative form, which generates control inputs progressively
improving tracking performance and eventually leading to
the perfect tracking along the entire span of the specified
trajectory, can be designed with iterative learning control
methodology. It just requires less a priori knowledge about
the controlled systems and relies on less online-calculation
burden. In the recent two decades, ILC has been extensively
studied by experts and scholars with significant progress
in both theory and application [1–4]. It is well known that
time delays including control delays and state delays, are
unavoidable in most industrial processes. As time delay
is frequently encountered in actual systems and is often a
source of instability, iterative learning control for systems
with time delay has received increasing attention from re-
searchers in recent years [5–7]. For example, Xu [8] dis-
cussed the problem of iterative control of batch processes
with modeling errors and time delays, and the processes
were represented by a transfer function plus dead time. Ji
and Luo [9] gave the sufficient condition for the conver-
gence of the linear system with control delay. Some mono-
tone iterative schemes for computing the solution of a sys-
tem of nonlinear difference equations that arise from a class
of nonlinear reaction-diffusion equations with time delays
were presented by Feng [10], while Hou and Ruan [11]
studied the weighted leading open-loop PD-type iterative
learning control algorithm for large-scale linear industrial
processes with time delays. Yan [12] discussed the robust

stability of interval dynamical systems with time delay by
constructing suitable control matrix and iterative function.
Despite the fact that nonlinear systems with state delays are
pervasive in practical application, they have barely been in-
vestigated.

During the iterative process, a common assumption is that
the initial state should be consistent with the desired value
or set to a fixed point (which can be different from the de-
sired initial state) in each iteration. Since the disturbance
of initial state will directly affect the precision of trajectory
tracking, this assumption is very important to the stability
analysis of the system [13, 14]. However, in practice, zero
initial deviation is difficult to be guaranteed; therefore, the
research on the robustness of the initial state deviation is of
great important significance. Sun [15] offered a novel initial
state learning law, which allowed initial repositioning errors
and initial states not to be in specified positions, but it was
peculiar to the LTI systems. A discrete-time adaptive itera-
tive learning control (AILC) scheme was presented in [16]
to deal with systems with time-varying parametric uncer-
tainties. When the initial states were random and the refer-
ence trajectory was iteration varying, the new ALIC could
achieve the pointwise convergence over a finite time inter-
val asymptotically along the iterative learning axis. A con-
structive discrete-time adaptive ILC approach was designed,
which could perform well when the initial state value and
the target trajectory were varying along the iteration axis
[17, 18].

However, it can be found that most of the existing itera-
tive learning control algorithms specific to time-delay sys-
tems only are restricted to those whose delay is precisely
given, and initial resetting error is not allowed [19, 20].
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Moreover, under these disturbed conditions, the iterative al-
gorithm uniform convergence still fails to be analyzed.

In this paper, a simple form of iterative learning control
algorithm is proposed for a class of nonlinear systems with
uncertain state delay and arbitrary initial error, and the sys-
tem is of great generality and representative. This algorithm
does not require the precise state delay but only its upper
and lower bounds. When the learning convergence condi-
tion is satisfied, the control error will ultimately enter into
some neighborhood of the desired value in the presence
of the disturbances in the running process of the system.
The neighbor size is decided by the bounds of the distur-
bances. The smaller the disturbances, the closer the learn-
ing control process gets to the desired one. Besides, the
learning schemes under consideration are of robust conver-
gence, which allows initial repositioning errors, and the ini-
tial states need not be specified positions. Sufficient con-
ditions guaranteeing the convergence of the tracking error
are stated and proven. A numerical example is presented to
demonstrate the effectiveness of the proposed algorithm.

2 Problem formulation

The nonlinear system with uncertain state-delay and dis-
turbances can be expressed in the following form:⎧⎨

⎩
ẋk(t) = f (xk(t), xk(t − τ), t) + B(t)uk(t)

+ wk (xk(t), t) ,

yk(t) = g (xk(t), t) + vk(t),
(1)

where t ∈ [0, T ] ; k = 0, 1, 2, . . . is the iterative number;
xk(t) ∈ R

n, uk(t) ∈ R
m, and yk(t) ∈ R

r are the state, con-
trol input and output of the system, respectively. τ is an un-
certain time delay, which satisfies 0 � τ1 � τ � τ2 < T ,
wherein τ1, τ2 are the lower and upper bounds of τ , re-
spectively. wk(xk(t), t) ∈ R

n and vk(t) ∈ R
r are the state

disturbance and the output disturbance of the system, re-
spectively. The functions f : R

n × R
n × [0, T ] → R

n

and B ∈ R
n×m are both piecewise continuous on [0, T ].

g : R
n × [0, T ] → R

r is differentiable for all x and t. Be-
sides, f , B, and g are not precisely known.

Relevant conditions of the nonlinear system are as fol-
lows.

Assumption 1 For any realizable bounded output tra-
jectory yd(t), there exists a unique control input ud(t) to
make the following equations hold:{

ẋd(t) = f (xd(t), xd(t − τ), t) + B(t)ud(t),
yd(t) = g (xd(t), t) ,

(2)

where xd(t) is the desired state.
Assumption 2 Functions f , B(t) and partial derivative

gx are all uniformly bounded, and the bounds are bf , bB ,
bgx, respectively. f , g , gx, and gt are uniformly globally
Lipschitz in x, ∀t ∈ [0, T ]. That is,

‖f (x1(t), x1 (t−τ) , t)−f (x2(t), x2 (t−τ) , t)‖
� kf1‖x1(t)−x2(t)‖+kf2 ‖x1 (t−τ)−x2 (t−τ)‖ , (3)
‖h (x1(t), t)−h (x2(t), t)‖� kh ‖x1(t)−x2(t)‖ ,

h ∈ {g, gx, gt}, (4)

where kf1, kf2, and kh are all Lipschitz constants.
Assumption 3 B(t) is a full column rank matrix that

satisfies B(t)(BT(t)B(t))−1BT(t) = Ĩn, ∀t ∈ [0, T ]. In
particular, Ĩn is a constant matrix that satisfies ‖Ĩn‖� 1.

Assumption 4 Functions w and
dv

dt
are bounded, and

the upper boundaries of which are bw and bv , respectively.
For example, bw = sup

t∈[0,T ],∀x(t)∈R
n
‖w (x(t), t)‖.

Remark 1 In Assumption 3, B(t) is a full column rank
matrix to ensure the nonsingularity of BT(t)B(t) on [0, T ].

The objective of the control can be described as follows:
For any given desired trajectory yd(t), the initial error of
each iteration is not zero, and we find a control input uk(t)
that is obtained through iteration to make the output yk(t)
approach the desired output yd(t) as closely as possible
along the iterative axis as k → ∞.

Thus, the explicit control law of nonlinear process with
uncertain state delay and arbitrary initial error is finally
given by

uk+1(t)=uk(t)+BL(t)(ėk(t+τ1)+ėk(t+τ2)), (5)
xk+1(0) = xk(0) + ĨnLek(0), (6)

where BL(t) = (BT (t)B(t))−1BT (t)L; Ĩn is defined by
Assumption 3; the initial learning state x1(0) can be se-
lected discretionarily on R

n ; the first iterative input u1(t)
can be chosen as any continuous admissible control; the kth
iterative output error is ek(t) = yd(t) − yk(t); L is ad-
justable constant gain matrix whose order is n×m; and τ1,
τ2 are the estimated lower and upper bounds of τ , respec-
tively.

3 Main results

Lemma 1 [21] If h(t) =
� t

0
ea(t−τ)f(τ)dτ , there is

‖h‖λ � 1 − e−λT

λ
‖f‖λ under the condition a = 0, where

t ∈ [0, T ].
Lemma 2 [21] Real data sequence {ak} is supposed to

satisfy
pak + qak−1 � dk, k = 1, 2, . . .

wherein {dk} is the given real disturbance sequence. If
p > −q � 0, then

1) dk � d̄ (∀k) implies

ak � a0 +
d̄

p + q
, ∀k,

lim
k→∞

sup ak � d̄

p + q
.

2) lim
k→∞

dk = d∞ implies

lim
k→∞

sup ak � d∞
p + q

.

Theorem 1 When Assumptions 1–3 and the condition
‖I − BL(t)[gxd(t + τ1)B(t + τ1)
+gxd(t + τ2)B(t + τ2)]‖ � ρ < 1 (7)

are satisfied, the control error ‖Δuk(t)‖, the state error
‖Δxk(t)‖, and the output error ‖Δek(t)‖ of the uncertain
state-delay nonlinear system (1) with arbitrary initial er-
ror (regardless of the state disturbances and output distur-
bances) will converge to zero as k → ∞, where gxd(·) is the
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derivative of g(·, ·) with respect to xd. When the system’s
external disturbances having boundary exists, the tracking
error is uniformly bounded, and the convergent value is de-
termined by the bounds of the disturbances.

To make rigorous analysis, the following notations are in-
troduced:

f (x, t) = f (x(t), x(t − τ), t) , g (x, t) = g (x(t), t) ,

gx (x, t) = gx (x(t), t) , Δuk(t) = ud(t) − uk(t),
Δxk(t) = xd(t) − xk(t), Δgt(xk) = gt(xd) − gt(xk),
Δgxk(t) = gxd(t) − gxk(t), w (x, t) = w (x(t), t) ,

Δf (xk, t) = f (xd, t) − f (xk, t) .

In addition, let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ d1
gΔf = gxd(t + τ1)Δf(xk, t + τ1),

Γ d2
gΔf = gxd(t + τ2)Δf(xk, t + τ2),

Γ k1
Δgf = Δgxk(t + τ1)f(xk, t + τ1),

Γ k2
Δgf = Δgxk(t + τ2)f(xk, t + τ2),

Γ d1
gB = gxd (t + τ1) B (t + τ1) ,

Γ d2
gB = gxd (t + τ2) B (t + τ2) ,

Γ k1
ΔgB = Δgxk (t + τ1)B (t + τ1) ,

Γ k2
ΔgB = Δgxk (t + τ2)B (t + τ2) ,

Γ d1
gw = gxd (t + τ1) wk (xk, t + τ1) ,

Γ d2
gw = gxd (t + τ2) wk (xk, t + τ2) ,

Γ k1
Δgw = Δgxk (t + τ1)wk (xk, t + τ1) ,

Γ k2
Δgw = Δgxk (t + τ2)wk (xk, t + τ2) .

(8)

Proof The (k + 1)th control error can be derived from
(5)
Δuk+1(t) = ud(t)−uk+1(t)

= Δuk(t)−BL(t) (ėk(t+τ1)+ ėk(t+τ2)) . (9)

Considering ėk(t + τ1), according to (1), there is
ėk (t + τ1)
= ġ (xd, t + τ1) − ġ (xk, t + τ1) − v̇k (t + τ1)
= gxd (t + τ1) ẋd (t + τ1) + gt+τ1 (xd)

− gxk (t + τ1) ẋk (t + τ1) − gxd (t + τ1) ẋk (t + τ1)
− gt+τ1 (xk) + gxd (t + τ1) ẋk (t + τ1) − v̇k (t + τ1)

= Γ d1
gΔf + Γ k1

Δgf + Γ k1
ΔgBuk (t + τ1) + Γ d1

gBΔuk (t + τ1)

+ Δgt+τ1 (xk) − v̇k (t + τ1) − Γ d1
gw + Γ k1

Δgw,

(10)
where Γ d1

gΔf , Γ k1
Δgf , Γ d1

gB , Γ k1
ΔgB , Γ d1

gw, and Γ k1
Δgw are defined

in (8).
Using Taylor’s formula to expand Δuk(t + τ i) at t, and

omitting the higher order terms, there is
Δuk(t + τ i) = Δuk(t) + Δu̇kτ i, (11)

where i ∈ {1, 2}.
Taking the norms on both sides of (10), and according to

(11), Assumptions 1, 2, and 4, there is
‖ėk (t + τ1)‖
� m1 ‖Δxk (t + τ1)‖ + m2 ‖Δxk (t + τ1 − τ)‖

+ m3 + m4τ1 + bv̇, (12)
where

m1 = bgxkf1 +(bf +bw +bBbu)kgx + kgt,

m2 = bgxkf2,

m3 = bgxbBbΔu + bgxbw,

m4 = bgxbBbΔu̇.

Similarly, the following results can be derived:

ėk (t + τ2)
= ġ (xd, t + τ2) − ġ (xk, t + τ2) − v̇k (t + τ2)
= gxd (t + τ2) ẋd (t + τ2) + gt+τ2 (xd) − gt+τ2 (xk)

− gxk (t + τ2) ẋk (t + τ2) − gxd (t + τ2) ẋk (t + τ2)
+ gxd (t + τ2) ẋk (t + τ2) − v̇k (t + τ2)

= Γ d2
gΔf + Γ k2

Δgf + Γ k2
ΔgBuk (t + τ2) + Γ d2

gBΔuk (t + τ2)

+ Δgt+τ2 (xk) − v̇k (t + τ2) − Γ d2
gw + Γ k2

Δgw,

(13)

where Γ d2
gΔf , Γ k2

Δgf , Γ d2
gB , Γ k2

ΔgB , Γ d2
gw, and Γ k2

Δgw are defined
in (8). Moreover,

‖ėk (t + τ2)‖ + m2 ‖Δxk (t + τ2 − τ)‖
� m1 ‖Δxk (t + τ2)‖ + m3 + m4τ2 + bv̇. (14)

Substituting (10), (11), and (13) into (9), there is

Δuk+1(t)
=

[
1 − BL(t)

(
Γ d1

gB + Γ d2
gB

)]
Δuk(t)

−BL(t)
[
Γ d1

gΔf +Γ k1
Δgf +Γ d1

gBΔu̇k(t)τ1+Δgt+τ1 (xk)

+Γ k1
ΔgBuk (t+τ1)−v̇k (t+τ1) −Γ d1

gw+Γ k1
Δgw

]
−BL(t)

[
Γ d2

gΔf +Γ k2
Δgf +Γ k2

ΔgBΔu̇k(t)τ2+Δgt+τ2 (xk)

+ Γ k2
ΔgBuk (t + τ2) −v̇k (t + τ2) − Γ d2

gw + Γ k2
Δgw

]
.

(15)

Taking norms on the left and right sides of (15) and then
according to Assumption 2, there is

‖Δuk+1(t)‖
� ρ ‖Δuk(t)‖ + k1 ‖Δxk (t + τ1)‖

+ k2 ‖Δxk (t + τ1 − τ)‖ + k1 ‖Δxk (t + τ2)‖
+ k2 ‖Δxk (t + τ2 − τ)‖ + k0 + k3, (16)

where

ρ = sup
t∈[0,T ]

∥∥1 − BL(t)
(
Γ d1

gB + Γ d2
gB

)∥∥ ,

k1 = sup
t∈[0,T ]

‖BL(t) (bgxkf1 + (bf + bw) kgx

+kgxbBbu + kgt)‖ ,

k2 = sup
t∈[0,T ]

‖BL(t)bgxkf2‖ ,

k3 = sup
t∈[0,T ]

‖2BL(t) (bv̇ + bgxbw)‖ ,

k0 = sup
t∈[0,T ]

‖BL(t)bgxbBbΔu̇ (τ1 + τ2)‖ .

Considering ‖Δxk+1(t + τ∗)‖, τ∗ ∈ {τ1, τ1 − τ , τ2,
τ2 − τ} and using (5), (6), (12), and (14), we have

‖Δxk+1(t + τ∗)‖
= ‖Δxk(0)+ ĨnLΔek(0)+

� t+τ∗

0
(ẋd(σ)− ẋk+1(σ))dσ‖

� ‖Δxk(0)‖ + ‖L‖‖Δek(0)‖
+

� t+τ∗

0
‖f(xd, σ)−f(xk+1, σ)+B(σ)[ud(σ)−uk(σ)]

− ĨnL[ėk(σ+τ1)+ ėk(σ+τ2)]−wk+1(xk+1, σ)‖dσ

� ‖Δxk(0)‖+‖L‖‖Δek(0)‖
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+
� t+τ∗

0
{kf1‖Δxk+1(σ)‖+kf2‖Δxk+1(σ−τ)‖

+bB‖Δuk(σ)‖+‖L‖[m1‖Δxk(σ+τ1)‖
+m2‖Δxk(σ+τ1 − τ)‖+m0 +m1‖Δxk(σ + τ2)‖
+m2‖Δxk(σ+τ2−τ)‖]}dσ+n1,

(17)

where

m0 = 2m3 + m4(τ1 + τ2),
n1 = 2(T + τ∗)‖L‖bv̇ + (T + τ∗)bw.

Taking λ-norms on both sides of the comparison sign of
(17), using Lemma 1, there is

‖Δxk+1 (t + τ∗)‖λ

� ‖Δxk(0)‖ + ‖L‖ ‖Δek(0)‖
+ kf1a1 ‖Δxk+1 (t + τ∗)‖λ

+ kf2a1 ‖Δxk+1 (t + τ∗)‖λ

+ bBa1 ‖Δuk (t + τ∗)‖λ

+ ‖L‖ {2m1a1 ‖Δxk (t + τ∗)‖λ

+ 2m2a1 ‖Δxk (t + τ∗)‖λ + a0m0} + n1, (18)

where a0 =
1 − e−λ(T+τ∗)

λ
, a1 =

1 − e−λ(t+τ∗)

λ
.

Thus, from (18), we have

(1 − kf1a1 − kf2a1) ‖Δxk+1 (t + τ∗)‖λ

� ‖Δxk(0)‖ + ‖L‖ ‖Δek(0)‖ + ‖L‖ a0m0

+ 2 (m1 + m2) a1 ‖L‖ ‖Δxk (t + τ∗)‖λ

+ bBa1 ‖Δuk (t + τ∗)‖λ + n1. (19)

According to system (1), as well as the iterative learning
algorithms (5) and (6), there is

xk+1(t) = xk+1(0) +
� t

0
[f (xk+1, σ) + B(σ)uk+1(σ)

+wk+1 (xk+1, σ)] dσ

= xk(0) + ĨnLek(0) +
� t

0
{f (xk+1, σ)

+B(σ)uk(σ) + ĨnL [ėk (σ + τ1)
+ėk (σ + τ2)] + wk+1 (xk+1, σ)}dσ

= xk(t) −
� t

0
f (xk, σ)dσ +

� t

0
f (xk+1, σ)dσ

+ĨnLek(0) +
� t

0
wk+1 (xk+1, σ) dσ

+
� t

0
ĨnL [ėk (σ + τ1) + ėk (σ + τ2)] dσ.

(20)

Thus, from (20), it is easy to obtain

‖xk+1(t) − xk(t)‖
= ‖

� t

0
(f(xk+1, σ) − f(xk, σ))dσ + ĨnLek(0)

+
� t

0
ĨnL(ėk(σ + τ1)+ėk(σ + τ2))dσ

+
� t

0
wk+1(xk+1, σ)dσ‖

�
� t

0
‖f(xk+1, σ) − f(xk, σ)‖dσ + ‖L‖‖ek(0)‖

+‖L‖
� t

0
(‖ėk(σ + τ1)‖+‖ėk(σ + τ2)‖)dσ

+
� t

0
‖wk+1(xk+1, σ)‖dσ. (21)

Substituting (3), (12), and (14) into (21), there is
‖xk+1(t) − xk(t)‖
�

� t

0
[kf1‖xk+1(σ) − xk(σ)‖

+kf2‖xk+1(σ − τ) − xk(σ − τ)‖]dσ

+‖L‖‖ek(0)‖ + ‖L‖
� t

0
[m1‖Δxk(σ + τ1)‖

+m2‖Δxk(σ + τ1 − τ)‖ + m1‖Δxk(σ + τ2)‖
+m2‖Δxk(σ + τ2 − τ)‖ + m0]dσ + n2. (22)

where n2 = 2T ‖L‖ bv̇ + Tbw.
Taking λ-norms on both sides of (22) and using the prop-

erties of λ-norms, there is
‖xk+1(t) − xk(t)‖λ

� kf1
1 − e−λt

λ
‖xk+1(t) − xk(t)‖λ

+kf2
eλτ [e−λτ − e−λ(t+τ)]

λ
‖xk+1(t) − xk(t)‖λ

+‖L‖{m1
e−λτ1 [eλτ1 − e−λ(t−τ1)]

λ
‖Δxk(t)‖λ

+m2
[e−λ(τ−τ1) + e−λ(t+τ−τ1)]

λ
eλ(τ−τ1)‖Δxk(t)‖λ

+m1
e−λτ2 [eλτ2 − e−λ(t−τ2)]

λ
‖Δxk(t)‖λ

+m2eλ(τ−τ2)
[e−λ(τ−τ2) + e−λ(t+τ−τ2)]

λ
‖Δxk(t)‖λ

+‖ek(0)‖ +
(1 − e−λT )m0

λ
} + n2

= ‖L‖(2m1a2‖Δxk(t)‖λ + 2m2a2‖Δxk(t)‖λ

+‖ek(0)‖ + a3m0) + kf1a2‖xk+1(t) − xk(t)‖λ

+kf2a2‖xk+1(t) − xk(t)‖λ + n2, (23)

where a2 =
1 − e−λt

λ
, a3 =

1 − e−λT

λ
.

Since
‖xk+1(t)−xk(t)‖λ

= ‖xk+1(t)−xd(t)+xd(t)−xk(t)‖λ

= ‖Δxk(t) − Δxk+1(t)‖λ

� ‖Δxk(t)‖λ − ‖Δxk+1(t)‖λ , (24)
inequality (23) can be transformed into

[1 − kf1a2 − kf2a2 − 2 (m1 + m2) ‖L‖ a2] ‖Δxk(t)‖λ

−‖L‖ (‖ek(0)‖ + a3m0)
� (1 − kf1a2 − kf2a2) ‖Δxk+1(t)‖λ + n2. (25)
Thus, inequality (25) can be rewritten as
[1−kf1a1−kf2a1−2 (m1+m2) ‖L‖ a1] ‖Δxk (t+τ∗)‖λ

� (1 − kf1a1 − kf2a1) ‖Δxk+1 (t + τ∗)‖λ

+ ‖L‖ [‖ek(0)‖ + a0m0] + n1. (26)
Substituting (19) into (26), there is
[1−kf1a1−kf2a1−4 (m1+m2) ‖L‖ a1]‖Δxk (t+τ∗)‖λ

� bBa1 ‖Δuk (t + τ∗)‖λ + p0, (27)
where

p0 = ‖Δxk(0)‖ + ‖LΔek(0)‖ + ‖Lek(0)‖
+2 ‖L‖m0a0 + 2n1.

Thus, inequality (27) becomes
‖Δxk (t + τ∗)‖λ � kτ∗ ‖Δuk (t + τ∗)‖λ + pτ∗ , (28)
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where

kτ∗=
bB

(
1 − e−λ(t+τ∗)

)
λ−[kf1+kf2+4 (m1+m2) ‖L‖]

(
1−e−λ(t+τ∗)

) ,

(29)

pτ∗=
p0λ

λ−[kf1+kf2+4 (m1+m2) ‖L‖]
(
1−e−λ(t+τ∗)

) .

(30)
Using the properties of Taylor series and λ-norms, it is

easy to obtain
‖Δuk (t + τ∗)‖λ � e−λτ∗ ‖Δuk(t)‖λ + ωτ∗ , (31)

where
ωτ∗ = bΔu̇τ∗e−λτ∗ + 0τ∗e−λ(t+τ∗). (32)

Therefore, inequality (28) can be converted into
‖Δxk (t + τ∗)‖λ

� kτ∗e
−λτ∗ ‖Δuk(t)‖λ + kτ∗ωτ∗ + pτ∗ , (33)

τ∗ is replaced by τ1, τ2, τ1 − τ , τ2 − τ , respectively, and
then, there are

‖Δxk (t + τ1)‖λ

� kτ1e
−λτ1 ‖Δuk(t)‖λ + kτ1ωτ1 + pτ1 , (34)

‖Δxk (t + τ2)‖λ

� kτ2e
−λτ2 ‖Δuk(t)‖λ + kτ2ωτ2 + pτ2 , (35)

‖Δxk (t + τ1 − τ)‖λ

�kτ1−τe−λ(τ1−τ) ‖Δuk(t)‖λ+kτ1−τωτ1−τ +pτ1−τ ,

(36)
‖Δxk (t + τ2 − τ)‖λ

� kτ2−τe−λ(τ2−τ) ‖Δuk(t)‖λ+kτ2−τωτ2−τ +pτ2−τ .

(37)
Multiplying both sides of (16) by e−λt, and considering

(34)–(37), we have
‖Δuk+1(t)‖λ

� ρ ‖Δuk(t)‖λ + k1kτ1 ‖Δuk(t)‖λ

+k2kτ1−τ ‖Δuk(t)‖λ + k1kτ2 ‖Δuk(t)‖λ

+k2kτ2−τ ‖Δuk(t)‖λ + k1kτ1ωτ1 + k2kτ1−τωτ1−τ

+k1kτ2ωτ2
+ k2kτ2−τωτ2−τ + k1pτ1 + k2pτ1−τ

+k1pτ2 + k2pτ2−τ + k0 + k3

= (ρ + ρ1) ‖Δuk(t)‖λ + k′
0, (38)

where
ρ1 = k1kτ1 + k2kτ1−τ + k1kτ2 + k2kτ2−τ , (39)
k′
0 = k1kτ1ωτ1 + k2kτ1−τωτ1−τ + k1kτ2ωτ2

+k2kτ2−τωτ2−τ + k1pτ1 + k2pτ1−τ + k1pτ2

+k2pτ2−τ + k0 + k3. (40)
According to Assumption 2, we have

lim
k→∞

sup ‖Δuk(t)‖λ � k′
0

1 − ρ − ρ1

. (41)

When the uncertain state disturbance and the derivative of
the output disturbance tend to zero, it is easy to draw n1 = 0
(because n1 = 2(T +τ∗)‖L‖bv̇ +(T +τ∗)bw). Thus, it can
be learned from (29) and (32) that there always exists one
λ, which is large enough to make kτ∗ → 0 and ωτ∗ → 0;
at the same time, when k → ∞, from (30), we can obtain
pτ∗ → 0 (p0 → 0 when a0 → 0 and n1 = 0). Therefore,
it can be seen from (39) and (40) that ρ1 → 0 and k′

0 → 0

(k0 + k3 = 0 when bv̇ = 0, bw = 0, and k → ∞) . Ac-
cording to ρ < 1 and the above results, a conclusion can be
reached as follows:

lim
k→∞

‖Δuk(t)‖ = 0. (42)

From (33) and (4), we can also get

lim
k→∞

‖Δxk(t)‖ = 0, lim
k→∞

‖Δyk(t)‖ = 0. (43)

When the disturbances of the system are bounded, n1,
p0, pτ∗ , and k′

0 are bounded. Thus, the tracking error is uni-
formly bounded, and the bound depends on bv̇ and bw. The
proof is completed.

4 Simulation results

In order to test the effectiveness of the proposed learning
control algorithm, the following nonlinear state-delay sys-
tem with external uncertain disturbances and output mea-
surement noises can be considered:[

ẋ1(t)
ẋ2(t)

]
=

[
2x1(t) + 3 sin (x2 (t − τ))
5x2(t) + 2 cos (x1 (t − τ))

]

+

[
2t + 1 t2

1 − t 1

][
u1(t)
u2(t)

]
+

[
w1(t)
w2(t)

]
,

y(t) =

[
2x1(t) sin x2(t)
x2(t) cos x1(t)

]
+

[
v1(t)
v2(t)

]
,

where [
w1(t)
w2(t)

]
=

[
0.4 cos (0.1πt)
0.6 cos (0.1πt)

]
,

[
v1(t)
v2(t)

]
=

[
0.1 sin (0.1πt)
0.2 sin (0.1πt)

]
.

The following function is chosen as target trajectories:

yd(t) =

[
2t2 − 3
1 + t3

]
,

where t∈ [0, 10] s, and the sampling period is ΔT =0.05 s.
L can be chosen by trial and error based on MATLAB

technique, and the chosen L suffices not only for the conver-
gence condition of the theorem but also for the faster con-
vergence speed of the algorithm. For simulation, we chose

L=

[
0.01
0.02

]
B(t),

[
u1,0(t)
u2,0(t)

]
=

[
0
0

]
,

[
x1(0)
x2(0)

]
=

[
1
0

]
.

The obtained simulation results are shown in Figs. 1–4.
Figs. 1 and 2 are the iterative tracking error curves when
τ ∈ [0.02, 0.05] (the estimated lower and upper bounds
of τ are 0.02 and 0.05, respectively). Figs. 3 and 4 are the
iterative tracking error curves when τ ∈ [0.05, 0.08] (the
estimated lower and upper bounds of τ are 0.05 and 0.08,
respectively). The results concerning the uncertain state dis-
turbances and output measure noises are shown in Figs. 1
and 3, while the results without concerning them are illus-
trated in Figs. 2 and 4.
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Fig. 1 Curve of iterative tracking error (with initial error and
disturbances when τ ∈ [0.02, 0.05]).

Fig. 2 Curve of iterative tracking error (with initial error and
without disturbances when τ ∈ [0.02, 0.05]).

Fig. 3 Curve of iterative tracking error (with initial error and
disturbances when τ ∈ [0.05, 0.08]).

Fig. 4 Curve of iterative tracking error (with initial error and
without disturbances when τ ∈ [0.05, 0.08]).

It can be illustrated from the figures that the algorithm
proposed has perfect control effects. In Figs.1 and 3, Figs.
2 and 4, respectively, we can see the curves in Fig. 2 have
faster convergent speed than that in Fig. 4, and the curves
in Fig. 1 have faster convergent speed than Fig. 3. We can

come to the conclusion that the influences of the state de-
lay can be almost entirely neglected when its bounds are
estimated within one sampling period. Thus, the anticipant
tracking performance can be realized by highly estimating
the delay or lengthening the sampling period properly.

5 Conclusions

The present paper focuses on the problem of iterative
control for nonlinear uncertain state-delay system with ar-
bitrary initial error. A rigorous iterative control algorithm
is proposed and, which states that the tracking error under
the algorithm can converge to zero if there is no state dis-
turbance or output measurement noise, while the tracking
error is uniformly bounded in the presence of unavoidable
uncertain state disturbance and output measurement noise.
Meanwhile, this algorithm overcomes the defect of former
methods which cannot be applied to the system with initial
deviation in learning. The effects of the sampling frequency
and state-delay on the tracking performance are analyzed.
The simulations confirm the effectiveness of the presented
method.
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