
J Control Theory Appl 2011 9 (3) 310–335
DOI 10.1007/s11768-011-1005-3

Approximate policy iteration: a survey and some
new methods

Dimitri P. BERTSEKAS
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

Abstract: We consider the classical policy iteration method of dynamic programming (DP), where approximations
and simulation are used to deal with the curse of dimensionality. We survey a number of issues: convergence and rate of
convergence of approximate policy evaluation methods, singularity and susceptibility to simulation noise of policy evalu-
ation, exploration issues, constrained and enhanced policy iteration, policy oscillation and chattering, and optimistic and
distributed policy iteration. Our discussion of policy evaluation is couched in general terms and aims to unify the available
methods in the light of recent research developments and to compare the two main policy evaluation approaches: projected
equations and temporal differences (TD), and aggregation. In the context of these approaches, we survey two different
types of simulation-based algorithms: matrix inversion methods, such as least-squares temporal difference (LSTD), and
iterative methods, such as least-squares policy evaluation (LSPE) and TD (λ), and their scaled variants. We discuss a recent
method, based on regression and regularization, which rectifies the unreliability of LSTD for nearly singular projected
Bellman equations. An iterative version of this method belongs to the LSPE class of methods and provides the connecting
link between LSTD and LSPE. Our discussion of policy improvement focuses on the role of policy oscillation and its effect
on performance guarantees. We illustrate that policy evaluation when done by the projected equation/TD approach may
lead to policy oscillation, but when done by aggregation it does not. This implies better error bounds and more regular
performance for aggregation, at the expense of some loss of generality in cost function representation capability. Hard
aggregation provides the connecting link between projected equation/TD-based and aggregation-based policy evaluation,
and is characterized by favorable error bounds.

Keywords: Dynamic programming; Policy iteration; Projected equation; Aggregation; Chattering; Regularization

1 Introduction

In this paper, we aim to survey and place in broad context
a number of issues relating to approximate policy iteration
methods for finite-state, discrete-time, stochastic dynamic
programming (DP) problems. These methods are one of the
major approaches for approximate DP, a field that has at-
tracted substantial research interest and has a wide range
of applications, because of its potential to address large
and complex problems that may not be treatable in other
ways. Among recent works in the extensive related litera-
ture, we mention textbooks and research monographs: Bert-
sekas and Tsitsiklis [1], Sutton and Barto [2], Gosavi [3],
Cao [4], Chang, Fu, Hu, and Marcus [5], Meyn [6], Pow-
ell [7], Busoniu, Babuska, De Schutter, and Ernst [8], and
the author’s text in preparation [9]; edited volumes and spe-
cial issues: White and Sofge [10], Si, Barto, Powell, and
Wunsch [11], Lewis, Lendaris, and Liu [12], and the 2007-
2009 Proceedings of the IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning; and
surveys: Barto, Bradtke, and Singh [13], Borkar [14], Lewis
and Vrabie [15], and Szepesvari [16].

For an overview of policy iteration methods, let us fo-
cus on the α-discounted n-state Markovian decision prob-
lem (MDP) with states 1, . . . , n, controls u ∈ U(i) at state

i, transition probabilities pij(u), and cost g(i, u, j) for tran-
sition from i to j under control u. A (stationary) policy μ
is a function from states i to admissible controls u ∈ U(i),
and Jμ(i) is the cost starting from state i and using policy μ.
It is well known (see, e.g., Puterman [17] or Bertsekas [18])
that the costs Jμ(i), i = 1, . . . , n, are the unique solution of
Bellman’s equation

Jμ(i) =
n∑

j=1

pij

(
μ(i)

)(
g(i, μ(i), j) + αJμ(j)

)
,

i = 1, . . . , n.

Equivalently, the vector Jμ ∈ R
n, which has components

Jμ(i), 1 is the unique fixed point of the mapping Tμ : R
n �→

R
n, which maps J ∈ R

n to the vector TμJ ∈ R
n that has

components

(TμJ)(i) =
n∑

j=1

pij

(
μ(i)

)(
g(i, μ(i), j) + αJ(j)

)
,

i = 1, . . . , n. (1)
Similarly, the optimal costs starting from i = 1, . . . , n,
are denoted J∗(i) and are the unique solution of Bellman’s
equation

J∗(i) = min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j) + αJ∗(j)

)
,

i = 1, . . . , n.

Received 7 January 2011.
This work was supported by the National Science Foundation (No.ECCS-0801549), the LANL Information Science and Technology Institute, and the
Air Force (No.FA9550-10-1-0412).

1 In our notation, R
n is the n-dimensional Euclidean space, all vectors in R

n are viewed as column vectors, and a prime denotes transposition. The
identity matrix is denoted by I .

c© South China University of Technology and Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2011

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 311

Equivalently, the optimal cost vector J∗ ∈ R
n, which has

components J∗(i), is the unique fixed point of the mapping
T : R

n �→ R
n defined by

(TJ)(i) = min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j) + αJ(j)

)
,

i = 1, . . . , n. (2)

An important property is that T is a sup-norm contraction,
so the iteration Jk+1 = TJk converges to J∗ from any
starting point J0 – this is known as value iteration.

Policy iteration is a major alternative to value iteration.
It produces a sequence of policies and associated cost func-
tions through iterations that have two phases: policy evalu-
ation (where the cost function of a policy is evaluated) and
policy improvement (where a new policy is generated). In
the exact form of the algorithm, the current policy μ is im-
proved by finding μ̄ that satisfies Tμ̄Jμ = TJμ (i.e., by
minimizing in the right-hand side of equation (2) with Jμ in
place of J). The improved policy μ̄ is evaluated by solving
the linear system of equations Jμ̄ = Tμ̄Jμ̄, and (Jμ̄, μ̄) be-
comes the new cost vector-policy pair, which is used to start
a new iteration.

In a variant of the method, the improved policy μ̄ is eval-
uated by applying Tμ̄ a finite number of times to an approxi-
mate evaluation of the preceding policy μ, which we denote
by J̃μ. This is known as ‘optimistic’ or ‘modified’ policy
iteration, and its motivation is that, in problems with a large
number of states, the linear system Jμ̄ = Tμ̄Jμ̄ cannot be
practically solved directly by matrix inversion, so it is best
solved iteratively by value iteration, that is, by repeated ap-
plication of Tμ̄ to some initial vector (most conveniently the
vector J̃μ). If the number m of applications of Tμ̄ is very
large, the exact form of policy iteration is essentially ob-
tained, but practice has shown that it is most efficient to use
a moderate value of m. In this case, the algorithm looks like
a hybrid of value and policy iteration, involving a sequence
of alternate applications of T and Tμ, with μ changing over
time.

It is well known that the exact form of policy iteration
converges to an optimal cost-policy pair for any initial con-
ditions (in a finite number of iterations when the number of
policies is finite, as in the discounted MDP). The conver-
gence of optimistic policy iteration is more fragile and re-
quires that the initial pair (J̃μ0 , μ0) satisfy Tμ0 J̃μ0 � J̃μ0 ,
when implemented in asynchronous form (irregularly, one
state at a time); see Williams and Baird [19], or Section
1.3.3 in [18]. 2 Since simulation-based policy iteration algo-
rithms are typically asynchronous, this restriction has mo-
tivated algorithmic modifications with guaranteed conver-
gence from arbitrary initial conditions, which will be partly
discussed in Section 3.8.

1.1 Policy iteration methods with cost function approx-

imation

In policy iteration methods with cost function approxima-
tion, we evaluate μ by approximating Jμ with a vector Φrμ

from the subspace S spanned by the columns of an n × s
matrix Φ, which may be viewed as basis functions: 3

S = {Φr|r ∈ R
s}.

We generate an ‘improved’ policy μ̄ using the formula
Tμ̄(Φrμ) = T (Φrμ), i.e.,

μ̄(i) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αφ(j)′rμ),

i = 1, . . . , n, (3)

where φ(j)′ is the row of Φ that corresponds to state j (the
method terminates with μ if Tμ(Φrμ) = T (Φrμ)). We then
repeat with μ replaced by μ̄.

In this paper, for generality and notational simplicity,
we consider MDP where for each policy μ, the mapping
Tμ : R

n �→ R
n has the form

TμJ = gμ + AμJ (4)

for given n × n matrix Aμ with nonnegative components
aij

(
μ(i)

)
and vector gμ ∈ R

n with components gμ(i).
The α-discounted n-state MDP is the special case where
Aμ = αPμ, with Pμ being the matrix of transition probabil-
ities pij(μ(i)) corresponding to μ, and gμ the vector with ith

component gμ(i) =
n∑

j=1

pij(μ(i))g
(
i, μ(i), j), the expected

one-stage cost at state i under control μ(i). In policy itera-
tion with cost function approximation, we compute approx-
imations Φrμ to Jμ using some policy evaluation method,
and we use them to compute new policies based on (ap-
proximate) policy improvement, in analogy with equation
(3).

In Section 2, we focus just on the approximate evalua-
tion of a single fixed policy μ, so for notational simplicity
we drop the subscript μ from equation (4). We thus focus
on approximations of the form Φr for the fixed point of the
linear mapping

TJ = g + AJ, (5)

where A is an n × n matrix with nonnegative components
aij and g ∈ R

n. Several algorithmic approaches have been
proposed for this purpose. The most popular are

a) Projected equation approach: Here, the approximation
Φr is obtained by solving the projected equation

Φr = ΠT (Φr), (6)

where Π denotes projection onto the subspace S. The pro-
jection is with respect to a weighted Euclidean norm ‖ · ‖ξ,
where ξ = (ξ1, . . . , ξn) is a probability distribution with

2 Convergence of optimistic policy iteration is obtained for the discounted MDP, without the condition Tμ0 J̃μ0 � J̃μ0 (see page 88 of [18]). However,
this is not so under asynchronous implementations.
3 We focus on linear/subspace cost function approximation in this paper. Naturally, the choice of the matrix Φ is critical for effective policy evaluation.
The ith row of Φ consists of s numbers, which may be viewed as features that characterize state i, and are weighted with the corresponding s components
of rμ to provide an approximation of the cost starting from i under the given policy. Features, when well crafted, can capture the dominant nonlinearities
of the cost vector, and their linear combination can work well as an approximation architecture. In this paper, we do not discuss the selection of Φ, but we
note the possibility of its optimal choice within some restricted class by using gradient and random search algorithms (see references [20–23] for recent
work on this subject). Note that some of the methods discussed in this paper can be adapted so that they can use ‘sampled’ features, that is, features
whose values are corrupted by stochastic noise (see Section 6 in [24]).

312 D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335

positive components (i.e., ‖J‖2
ξ =

n∑
i=1

ξix
2
i , where ξi > 0

for all i). The distribution vector ξ is sometimes (but by
no means always) the steady-state probability vector of a
Markov chain associated with the MDP.

b) Aggregation approach: Here, the approximation Φr is
obtained by solving an equation of the form

r = DT (Φr), (7)

where D is a matrix whose rows are probability distribu-
tions. Contrary to the projected equation approach, where Φ
is arbitrary, an important restriction is that Φ must also be a
matrix whose rows are probability distributions. The com-
ponents of D and Φ are known as the disaggregation and
aggregation probabilities. The vector r can be viewed as a
cost vector of an aggregate problem that has s states and is
defined by D and Φ (see Section 4 for details and interpre-
tation).

There are also optimistic versions of these two ap-
proaches, where the corresponding equation (6) or (7) is
solved approximately, with a finite number of iterations of
some iterative method. Generally, the projected equation ap-
proach is associated with temporal difference (TD) meth-
ods, which originated in reinforcement learning with the
works of Samuel [25, 26] on a checkers-playing program.
The papers by Barto, Sutton, and Anderson [27] and Sut-
ton [28] proposed the TD(λ) method, which motivated a lot
of research in simulation-based DP, particularly following
an early success with the backgammon playing program of
Tesauro [29]. The original papers did not make the connec-
tion of TD methods with the projected equation. Indeed,
for quite a long time, it was not clear which mathemati-
cal problem TD(λ) was aiming to solve. The mathemati-
cal convergence and other properties of TD(λ) and its con-
nections with the projected equation were clarified in the
mid-1990s through the works of several authors, including
Gurvits et al. [30], Jaakkola et al. [31], Pineda [32], and
Tsitsiklis and Van Roy [33,34]. More recent works have fo-
cused on the use of least-squares-based TD methods, such
as the LSTD method (Bradtke and Barto [35]) and the LSPE
method (Bertsekas and Ioffe [36]), which will be discussed
later.

Note that the projected equation framework has a long
history in the context of Galerkin methods for the approx-
imate solution of high-dimensional or infinite-dimensional
linear equations (partial differential, integral, inverse prob-
lems, etc. See, e.g., references [37, 38]). In fact, much of
the policy evaluation theory discussed in this paper applies
to general projected equations arising in contexts beyond
DP (see references [1, 24, 39–42]). However, the use of the
Monte Carlo simulation and Monte Carlo integration ideas
that are central in approximate DP is an important charac-
teristic that differentiates the methods of the present paper
from the Galerkin methodology, as currently practiced in
the numerical analysis field.

The aggregation approach also has a long history in scien-
tific computation and operations research. It was introduced
in the simulation-based approximate DP context, mostly in
the form of value iteration; see Singh et al. [43, 44], Gor-
don [45], Tsitsiklis and Van Roy [46], and Van Roy [47].
Currently, the aggregation approach seems to be less popu-
lar, but as we will argue in this paper, it has some interest-

ing advantages over the projected equation approach, even
though there are restrictions in its applicability (see also the
discussion in [9]).

Let us discuss briefly some alternative policy iteration ap-
proaches. In one of them, evaluation is based on the min-
imization of the (squared) Bellman equation error, as ex-
pressed by

min
r∈Rs

‖Φr − T (Φr)‖2, (8)

where T is the mapping (5). The summation over all the
states in the squared norm above is usually approximated
by a summation over a smaller ‘representative’ set of states,
often obtained in part through simulation. The optimality
conditions for this minimization can be shown to be equiv-
alent to the projected equation Φr = ΠT̂ (Φr), where T̂ is
the mapping

T̂ J = TJ + A′(J − TJ),
which has the same fixed points as T , provided I − A′ is
an invertible matrix (see Section 6.8.4 in [9]). Thus, the
Bellman equation error approach is a special case of the
projected equation approach, although it leads to differ-
ent simulation-based implementations. Sometimes, it gives
a better approximation error and sometimes worse. It has
some interesting characteristics; see, e.g., the discussion in
[1] (Sections 6.10 and 6.11). However, it is less efficient
when implemented by simulation (it requires the simultane-
ous generation of two state trajectories instead of one), and
it is more susceptible to simulation noise; for this reason,
it is not as popular as the projected equation approach at
present. We do not consider this approach in this paper, re-
ferring to the literature for further discussion (e.g., Sections
6.10 and 6.11 in [1], Section 6.8.4 in [9], and [48]).

Among other approximate policy iteration methods, let
us note the ones proposed recently by Thiery and Scher-
rer [49] (see also [9]), which are simulation-based imple-
mentations of λ-policy iteration. This latter algorithm com-
bines elements of value and policy iteration and was pro-
posed by Bertsekas and Ioffe [36] in conjunction with the
LSPE method (see also Section 2.3.1 in [1]). The imple-
mentations of [49] combine elements of several of the ideas
that we will discuss in Sections 2 and 3, including solution
of linear systems by simulation (Section 2.3), a λ parameter
to control the bias-variance tradeoff (Section 2.3), conve-
nience of exploration (Section 3.2), and optimistic operation
(Section 3.3).

Contrary to approximate policy evaluation, which is an
extensively researched and reasonably well-understood sub-
ject, policy improvement with cost function approximation
may exhibit complex behavior that is hard to analyze and
can have seriously adverse impact on practical performance.
An important question relates to the issue of inadequate ex-
ploration, i.e., the potential bias of the simulation through
underrepresentation of states that are unlikely to occur un-
der the policy being simulated. Another important question
is whether the policy iteration process is seriously hampered
by oscillations between poor policies, roughly similar to the
attraction of gradient methods to poor local minima. As we
will discuss later, there has been little apparent concern in
the approximate DP/reinforcement learning literature about
this possibility, even though it has been documented with
several simple examples and may be responsible for the
poor performance of approximate policy iteration recently

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 313

demonstrated in case studies involving the game of tetris
(see the discussion in Section 3.5).

Let us also note that approximate policy iteration meth-
ods are based on the idea of ‘approximation in value space’
and hence also on the hypothesis that a more accurate cost-
to-go approximation will yield a better one-step or multistep
lookahead policy through the policy improvement equation
(3). This is a reasonable but by no means self-evident hy-
pothesis and may in fact not even be true in a given prob-
lem. Competitor methods are based on the idea of ‘approx-
imation in policy space’ and use simulation in conjunction
with a gradient or random search method to approximate di-
rectly an optimal policy with a policy of a given parametric
form. These methods do not aim at good cost function ap-
proximation through which a well-performing policy may
hopefully be obtained. Rather, they aim directly at finding
a policy with good performance. The circumstances under
which one type of method may yield a policy with superior
performance over the other are unclear at present.

In this survey paper, we first address various computa-
tional issues of policy evaluation, including convergence
and rate of convergence and sensitivity to simulation noise
in the case where Φ is (nearly) rank deficient (Section 2).
We then discuss additional issues that arise when policy
evaluation is embedded within policy iteration, such as ex-
ploration, limited sampling/optimistic policy iteration, pol-
icy oscillation, and error bounds (Section 3). For policy
evaluation, we first focus on the projected equation ap-
proach, since this is the one that is better known and has the
most complex and multifaceted behavior. We return to pol-
icy evaluation using the aggregation approach in Section 4.
However, we take special care to introduce sufficient gener-
ality and abstraction into our presentation of Sections 2 and
3, so that a coherent and unified view of the commonalities
and differences of the two approaches emerges.

Since we cover a lot of ground, to keep the size of the pa-
per reasonable, we adopt a somewhat abstract and research-
oriented style of exposition. We give proofs of some results,
we refer to the published literature for others, and we spec-
ulate on a few other results that are plausible but not yet
rigorously established.

2 Projected equation methods for policy eval-
uation

In this section, we discuss general aspects of policy eval-
uation using the projected equation

Φr = ΠT (Φr) = Π(g + AΦr),

cf. equations (5) and (6), and we give the forms of the two
basic methods: matrix inversion and iterative. While these
methods apply to general Galerkin approximation, we fo-
cus primarily on TD-like, simulation-based algorithms that
were developed in approximate DP. For frameworks that are
based on a more general viewpoint, we refer to our work
on the solution of linear systems of equations [1, 24, 40],
variational inequalities [39], and least-squares and inverse
problems [50]. One of the advantages of using a general
matrix A in the definition of T is that it allows simulta-

neous application of our results to all types of Bellman
equations (e.g., discounted, stochastic shortest path, aver-
age cost, semi-Markov, single-step, and multistep).

We recall the basic characterization of the projection:
ΠT (J) is the unique vector Y ∈ S such that Y − TJ is
orthogonal to all vectors of S in the scaled geometry of the
inner product 〈x1, x2〉 = x′

1Ξx2, where Ξ is the diagonal
matrix with the components of the probability distribution
vector ξ = (ξ1, . . . , ξn) on the diagonal. Since the projected
equation is to find J ∈ S such that TJ projects onto J , its
solutions are characterized by the orthogonality principle: J
is a solution if and only if J ∈ S and J − TJ is orthogo-
nal to all the columns of Φ, which span the subspace S, i.e.,
Φ′Ξ(J − TJ) = 0. Thus, a vector J solves the projected
equation J = ΠT (J) if and only if it is of the form Φr and

0 = Φ′Ξ(J − TJ) = Φ′Ξ
(
Φr − T (Φr)

)
= Φ′Ξ

(
Φr − (g + AΦr)

)
.

It follows that solving the projected equation is equivalent
to solving the linear system Cr = d, where 4

C = Φ′Ξ(I − A)Φ, d = Φ′Ξg. (9)

In this paper, when referring to the projected equation, we
make no distinction between the two equivalent forms Cr =
d and J = ΠT (J). The set of solutions of J = ΠT (J) is
obtained from the set of solutions of Cr = d by multiplica-
tion with Φ. Note that if Φ does not have rank s, C will not
be invertible, and Cr = d will not have a unique solution
even if J = ΠT (J) has a unique solution (equivalently,
I − ΠA is invertible). Moreover, solutions of J = ΠT (J)
depend only on the projection norm and the subspace S, and
not on the matrix Φ, which provides just an algebraic repre-
sentation of S. Thus, if J = ΠT (J) has a unique solution
J̃ , we have Φr∗ = J̃ for every matrix Φ whose range space
is S and solution r∗ of the corresponding equation Cr = d.
2.1 Contraction properties of the projected equation

The projected equation Cr = d may in principle be
solved by matrix inversion, r∗ = C−1d. This does not
require any contraction properties for the operators T or
ΠT ; invertibility of C is the only requirement. The equa-
tion may also be solved by one of several possible iterative
methods (an important example is the fixed point iteration
Φrk+1 = ΠT (Φrk)). For some of these methods, ΠT must
be a contraction in order to guarantee convergence. How-
ever, even if T is a contraction with respect to some norm,
ΠT need not be a contraction, unless Π is nonexpansive
with respect to that norm, and this is a major source of com-
plications for iterative methods. The following proposition
provides a condition, which guarantees that ΠT is a con-
traction.

Proposition 1 Let ξ = (ξ1, . . . , ξn) be the steady-state
probability vector of an irreducible transition probability
matrix Q. Then, T and ΠT are contraction mappings with
respect to ‖ · ‖ξ if aij � qij for all (i, j), and there exists an
index ī such that aīj < qīj for all j = 1, . . . , n.

The proof of the proposition is given in [24], and is based

4 This line of development of the projected equation can be generalized to the case where Π is the operator that projects on a convex strict subset of
S. In this case, the projected equation is equivalent to a variational inequality (in place of Cr = d), thereby leading to a broad extension of the overall
approximation approach; see [39] and the discussion in Section 3.4.

314 D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335

on the inequality
‖QJ‖ξ � ‖J‖ξ, ∀J ∈ R

n,

which holds for any irreducible transition matrix Q with in-
variant distribution ξ (see, e.g., Lemma 6.4 in [1], or Lemma
6.3.1 in [18]). In a discounted MDP case where A = αP
and P is irreducible, by taking Q = P , the inequality im-
plies that T is a contraction with respect to ‖ · ‖ξ of modu-
lus α, which together with the nonexpansiveness of Π with
respect to ‖ · ‖ξ, implies that the same is true for ΠT . The
more general condition aīj < qīj , j = 1, . . . , n, is satisfied
in discounted MDP, where Q is a somewhat modified ver-
sion of P to allow for exploration (see [9]), and in a stochas-
tic shortest path MDP, where A is a substochastic matrix
corresponding to a proper policy (one for which the termi-
nation state is reached with probability 1 from any starting
state); see [9, 18]. There are also other related conditions
that guarantee that ΠT is a contraction and apply among
others to average cost MDP (see [24, 51], or [9]).

If ΠT is a contraction, then the projected equation J =
ΠT (J) has a unique solution Φr, which implies that if Φ
has rank s, then Cr = d has a unique solution and so C
is invertible. This and other properties are collected in the
following proposition.

Proposition 2 Let ΠT be a contraction with respect to
‖ · ‖ξ and let Φ have rank s.

a) C is invertible and positive definite in the sense that
r′Cr > 0, ∀r 	= 0.

b) C has eigenvalues with positive real parts.
c) The unique solution r∗ of the projected equation Cr =

d and any solution J∗ of the original equation J = TJ sat-
isfy

‖J∗ − Φr∗‖ξ � 1√
1 − α2

‖J∗ − ΠJ∗‖ξ, (10)

where α is the modulus of contraction of ΠT .
The results of the proposition are well known in the the-

ory of TD methods and have been given in various forms
by Tsitsiklis and Van Roy [33,34]. Proofs can also be found
in [9]. The error bound (10) is quite conservative (usually in
MDP α is very close to 1). There are sharper error bounds,
due to Yu and Bertsekas [40] (see also Scherrer [48]), which
depend on the finer structure of A, Ξ , and the subspace S
(not just on the contraction modulus of ΠT), and also apply
to the case where ΠT is not a contraction.
2.2 Deterministic iterative methods for projected

equations

We will now discuss iterative methods as alternatives to
matrix inversion for solving the projected equation Cr = d.
We first discuss deterministic methods that do not use simu-
lation. These methods are not practical when the number of
states is large, since they require high-dimensional matrix-
vector computations. However, we will subsequently use

Monte Carlo integration ideas to construct simulation-based
versions that require low-dimensional calculations only.

We focus on iterative methods of the form
rk+1 = rk − γG(Crk − d), (11)

where G is a scaling matrix and γ is a positive stepsize. 5

This iteration is convergent if I−γGC is a contraction with
respect to some norm (equivalently has all its eigenvalues
strictly within the unit circle), but (under certain conditions)
may also converge even if I − γGC is just nonexpansive
with respect to some norm, which may happen if C is sin-
gular. Some interesting special choices of γ and G are given
in the following three propositions. The last two apply to
cases where C is singular.

Proposition 3 If ΠT is a contraction with respect to
‖ · ‖ξ and Φ has rank s, the iteration

rk+1 = rk − (Φ′ΞΦ)−1(Crk − d) (12)
is equivalent to the fixed point iteration Jk+1 = ΠT (Jk)
and converges to the unique solution of the projected equa-
tion Cr = d.

Proof We use the projection formula
Π = Φ(Φ′ΞΦ)−1Φ′Ξ,

which is valid when Φ has rank s, together with the defini-
tion (9) of C and d, to write the iteration (12) as Jk+1 =
ΠT (Jk), where Jk = Φrk, so convergence follows from
the contraction property of ΠT .

Proposition 4 If ΠT is a contraction with respect to
‖·‖ξ and G is positive definite symmetric, there exists γ̄ > 0
such that for all γ ∈ (0, γ̄], the iteration

rk+1 = rk − γG(Crk − d)
converges to some solution of the projected equation.

Proof We prove the result for the case where Φ has rank
s. The proof for the general case is more complicated and is
based on the monotonicity property of the mapping I − T
(a consequence of the contraction property of ΠT) and the
theory of projection methods for monotone variational in-
equalities (see [39, 54]).

If G is symmetric and positive definite, the matrix G
1
2

exists and is symmetric and positive definite. Let M =
G

1
2 CG

1
2 , and note that since C is positive definite, M is

also positive definite, so from Proposition 2 b) it follows
that its eigenvalues have positive real parts. The eigenvalues
of M and GC are equal (with eigenvectors that are mul-
tiples of G

1
2 or G− 1

2 of each other), so the eigenvalues of
GC have positive real parts. It follows that the eigenvalues
of I − γGC lie strictly within the unit circle for sufficiently
small γ > 0.

Proposition 5 The iteration rk+1 = rk −G(Crk − d),
where

G = (C ′Σ−1C + βI)−1C ′Σ−1,

Σ is a positive definite symmetric matrix, and β is a positive
scalar, converges to some solution of the projected equation,
assuming at least one solution exists.

5 Iterative methods that involve incremental changes along directions of the form Gf(r) are common and fundamental for solving a system of equations
f(r) = 0. They arise prominently in cases where f(r) is the gradient of a cost function, or the case where the equation f(r) = 0 can be viewed as a
monotone variational inequality (cf. Proposition 2 a); see Section 3.5.3 in [52]). The iterative methods (11), with G being positive definite symmetric,
coincide with the class of projection methods for monotone variational inequalities; see [39], which adopts a variational inequality view for the projected
equation in a more general context that allows projection on a convex subset of the subspace S. The paper [39] also interprets the scaling matrix G in
terms of ‘feature scaling’ (a representation of the subspace S in a different coordinate system). See also Yao and Liu [53] for some algorithms related to
(11), but developed from a different viewpoint.

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 315

Proof This follows from standard convergence results
about the proximal point algorithm. 6 We give a proof
for the easier case where C is invertible, so the projected
equation has the unique solution r∗ = C−1d. Assum-
ing C is invertible, the matrix C ′Σ−1C is positive defi-
nite, so its eigenvalues λ1, . . . , λs are positive. Let UΛU ′
be the singular value decomposition of C ′Σ−1C, where
Λ = diag{λ1, . . . , λs} and U is a unitary matrix (UU ′ = I;
see [58,59]). We also have C ′Σ−1C +βI = U(Λ+βI)U ′,
so
GC =

(
U(Λ + βI)U ′)−1

UΛU ′ = U(Λ + βI)−1ΛU ′.

It follows that the eigenvalues of GC are λi/(λi + β),
i = 1, . . . , s, and lie in the interval (0, 1), so the eigenvalues
of I − GC also lie in the interval (0, 1).

Generally, the algorithms of the preceding three proposi-
tions converge linearly, at a rate that depends strongly on the
choices of γ and G. However, we will argue later that, when
implemented by simulation, they all converge at the same
asymptotic rate, which is dictated by the slow convergence
rate of the simulation. Note that the algorithms converge un-
der different conditions and offer alternative advantages. In
particular, the algorithm of Proposition 5 is the most gener-
ally applicable, as it does not require that ΠT is a contrac-
tion or that C is invertible and, moreover, does not require a
stepsize choice. At the other extreme, the simplest algorithm
is

rk+1 = rk − γ(Crk − d), (13)
the special case of Proposition 4 that corresponds to G = I .
However, this algorithm requires that ΠT be a contraction
and a choice of stepsize from within a range that is usually
unknown a priori. The iteration (12) of Proposition 3 may be
viewed as intermediate between the preceding two in terms
of applicability and overhead per iteration.
2.3 Iterative methods using simulation-based approxi-

mations

Unfortunately, for problems of very high dimension n, it
is difficult to calculate C and d explicitly, because of the
high-dimensional inner products involved in their definition
(9). An alternative that has a long history in approximate
DP (see the textbook references in Section 1) is to calcu-
late simulation-based estimates Ĉ and d̂ of C and d, respec-
tively, based on a number of samples, and obtain an approx-
imate solution

r̂ = Ĉ−1d̂

by matrix inversion, assuming the inverse exists (this is the
LSTD method, first proposed by Bradtke and Barto [35] and
followed up by Boyan [60] and Nedić and Bertsekas [61]). 7

An alternative to LSTD is to solve by iteration a
simulation-based approximation to the projected equation
Cr = d: we approximate the deterministic iteration

rk+1 = rk − γG(Crk − d),

(11) with
rk+1 = rk − γĜ(Ĉrk − d̂), (14)

where Ĉ and d̂ are simulation-based estimates of C and d,
γ is a positive stepsize, and Ĝ is an s×s matrix, which may
also be obtained by simulation. Assuming that I − γĜĈ
is a contraction, this iteration will yield a solution to the
system Ĉr = d̂, which will serve as a simulation-based ap-
proximation to a solution of the projected equation Cr = d.
Chronologically, the first method of this type is LSPE [36],
where γ = 1 and Ĝ is an approximation to (Φ′ΞΦ)−1 (cf.
equation (12)). The general method (14) may be viewed as a
scaled version of LSPE, obtained by multiplying the LSPE
direction with a suitable scaling matrix and by introducing
a stepsize γ (see [39]).

Like LSTD, the iteration (14) may be viewed as a batch
simulation approach: we first simulate to obtain Ĉ, d̂, and Ĝ

and then solve the system Ĉr = d̂ by the iterative method
(14) rather than direct matrix inversion. An alternative is to
iteratively update r as simulation samples are collected and
used to form ever improving approximations to C and d.
In particular, one or more iterations of the form (14) may be
performed between collections of additional batches of sim-
ulation samples to improve the accuracy of Ĉ and d̂. In the
most extreme type of such an algorithm, the iteration (14) is
used after a single new sample is collected. In this case, we
approximate the iteration (11) by

rk+1 = rk − γGk(Ckrk − dk), (15)
where Gk, Ck, and dk are simulation-based approximations,
which are updated after a single new simulation sample is
collected. For the purposes of further discussion, we will
focus on this type of algorithm, with the understanding that
there are related versions that use forms of batch simulation
between iterations of the form (15) and have similar proper-
ties.

The convergence properties of iteration (15) under the
condition

Ck → C, dk → d, Gk → G

can be for the most part inferred from the results of Propo-
sitions 3–5. In particular, if ΠT is a contraction and Φ has
rank s, the proof of Proposition 3 carries through when Gk

converges to (Φ′ΞΦ)−1. Similarly, if ΠT is a contraction,
C is invertible, and Gk converges to a positive definite sym-
metric matrix, the proof of Proposition 4 carries through.
Also, if C is invertible and

Gk = (C ′
kΣ−1

k Ck + βI)−1C ′
kΣ−1

k ,

where Ck → C, and Σk → Σ for a symmetric positive def-
inite matrix Σ, the proof of Proposition 5 carries through (a
formal convergence analysis for the case where C is singu-
lar is not available at present, even though the deterministic
version of the iteration is convergent as per Proposition 5).

We now discuss a simulation mechanism for estimating

6 One may write the iteration as

rk+1 =arg min
r∈Rs

ˆ
(Cr − d)′Σ−1(Cr−d)+β‖r − rk‖2

˜
,

which is the proximal point algorithm applied to the problem of minimizing the cost function (Cr − d)′Σ−1(Cr − d). Then, Proposition 5 follows
from the results of Martinet [55] and Rockafellar [56]; see also Proposition 6.5.1 in [57]. An additional result is that {rk} will converge to a minimizing
point of (Cr − d)′Σ−1(Cr − d) even if the projected equation Cr = d has no solution.
7 Estimating C and d by simulation is motivated by the advantage that Monte Carlo summation (or integration) holds in similar circumstances: using
sampling to estimate sums of a very large number of terms (or complicated integrals, respectively), with computational complexity that depends on the
‘variance’ of the terms added, and not on the number of terms.

316 D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335

C and d, proposed in [24]. It is similar to methods used tra-
ditionally in TD methods for policy evaluation, which are
based on sampling the Markov chain corresponding to the
policy. However, our simulation mechanism may use two
Markov chains and is well suited for sampling with en-
hanced exploration (see the discussion in Section 3.2). We
write C and d as expected values with respect to ξ:

C =
n∑

i=1

ξiφ(i)
(
φ(i)−

n∑
j=1

aijφ(j)
)′

, d=
n∑

i=1

ξiφ(i)g(i),

(16)
where ξi, g(i), and aij are the components of ξ, g, and A,
respectively, and φ(i) denotes the column of Φ′ that corre-
sponds to state i (φ(i)′ is the ith row of Φ). We generate a se-
quence of indices {i0, i1, . . .} and a sequence of transitions
{(i0, j0), (i1, j1), . . .}. We use any probabilistic mechanism
for this, subject to the following two requirements (cf. Fig.
1):

Row sampling The sequence {i0, i1, . . .} is generated
according to the distribution ξ, which defines the projection
norm ‖ · ‖ξ, in the sense that with probability 1,

lim
k→∞

k∑
t=0

δ(it = i)

k + 1
= ξi, i = 1, . . . , n, (17)

where δ(·) denotes the indicator function (δ(E) = 1 if the
event E has occurred and δ(E) = 0 otherwise). Row sam-
pling requires that each state i is generated with a relative
frequency ξi specified by the projection norm ‖ ·‖ξ. We will
discuss later (Section 3.2) how one may design row sam-
pling schemes corresponding to values ξi that adequately
address the issue of exploration.

Column sampling The sequence {(i0, j0), (i1, j1), . . .}
is generated according to a certain stochastic matrix L with
transition probabilities �ij in the sense that with probability
1,

lim
k→∞

k∑
t=0

δ(it = i, jt =j)

k∑
t=0

δ(it = i)
=�ij , i, j =1, . . . , n. (18)

We require that
�ij > 0 if aij > 0, (19)

so transitions (i, j) with aij > 0 are generated with positive
relative frequency. Other than this requirement, �ij need not
be related to aij . For example, in an α-discounted problem,
the column sampling probabilities need not be equal to the
transition probabilities of the policy under evaluation. This
turns out to be important because it allows exploration en-
hancement through the choice of the column sampling prob-

abilities �ij (see the subsequent discussion of λ-methods).

Fig. 1 The Markov chain-based simulation methodology consists of
a) generating a sequence of indices {i0, i1, . . .} according to
the distribution ξ (a suitable Markov chain Q may be used for
this, but this is not a requirement), and b) generating a sequence
of transitions {(i0, j0), (i1, j1), . . .} using a Markov chain L. It
is possible that jk = ik+1, but this is not necessary. Moreover,
even when A is related to the transition probability matrix of a
Markov chain of an underlying MDP, Q and L need not be equal
to that matrix.

At time k, we approximate C and d with⎧⎪⎪⎨
⎪⎪⎩

Ck =
1

k + 1

k∑
t=0

φ(it)
(
φ(it) −

aitjt

�itjt

φ(jt)
)′

,

dk =
1

k + 1

k∑
t=0

φ(it)g(it).
(20)

To show that this is a valid approximation, we count the
number of times an index occurs, and after collecting terms,
we write (20) as⎧⎪⎪⎨

⎪⎪⎩
Ck =

n∑
i=1

ξ̂i,kφ(i)
(
φ(i) −

n∑
j=1

�̂ij,k
aij

�ij
φ(j)

)′
,

dk =
n∑

i=1

ξ̂i,kφ(i)g(i),
(21)

where

ξ̂i,k =

k∑
t=0

δ(it = i)

k + 1
, �̂ij,k =

k∑
t=0

δ(it = i, jt = j)

k∑
t=0

δ(it = i)
.

In view of the assumption

ξ̂i,k → ξi, �̂ij,k → �ij , i, j = 1, . . . , n,

cf. equations (17) and (18), by comparing equations (16)
and (21), we see that Ck → C and dk → d. 8

In the iterative method
rk+1 = rk − γGk(Ckrk − dk),

(cf. equation (15)), in addition to Ck, dk, one may simul-
taneously obtain Gk with the preceding simulation mecha-
nism. In particular, one may choose γ = 1 and

Gk =
(1

k + 1

k∑
t=0

φ(it)φ(it)′
)−1

, (25)

8 In the discounted case where A = αP , the approximate projected equation Ckr = dk can be written as

Ckr − dk =
kP

t=0
φ(it)qk,t = 0, (22)

where

qk,t = φ(it)
′rk − αφ(it+1)′rk − g(it). (23)

The scalar qk,t is the so-called TD, associated with rk and transition (it, it+1). It may be viewed as a sample of a residual term arising in the projected
equation. More specifically, we have

Crk − d = Φ′Ξ(Φrk − αPΦrk − g). (24)

The three terms in the definition (23) of the TD qk,t can be viewed as samples (associated with the transition (it, it+1)) of the corresponding three terms
in the expression Ξ(Φrk − αPΦrk − g) in (24). For the purposes of this paper, TDs and the form of the approximate projected equation (22) play no
substantive role, and they will not be used in any way.

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 317

which is a simulation-based approximation to (Φ′ΞΦ)−1

(cf. the iteration (12) of Proposition 3). This is the LSPE
method first proposed by Bertsekas and Ioffe [36] and fol-
lowed up by Nedić and Bertsekas [61], Bertsekas et al. [62],
and Yu and Bertsekas [51] (the method was also described
in [36] and [1] as an implementation of the λ-policy iter-
ation method and was used to address a challenging tetris
application; the name LSPE was introduced in [61]).

The LSTD and LSPE methods were preceded and mo-
tivated by the TD(0) method, which for an α-discounted
problem has the form

rk+1 = rk − γkφ(ik)qk,k, (26)

where qk,k is the TD given by (23), and γk is a diminish-
ing stepsize that diminishes at an appropriate rate, such as
γk = O(1/k). Thus, in view of (22), TD(0) has a sim-
ilar form to the simple iteration (13), but differs in two
important ways: first, the stepsize γk is diminishing, and
second, Ck and dk are single-sample estimates of C and
d (only the last simulation sample is used rather than all
of the k samples). TD(0) may be viewed as a stochastic
approximation/Robbins-Monro scheme for solving the pro-
jected equation Cr = d, and in this sense, it is fundamen-
tally different than the LSTD and LSTE methods, which are
Monte Carlo versions of matrix inversion and iterative de-
terministic methods, which use simulation-based estimates
in place of the hard-to-compute quantities C and d. Thus,
TD(0) requires an entirely different type of mathematical
convergence analysis than LSTD and LSPE (see, e.g., [33]).
Let us also note a scaled form of TD(0), which uses a pos-
itive definite symmetric scaling matrix G in (26) and has
been proposed and analyzed by Choi and Van Roy [63].
Similar to TD(0), their method uses single-sample esti-
mates of C and d in the algorithm of Proposition 4.

Note that there is a lot of flexibility for row and column
sampling to satisfy (17) and (18). For example, to satisfy
(17), the indices it do not need to be sampled independently
according to ξ. Instead, it may be convenient to introduce
an irreducible Markov chain with transition matrix Q, states
1, . . . , n, and ξ as its steady-state probability vector and to
start at some state i0 and generate the sequence {i0, i1, . . .}
as a single infinitely long trajectory of the chain. For the
transition sequence, we may optionally let jk = ik+1 for all
k, in which case L would be identical to Q, but in general
this is not essential. In the MDP literature, the most com-
mon choice is Q = L = P , where P is the transition matrix
of the associated Markov chain. However, in the context of
policy iteration, it soon became clear that it is important to
do row sampling using a different Markov chain, one that
generates by simulation all states with sufficient frequency
(see the discussion of exploration in Section 3.2).

Note also that multiple simulated sequences can be used
to form the simulation estimates (20) of C and d. For exam-
ple, in the Markov chain-based sampling schemes, we can
generate multiple infinitely long trajectories of the chain,
starting at several different states. This will work even if
the chain has multiple recurrent classes, as long as there are
no transient states and at least one trajectory is started from

within each recurrent class. Again, ξ will be a steady-state
probability vector of the chain and need not be known ex-
plicitly. Note also that using multiple trajectories may be in-
teresting even if there is a single recurrent class, for at least
two reasons:

a) The generation of trajectories may be parallelized
among multiple processors, resulting in significant speedup.

b) The empirical frequencies of occurrence of the states
may approach the steady-state probabilities more quickly;
this is particularly so for large and ‘stiff’ Markov chains.

We finally note that there are several variants of the
Markov chain-based simulation method outlined above (see
[1] or more details). For example, if instead of g(it) we ob-
tain the sample g(it, jt), the vector dk in (20) should be

dk =
1

k + 1

k∑
t=0

φ(it)g(it, jt).

As another example, zero mean noise with appropriate in-
dependence properties may be added to aij and g(i). In this
case, the estimates of C and d are given by⎧⎪⎪⎨
⎪⎪⎩

Ck =
1

k + 1

k∑
t=0

φ(it)
(
φ(it)−

n∑
j=1

(aitj + ζt(j))φ(j)
)′

,

dk =
1

k + 1

k∑
t=0

φ(it)
(
g(it) + θt

)
,

(27)
where for each j, ζt(j) is a sequence of random variables
such that, with probability 1,

lim
k→∞

k∑
t=0

δ(it = i)ζt(j)

k∑
t=0

δ(it = i)
= 0, ∀i, j = 1, . . . , n, (28)

and θt is a sequence of random variables such that, with
probability 1,

lim
k→∞

k∑
t=0

δ(it = i)θt

k∑
t=0

δ(it = i)
= 0, ∀i = 1, . . . , n. (29)

This variant can be used in situations where the components
aij and g(i) represent the expected values of random vari-
ables whose samples can be conveniently simulated with ad-
ditive ‘noises’ ζt(j) and θt, respectively, such that equations
(28) and (29) hold with probability 1.
2.3.1 λ-versions of simulation methods

We will now briefly discuss ‘λ-versions’ of the LSTD,
LSPE, and TD algorithms, which use a parameter λ ∈
[0, 1), 9 and aim to solve the geometrically weighted multi-
step version of Bellman’s equation J = T (λ)J , where T is
defined by

T (λ) = (1 − λ)
∞∑

t=0
λtT t+1. (30)

The best known example is TD(λ) for α-discounted prob-
lems [28]. The motivation for using λ > 0 is that the error
‖J∗ − Φr∗‖∞ corresponding to the solution r∗λ of the pro-
jected equation

Φr = ΠT (λ)(Φr),

9 It is also possible to let λ = 1 with appropriate changes in various formulas that follow, but for simplicity we will not consider this possibility here.

318 D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335

tends to decrease as λ increases, and indeed, an improved
error bound similar to the one of Proposition 2 c) can be
shown for λ > 0 (see, e.g., Proposition 6.3.5 in [18]). How-
ever, the number of samples needed to approximate well the
projected equation tends to increase; this is the well-known
bias-variance tradeoff, and we refer to textbook sources,
such as [1, 2], and [18] for a discussion. In this survey, we
mostly focus on λ = 0, but our algorithms and qualitative
conclusions generally apply to λ ∈ [0, 1) (for further dis-
cussion, see [24], where extensions of LSTD(λ), LSPE(λ),
and TD(λ) beyond the MDP context are also provided). Let
us note that the projected equation Φr = ΠT (λ)(Φr) can
be written as a linear equation of the form C(λ)r = d(λ),
where similar to (9), C(λ) and d(λ) are defined by

C(λ) = Φ′Ξ(I − A(λ))Φ, d(λ) = Φ′Ξg(λ)

with

A(λ) =(1 − λ)
∞∑

t=0
λtAt+1, g(λ) =

∞∑
t=0

λtAtg.

Similar to the case λ = 0, there are simulation proce-
dures that produce approximations C

(λ)
k and d

(λ)
k to C(λ)

and d(λ), respectively, thereby leading to corresponding ma-
trix inversion and iterative methods. However, for these pro-
cedures to be algorithmically convenient, some restrictions
must be observed. In particular, it is essential that row and
column sampling is generated by a common process, so that

jk = ik+1, k = 0, 1, . . . ,

where each transition (ik, ik+1) is generated using the ma-
trix L (which we recall may be unrelated to the matrix A of
the system J = g + AJ , other than �ij > 0 if aij > 0, cf.
equation (19)). In this case, approximations C

(λ)
k and d

(λ)
k to

C(λ) and d(λ), respectively, are obtained from the following
recursive algorithm, first given by Bertsekas and Yu [24]: 10

C
(λ)
k =

(
1 − 1

k + 1

)
C

(λ)
k−1

+
1

k + 1
zk

(
φ(ik) −

aikik+1

�ikik+1

φ(ik+1)
)′

, (31)

d
(λ)
k =

(
1 − 1

k + 1

)
d
(λ)
k−1 +

1
k + 1

zkg(ik), (32)

where zk is generated by

zk = λ
aik−1ik

�ik−1ik

zk−1 + φ(ik). (33)

An analysis of the convergence C
(λ)
k → C(λ) and d

(λ)
k →

d(λ) has been given in several sources under different as-
sumptions:

a) In Nedić and Bertsekas [61] for the case of policy eval-
uation in an α-discounted problem, where A/α is the tran-
sition probability matrix P and row and column sampling is
done according to that matrix (Q = L = P). This is the case
where there is no exploration (cf. the subsequent discussion
in Section 3.2).

b) In Bertsekas and Yu [24], assuming that λ max
(i,j)

aij

�ij
<

1 (where we adopt the convention 0/0 = 0), in which case
the vectors zk of (33) are generated by a contractive process
and remain bounded. This covers the common case in MDP
where L =

(
1− e)P + eP̄ where e > 0 is a small constant,

P is a transition matrix corresponding to the policy under
evaluation, and P̄ is a transition probability matrix that in-
duces exploration. The essential restriction here is that λ
should be no more than (1 − e).

c) In Yu [41, 42], for all λ ∈ [0, 1] and λ
n∑

j=1

aij < 1

for all i, in which case the vectors zk typically become un-
bounded as k increases when λ max

(i,j)

aij

�ij
> 1. Mathemati-

cally, this is the most challenging analysis and involves in-
teresting stochastic phenomena.

Much of what will be said later for projected equation
methods where λ = 0 also applies to methods with λ > 0.

We finally mention a potential drawback of the row and
column sampling methods: they generally require explicit
knowledge of the ratios aij/�ij . Sometimes, in ‘model-free’
applications of approximate DP, the matrix A is not explic-
itly known and can only be computed through simulation,
so in this case row and column sampling may not apply, at
least in the general form given here. We will discuss this
issue further in Section 3.8 in the context of Q-learning.
2.4 Simulation by importance sampling

We have seen that a core issue in approximate policy eval-
uation using the projected equation is to estimate the matrix
C by sampling (also to estimate d, but this is similar and
simpler). We may thus consider general sampling methods
for estimating matrices of the form

Z = DHΦ

for an s × n matrix D, an n × n matrix H , and an n × s
matrix Φ (in our case, D = Φ′Ξ and H = I −A, or H = I
and H = A). When n is very large and s is relatively small,
we may estimate each of the components of Z separately.
Denoting by d�i, hij , and φjq the components of D, H , and
Φ, respectively, the (�, q)th component of Z is

z�q =
n∑

i=1

n∑
j=1

d�ihijφjq, (34)

so it is a sum of a very large number of terms that can
be estimated by simulation using Monte Carlo integration
techniques aimed at variance reduction, such as importance
sampling.

In particular, we generate samples (i0, j0), . . . , (ik, jk)
according to some sampling distribution {ζij |i, j = 1,
. . . , n}, and we estimate z�q by

ẑ�q =
1

k + 1

k∑
t=0

d�ithitjtφjtq

ζitjt

.

According to the principles of importance sampling (see,
e.g., Liu [64] and Rubinstein and Kroese [65]), for fixed �, q,
the distribution ζij should approximate in form the generic

10 If g(ik) is replaced by a simulation sample g(ik, ik+1) the formula for updating d
(λ)
k should be

d
(λ)
k =

“
1 − 1

k + 1

”
d
(λ)
k−1 +

1

k + 1
zk

aikik+1

�ikik+1

g(ik, ik+1).

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 319

term d�ihijφjq of the sum, i.e.,

ζij ≈ d�ihijφjq

N
,

where N is a normalization constant (we assume here that
d�ihijφjq is nonnegative for all (i, j), otherwise the sum
(34) should be split into the two sums corresponding to the
positive and the negative terms).

A key issue here is the design of the distribution ζij ,
which by necessity should exploit the special/sparsity struc-
ture of the matrices D, B, and Φ, to localize the distribu-
tion in a relatively small portion of the set of pairs (i, j).
When a suitable importance sampling distribution can be
obtained, the variance of the estimates ẑ�q and the attendant
number of samples for a given accuracy can be dramati-
cally reduced (by several orders of magnitude). We do not
pursue this topic further, but refer to the papers [50, 66] for
sampling distribution design techniques that have been used
successfully in some very large problems within a related
least-squares estimation context.
2.5 Convergence rate issues

Let us now discuss the choice of γ and Gk in the iterative
method

rk+1 = rk − γGk(Ckrk − dk), (35)
from the convergence rate point of view. It can be easily
verified with simple examples that, in the deterministic case
where Gk ≡ G, Ck ≡ C, and dk ≡ d, the values of γ
and G affect significantly the convergence rate of the de-
terministic iteration (11). This is evident when I − γGC is
a contraction, since then the convergence rate is linear and
is determined by the spectral radius of I − γGC. Surpris-
ingly, however, when Gk, Ck, and dk are generated by the
preceding simulation schemes, the asymptotic convergence
rate of the simulation-based iteration (35) does not depend
on the choices of γ and G. Indeed, it can be proved that the
iteration (35) converges at the same asymptotic rate, for all
choices of γ and G, as long as I −γGC is a contraction (al-
though the short-term convergence rate may be significantly
affected by the choices of γ and G).

The reason is that the deterministic iteration has a lin-
ear convergence rate (since it involves the contraction I −
γGC), which is fast relative to the slow convergence rate
of the simulation-generated Gk, Ck, and dk. Thus, the
simulation-based iteration (35) operates on two time scales
(see, e.g., Chapter 6 in [67]): the slow time scale at which
Gk, Ck, and dk change, and the fast time scale at which
rk adapts to changes in Gk, Ck, and dk. As a result, es-
sentially, there is convergence in the fast time scale before
there is appreciable change in the slow time scale. Roughly
speaking, rk ‘sees Gk, Ck, and dk as effectively constant,’
so that for large k, rk is essentially equal to the correspond-
ing limit of iteration (35) with Gk, Ck, and dk held fixed.
When Ck is invertible, this limit is C−1

k dk. It follows that
the sequence rk generated by the scaled LSPE iteration (35)
‘tracks’ the sequence C−1

k dk generated by the LSTD itera-
tion in the sense that

‖rk − C−1
k dk‖ ‖rk − r∗‖, for large k,

independent of the choice of γ and the scaling matrix G that
is approximated by Gk (see also [39] for further discussion).

Results of this type were conjectured for the LSPE method
in [62] and were formally proven in [51] for discounted and
average cost problems and for the special choice (25) of
Gk. The proof for more general cases where C is invertible
should be similar but has not yet been documented.
2.6 Regression-based methods for projected equations

We will now consider the case where the matrix C in the
projected equation is nearly singular and/or the simulation
errors C − Ck and d − dk are relatively large. Then, the
matrix inversion/LSTD method encounters serious difficul-
ties. To get some understanding into this, consider the ap-
proximate inversion of a small nonzero number c, which is
estimated with simulation error e. The absolute and relative
errors are

E =
1

c + e
− 1

c
, Er =

E

1/c
.

By a first-order Taylor series expansion around e = 0, we
obtain for small e

E ≈
∂

(
1

c+e

)
∂e

∣∣∣
e=0

e = − e

c2
, Er ≈ −e

c
.

Thus, for the estimate 1/(c + e) to be reliable, we must have
|e| |c|. If N independent samples are used to estimate
c, the variance of e is proportional to 1/N , so for a small
relative error, Er 1, we must have N � 1/c2. Thus,
as c approaches 0, the amount of sampling required for re-
liable simulation-based inversion increases very fast. This
is similar to the roundoff error-related difficulties of nearly
singular matrix inversion.

To counter the large LSTD errors associated with a near-
singular matrix C, we may estimate r∗ by a form of regular-
ized regression, which works even if the projected equation
is singular. In this approach, suggested by Wang et al. [50],
instead of solving the system Ckr = dk, we use regression
based on an associated linear model that properly encodes
the effect of the simulation noise. We will see, however, that
this method comes at a price: it introduces a bias of the es-
timate of r towards some fixed vector/prior guess r̄. To re-
duce or eliminate this bias, it is necessary to adopt an iter-
ative regularization approach: start with some r̄, obtain an
estimate r̂k, replace r̄ by r̂k, and repeat for any number of
times. This gives rise to an iterative method, which turns out
to be a special case of the method (35).

Given simulation-based estimates Ck and dk to C and d,
respectively, let us write the projected form of Bellman’s
equation d = Cr as

dk = Ckr + ek, (36)

where ek is the vector

ek = (C − Ck)r + dk − d,

which we view as ‘simulation noise’. We then estimate the
solution r∗ = C−1d based on (36) by using regression. In
particular, we choose r by solving the least-squares prob-
lem:

min
r

[
(dk − Ckr)′Σ−1(dk − Ckr) + β‖r − r̄‖2

]
, (37)

where r̄ is an a priori estimate of r∗, Σ is some positive def-
inite symmetric matrix, and β is a positive scalar. By setting
to 0 the gradient of the least-squares objective in (37), we

320 D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335

can find the solution in closed form:
r̂k = (C ′

kΣ−1Ck + βI)−1(C ′
kΣ−1dk + βr̄). (38)

A suitable choice of r̄ may be some heuristic guess based
on intuition about the problem, or it may be the parame-
ter vector corresponding to the estimated cost vector Φr̄ of
a similar policy (for example, a preceding policy in an ap-
proximate policy iteration context). One may try to choose
Σ in special ways to enhance the quality of the estimate of
r∗, but we will not consider this issue here, and the subse-
quent analysis in this section does not depend on the choice
of Σ, as long as it is positive definite and symmetric.

The quadratic β‖r − r̄‖2 in (37) is a regularization term
and has the effect of ‘biasing’ the estimate r̂k towards the a
priori guess r̄. The proper size of β is not clear (a large size
reduces the effect of near singularity of Ck, and the effect
of the simulation errors Ck − C and dk − d, but may cause
a large ‘bias’). However, this is typically not a major dif-
ficulty in practice, because trial-and-error experimentation
with different values of β involves low-dimensional linear
algebra calculations once Ck and dk become available.

To eliminate the bias of r̂k towards r̄, one possibility is to
adopt an iterative regularization approach: start with some
r̄, obtain r̂k, replace r̄ by r̂k, and repeat for any number of
times. This turns LSTD to the iterative method,

rk+1 = (C ′
kΣ−1

k Ck + βI)−1(C ′
kΣ−1

k dk + βrk),
where Σk are positive definite symmetric matrices that con-
verge to a positive definite matrix Σ, and β is a positive
scalar (38). Equivalently, this method can be written as

rk+1 = rk − Gk(Ckrk − dk), (39)
where

Gk = (C ′
kΣ−1

k Ck + βI)−1C ′
kΣ−1

k , (40)
and can be recognized as a simulation-based version of the
special case of the class of LSPE-type methods (35), whose
convergence properties have been discussed in Proposi-
tion 5.

The salient feature of the method (39), (40) is that, based
on Proposition 5 and experimental evidence, it can be ex-
pected to converge to a solution of the projected equation
Cr = d even if the mapping ΠT is not a contraction,
as long as C is invertible. We will see in the next section
that this generality is particularly important in the context
of policy iteration where the simulation is done by using
exploration-enhanced Markov chains. Furthermore, the iter-
ation is well suited for problems where C is nearly singular.

3 Policy iteration issues

We will now discuss various issues that arise within a pol-
icy iteration context: the effects of inadequate exploration,
of inexact policy evaluation, and of policy oscillation. For
concreteness, we focus on the α-discounted MDP given in
the introduction, where the cost vector Jμ of a policy μ is
the unique fixed point of the mapping Tμ of (1), and the op-
timal cost vector J∗ is the unique fixed point of the mapping
T of (2).

We consider a form of policy iteration where we com-
pute simulation-based approximations Φrμ to the cost vec-
tors Jμ of stationary policies μ with some policy evalua-
tion method. We use Φrμ to compute new policies based

on (approximate) policy improvement using the formula
Tμ̄(Φrμ) = T (Φrμ), i.e.,

μ̄(i) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αφ(j)′rμ),

i = 1, . . . , n, (41)
where φ(j)′ is the row of Φ that corresponds to state j. The
method terminates with μ if Tμ(Φrμ) = T (Φrμ). We then
repeat with μ replaced by μ̄.

The theoretical basis for the preceding method was given
in Proposition 6.2 in [1], where it was shown that if the pol-
icy evaluation is accurate to within δ (in the sup-norm sense
‖Φrμ − Jμ‖∞ � δ), then the method will yield a sequence
of policies {μk} such that

lim sup
k→∞

‖Jμk − J∗‖∞ � 2αδ

(1 − α)2
. (42)

An alternative bound based on a Euclidean norm is given
by Munos [68]. Experimental evidence indicates that the
bound (42), while tight in theory (Example 6.4 in [1]), is
usually conservative in practice. Furthermore, often just a
few policy evaluations are needed before the bound is at-
tained. Some insight about the looseness of the bound (42)
may be obtained by noting that we may add any multiple
of the unit vector to Φrμ, thereby making δ arbitrarily large,
without affecting the policy improvement process and hence
also the generated sequence {μk}.

When the policy sequence {μk} terminates with some μ̄,
the much sharper bound

‖Jμ̄ − J∗‖∞ � 2αδ

1 − α
(43)

holds. To show this, let J̄ be the cost vector Φrμ̄ ob-
tained by policy evaluation of μ̄, and note that it satisfies
‖J̄ −Jμ̄‖∞ � δ (by our assumption on the accuracy of pol-
icy evaluation) and T J̄ = Tμ̄J̄ (since μk terminates at μ̄).
We write

TJμ̄ � T (J̄ − δe) = T J̄ − αδe = Tμ̄J̄ − αδe

� Tμ̄(Jμ̄ − δe) − αδe = Tμ̄Jμ̄ − 2αδe

= Jμ̄ − 2αδe,

where e is the unit vector, from which by applying T to both
sides, we obtain

T 2Jμ̄ � TJμ̄ − 2α2δe � Jμ̄ − 2αδ(1 + α)e,
and by similar continued application of T to both sides,

J∗ = lim
m→∞TmJμ̄ � Jμ̄ − 2αδ

1 − α
e,

thereby showing the error bound (43).
An important fact, to be shown later, is that when the ag-

gregation approach is used for policy evaluation, the policy
sequence {μk} terminates with some μ̄, while this is gener-
ally not true for the projected equation approach.
3.1 The issue of policy computations

We first note briefly an important practical issue: the com-
putation of the improved policy via the minimization of (41)
may present a serious difficulty when the expected value in
(41) is hard to compute, and/or when the number of controls
is large (or infinite in an extended version of the method
where the control constraint set is infinite). Moreover, this
issue arises generically when an approximate cost function

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 321

is translated to an online implementation of a corresponding
policy.

A number of devices have been proposed to address this
difficulty, such as various forms of Q-learning, model sim-
plifications (such as post-decision states), and various forms
of approximate minimization in (41) (such as adaptive sam-
pling). We refer to the literature, and particularly the books
[5, 7, 9] for an explanation of these terms and further dis-
cussion. Note that in some cases, the choice of the approx-
imation architecture may be specially designed to exploit
special problem structure and facilitate the minimization.
3.2 The issue of exploration

We next discuss an important generic difficulty with
simulation-based policy iteration: to evaluate a policy μ,
we need to generate cost samples using that policy, but this
biases the simulation by underrepresenting states that are
unlikely to occur under μ. As a result, the cost-to-go esti-
mates of these underrepresented states may be highly inac-
curate, causing potentially serious errors in the calculation
of the improved control policy μ̄ via the policy improve-
ment (41). A related issue is the presence of transient states
in the Markov chain used for simulation (in which case the
components of ξ corresponding to transient states are 0), or
multiple recurrent classes (in which case some states may
never be generated during the simulation).

The difficulty just described is known as inadequate ex-
ploration of the system’s dynamics because of the use of
a fixed policy. It is a particularly acute difficulty when the
system is deterministic, or more generally when the ran-
domness embodied in the transition probabilities is ‘rela-
tively small’. One possibility for guaranteeing adequate ex-
ploration of the state space is to frequently restart the sim-
ulation and to ensure that the initial states employed form a
rich and representative subset. There are also other related
possibilities. For example, an approach called iterative re-
sampling, is to enrich the sampled set of states in evaluating
the current policy μ as follows: derive an initial cost evalua-
tion of μ, simulate the next policy μ̄ obtained on the basis of
this initial evaluation to obtain a set of representative states
S̄ visited by μ̄, and repeat the evaluation of μ using addi-
tional trajectories initiated from S̄.

One of the most frequently used approaches is to artifi-
cially introduce some extra randomization in the simulation,
by occasionally modifying the state sequence generated by
the policy μ. In a common scheme of this type, we do row
sampling according to an irreducible transition probability
matrix

Q = (I − B)P + BP̄ , (44)

where P is the transition matrix corresponding to μ, B is a
diagonal matrix with diagonal components βi ∈ [0, 1], and
P̄ is another transition matrix. Thus, at state i, the next state

is generated with probability 1 − βi according to transition
probabilities pij corresponding to μ, and with probability βi

according to transition probabilities p̄ij whose purpose is to
enhance exploration. 11

Column sampling can be done using L = P , in which
case the policy evaluation phase finds a solution to the pro-
jected equation Φr = ΠT (Φr), but with an important dif-
ference: the projection is with respect to the norm ‖ · ‖ξ

where ξ is the steady-state distribution of Q rather than P .
As a result of this norm mismatch, ΠT may not be a con-
traction, and a policy evaluation method that does not rely
on contractions is needed. 12 LSTD is one such method, and
the regression-based scaled LSPE method (39), (40) is an-
other.

There is a further restriction when a λ-method is used in
conjunction with simulation. As discussed in Section 2.3,
one must then choose the same Markov chain for row and
column sampling (Q = L) in order to use the algorithm
(31)–(33) for computing simulation-based C

(λ)
k ≈ C(λ)

and d
(λ)
k ≈ d(λ). Still in this case, both LSTD and the

regression-based scaled LSPE method (39), (40) may be
used, even if ΠT (λ) is not known to be a contraction (we
refer to [24] and [70, 71] for an analysis and discussion).
It is then necessary, however, to know explicitly the ratios
aij/�ij = αpij/qij that appear in the algorithm (31)–(33).
In practical applications reported in the literature, this dif-
ficulty has been bypassed by disregarding the ratios pij/qij

from the formulas (31)–(33) (i.e., replacing aij/�ij with just
α).

We mention that there are also some other possibilities for
exploration enhancement for which we refer to [24] and [9].
Moreover, the TD(0) method has been modified to address
the exploration-related convergence difficulties (Sutton et
al. [72], Maei et. al. [73], Sutton et. al. [74]). We finally
note that exploration becomes an even more acute difficulty
in the context of policy iteration for computing Q-factors,
as we will discuss in Section 3.8.
3.3 Limited sampling/optimistic versions

In the LSTD and LSPE methods discussed so far, the un-
derlying assumption is that each policy is evaluated with
a very large number of samples, so that accurate approxi-
mations of C and d are obtained. There are also optimistic
versions, where the policy μ is replaced by an ‘improved’
policy μ̄ after only a limited number of simulation sam-
ples have been processed. The motivation for such versions
is potentially faster progress towards better policies and
less susceptibility to exploration difficulties (one may argue
that mixing samples from several past policies may have a
beneficial exploration effect). While experimental evidence
lends some support to this speculation, solid evidence for
the validity of optimistic methods is currently lacking, at

11 In the literature, e.g., [2], the policy being evaluated is sometimes called the target policy to distinguish from the matrix P̄ that may correspond to
a policy used for exploration, which is called behavior policy. Also, methods that use a behavior policy are called off-policy methods, while methods
that do not are called on-policy methods. Note, however, that P̄ need not correspond to an admissible policy, and indeed, there may not exist a suitable
admissible policy that can induce sufficient exploration. For example, in many queueing applications, the transition matrices corresponding to all policies
(including randomized ones) are very sparse and cannot induce adequate exploration.
12 Proposition 2 a) applies only for small values of the probabilities βi along the diagonal of B. It also applies only for λ sufficiently close to 1, in the
case of the λ-methods of Section 2.3. The reason is that the operator T (λ) of (30) (and hence also ΠT (λ)) can be shown to be a contraction of modulus
arbitrarily close to 0 if λ is sufficiently close to 1 (see, e.g., [18], Proposition 6.3.3, or [9, 69]).

322 D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335

least for the case of projected equation-based policy evalua-
tion, when the chattering phenomenon may occur, as will be
explained shortly. The validity of optimistic policy iteration
is better established in the case of a lookup table represen-
tation (where Φ = I; see Section 5.4 in [1]) and the re-
lated case of aggregation-based policy evaluation (see Sec-
tion 4). However, even in that case, the convergence prop-
erties of optimistic policy iteration are fragile and depend
on the implementation details, as discussed in Section 5.4
in [1]; see also Williams and Baird [19] who provide re-
markable counterexamples to the convergence of a version
of asynchronous optimistic policy iteration where costs and
policies are updated one at a time (these examples do not
involve cost function approximation or simulation).

A natural form of optimistic LSTD is r̂k+1 = C−1
k dk,

where Ck and dk are obtained by averaging samples col-
lected using the controls corresponding to the (approxi-
mately) improved policy. By this we mean that Ck and dk

are time averages of the matrices and vectors

φ(it)
(
φ(it) − αφ(it+1)

)′
, φ(it)g(it, it+1),

corresponding to simulated transitions (it, it+1) that are
generated using the policy μk+1 whose controls are given
by

μk+1(i) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αφ(j)′r̂k).

Unfortunately, this method requires the collection of many
samples between policy updates, as it is susceptible to
simulation noise in Ck and dk, particularly when Ck is
nearly singular. The optimistic version of the (scaled) LSPE
method

rk+1 = rk − γGk(Ckrk − dk)
is based on similar ideas, but seems less susceptile to sim-
ulation noise, because of its iterative nature. Note that be-
cause the theoretical convergence guarantees of LSPE ap-
ply only to the nonoptimistic version, it may be essential to
experiment with various values of the stepsize γ.

To improve the reliability of the optimistic LSTD
method, it seems necessary to turn it into an iterative
method, which then brings it very close to LSPE. In par-
ticular, an iterative version of the regression-based LSTD
method (38) is given by (39) and is the special case of LSPE,
corresponding to the special choice of the scaling matrix
Gk of (40). This method, as well as other related versions
of LSPE, is less susceptible to the high level of simulation
noise associated with limited number of samples between
policy updates in optimistic policy iteration.
3.4 Constrained policy iteration

It is natural in approximate DP to try to exploit whatever
prior information is available about J∗, such as for exam-
ple bounds on J∗(i) for some or all of the states i. If it is
known that J∗ belongs to a subset of R

n, we may try to find
an approximation Φr that belongs to that subset. This leads
to projected equations of the form Φr = ΠT (Φr), where
Π is the operator that projects a vector onto a closed con-
vex subset Ŝ of the subspace S = {Φr|r ∈ R

s}, a form of
nonlinear approximation. Corresponding analogs of LSTD-
and LSPE-type methods for such projected equations in-
volve the solution of linear variational inequalities rather

than linear systems of equations and are described in [39].
In particular, it is shown in [39] that r̂ solves the equation
Φr̂ = ΠT (ΦR̂) if and only if it solves the variational in-
equality

(Cr̂ − d)′(r − r̂) � 0, ∀r ∈ R̂, (45)

where R̂ = {r|Φr ∈ Ŝ} (cf. (9)). This is a generalization
of the equation Cr = d, which corresponds to the case
R̂ = R

s. Thus, one may carry out simulation-based pol-
icy evaluation by replacing C and d with simulation-based
estimates in the preceding variational inequality. A poten-
tial difficulty here is that even if the set Ŝ is simple, the set
R̂ may be complicated (e.g., it may be specified by a large
number of inequalities), in which case one may consider ap-
proximating R̂ with a more convenient set.

There is a simpler alternative to solving the variational
inequality (45) in the practically common case where upper
and/or lower bounds of J∗ are available. In this alternative,
which stems from the work of Bertsekas and Yu [75], we
introduce the bounds directly into the approximation archi-
tecture and use a corresponding nonlinear iterative policy
evaluation algorithm. As an example, suppose that we have
access to the components of a vector J̄ with J̄(i) � J∗(i)
for all i (for example, the cost vector of a known policy).
Then, policy iteration with cost function approximation can
be modified to incorporate this knowledge as follows. Given
a policy μ, we evaluate it by finding an approximation Φrμ

to the solution J̃μ of the equation

J̃μ(i) =
n∑

j=1

pij(μ(i))(g(i, μ(i), j)

+α min{J̄(j), J̃μ(j)}), i = 1, . . . , n (46)
followed by the policy improvement operation (cf. equation
(41))

μ̄(i) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j)

+α min{J̄(j), φ(j)′rμ}), i = 1, . . . , n, (47)
where φ(j)′ is the row of Φ that corresponds to state j.

Note that (46) has a unique solution since its right-hand
side represents a sup-norm contraction mapping. Indeed,
this is Bellman’s equation for the Q-factor of an optimal
stopping problem involving a stopping cost J̄(i) at state i,
a problem that has received a lot of attention in the approx-
imate DP literature because of its favorable structure (see
Section 6.8 in [1], or Section 6.4.2 in [18]). In particular,
(46) can be solved approximately, with approximation of J̃μ

by Φrμ, using variants of the TD(0) and LSPE(0) methods
(see Tsitsiklis and Van Roy [76], Choi and Van Roy [63],
and Yu and Bertsekas [77]). One form of the LSPE(0)
method of [77] generates a long trajectory (i0, i1, . . . , im)
using the policy μ̄ of (47), and determines the weight vector
rμ̄ as the limit of the iteration

rk+1 = arg min
r∈Rs

m−1∑
t=0

(
φ(it)′r − g(it, μ(it), it+1)

−α min
{
J̄(it+1), φ(it+1)′rk

})2

, r0 = rμ, (48)

i.e., rμ̄ = lim
k→∞

rk (for this it is necessary that the length

of the simulation trajectory is sufficiently large). This is the

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 323

analog of the batch simulation approach of (14): first a batch
of simulation data is generated, and then the corresponding
Bellman equation (46) is solved approximately via the iter-
ation (48) (an LSTD/matrix inversion approach is not pos-
sible because (46) is nonlinear). The method (48) involves
substantial overhead because it involves the entire simula-
tion trajectory at each iteration. There are also alternative
methods given by [77], which are more iterative in charac-
ter (iterate on r as new simulation data is generated) and
also require less overhead per iteration; see also [9, 18] for
details. 13

Under the assumption J̄(i) � J∗(i) for all i, and a
lookup table representation (Φ = I), it can be shown that
the method (46), (47) yields J∗ in a finite number of itera-
tions, just like the standard (exact) policy iteration method.
The proof is based on the monotonicity and sup-norm con-
traction properties of the mappings T̄μ and T̄ given by

(T̄μJ)(i) =
n∑

j=1

pij(μ(i))(g(i, μ(i), j)

+α min{J̄(j), J(j)}), i = 1, . . . , n, (49)

(T̄ J)(i) = min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j)

+α min{J̄(j), J(j)}), i = 1, . . . , n, (50)
(46) and (47), and the fact that J∗ is the unique fixed point
of F (which rests on the hypothesis J̄ � J∗); see the sub-
sequent Proposition 6.

When a compact feature-based representation is used
(Φ 	= I), the constrained policy iteration method (46), (47)
is still vulnerable to oscillation regardless of which variant
of (48) is used (see the next section). The magnitude of the
oscillations can be estimated with an error bound similar to
(42). However, the method may produce substantially dif-
ferent results than its unconstrained counterpart, because the
policies involved in an oscillation may be different in the
two methods.
3.5 Policy oscillation and chattering

Projected equation-based variants of policy iteration
methods are popular in practice and have been tested exten-
sively, dating to the early nineties (see, e.g., the books [1,2],
and the references quoted there; for a sample of more re-
cent experimental studies, see Lagoudakis and Parr [78],
Jung and Polani [79], Busoniu et al. [80], and Thiery and
Scherrer [49]). However, the associated convergence behav-
ior is complex and involves potentially damaging oscilla-
tions, which despite their initial description long ago [81]
are still not well understood at present.

To get a sense of this behavior, we introduce the so called
greedy partition, discussed in Section 6.4 of [1]. This is a
partition of the space R

s of parameter vectors r into subsets
Rμ, each subset corresponding to a stationary policy μ, and
defined by

Rμ =
{
r|Tμ(Φr) = T (Φr)

}
, (51)

or equivalently

Rμ =
{
r
∣∣ μ(i) ∈ arg min

u∈U(i)

n∑
j=1

pij(u)(g(i, u, j)+αφ(j)′r),

i = 1, . . . , n
}
.

Thus, Rμ is the set of parameter vectors r for which μ
is ‘greedy’ with respect to Φr. Note that the greedy parti-
tion depends only on Φ and is independent of the particular
method used for policy evaluation (i.e., whether a projec-
tion/TD or different method is used).

For simplicity, let us assume that we use a policy evalua-
tion method that for each given μ produces a unique param-
eter vector rμ. Nonoptimistic policy iteration starts with a
parameter vector r0, which specifies μ0 as a greedy policy
with respect to Φr0 and generates rμ0 by using the given
policy evaluation method. It then finds a policy μ1 that is
greedy with respect to Φrμ0 , i.e., a μ1 such that rμ0 ∈ Rμ1 .
It then repeats the process with μ1 replacing μ0. If some
policy μk satisfying rμk ∈ Rμk is encountered, the method
keeps generating that policy. This is the necessary and suffi-
cient condition for policy convergence in the nonoptimistic
policy iteration method. Of course, the mere fact that a pol-
icy iteration method is guaranteed to converge is not in it-
self a guarantee of good performance when cost function
approximation is used, beyond the fact that a better error
bound holds in this case (43) versus (42).

In the case of a lookup table representation where the pa-
rameter vectors rμ are equal to the cost-to-go vector Jμ, the
condition rμk ∈ Rμk is equivalent to rμk = Trμk and is
satisfied if and only if μk is optimal. When there is function
approximation, however, this condition need not be satis-
fied for any policy. Since there is a finite number of possible
vectors rμ, one generated from another in a deterministic
way, the algorithm ends up repeating some cycle of policies
μk, μk+1, . . . , μk+m with

rμk ∈ Rμk+1 , rμk+1 ∈ Rμk+2 , . . . , rμk+m−1 ∈ Rμk+m ,

rμk+m ∈ Rμk , (52)

(see Fig. 2). Furthermore, there may be several different cy-
cles, and the method may end up converging to any one of
them. The actual cycle obtained depends on the initial pol-
icy μ0. This is similar to gradient methods applied to mini-
mization of functions with multiple local minima, where the
limit of convergence depends on the starting point.

In the case of optimistic policy iteration, the trajectory of
the method is less predictable and depends on the fine de-
tails of the iterative policy evaluation method, such as the
frequency of the policy updates and the stepsize used. Gen-
erally, given the current policy μ, optimistic policy iteration
will move towards the corresponding ‘target’ parameter rμ,
for as long as μ continues to be greedy with respect to the
current cost-to-go approximation Φr, that is, for as long as
the current parameter vector r belongs to the set Rμ. Once,
however, the parameter r crosses into another set, say Rμ̄,

13 An algorithm similar to (46)–(48) is also possible if we know instead a lower bounding vector to J∗ or both upper and lower bounding vectors:
the terms min

˘
J̄(j), J̃μ(j)

¯
and min

˘
J̄(j), φ(j)′rμ

¯
in (46) and (47) should be replaced by the respective projections of J̃μ(j) or φ(j)′rμ on the

corresponding interval of upper and/or lower bounds. In this case, a generalization of the optimal stopping algorithm of [77], given in Section 7.3 of [24],
may be used for policy evaluation. Note that this algorithm provides a means for approximating the cost Jμ(j) of a policy μ with a simple nonlinear
architecture fj(φ(j)′r), where fj denotes projection onto the interval of upper and lower bounds to J∗(j). This approach may make sense regardless
of whether true upper and/or lower bounds of J∗(j) are known.

324 D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335

the policy μ̄ becomes greedy, and r changes course and
starts moving towards the new ‘target’ rμ̄. Thus, the ‘tar-
gets’ rμ of the method and the corresponding policies μ and
sets Rμ may keep changing, similar to nonoptimistic policy
iteration. Simultaneously, the parameter vector r will move
near the boundaries that separate the regions Rμ that the
method visits, following reduced versions of the cycles that
nonoptimistic policy iteration may follow. Furthermore, as
Fig. 2 suggests, if diminishing parameter changes are made
between policy updates (such as, for example, when a di-
minishing stepsize is used by the policy evaluation method)
and the method eventually cycles between several policies,
the parameter vectors will tend to converge to the common
boundary of the regions Rμ corresponding to these policies.
This is the so-called chattering phenomenon for optimistic
policy iteration, whereby there is simultaneously oscillation
in policy space and convergence in parameter space. The
following is a simple example of policy oscillations and
chattering. Other examples are given in Section 6.4.2 in [1]
(Examples 6.9 and 6.10).

Fig. 2 Greedy partition and cycle of policies generated by nonoptimistic
policy iteration. In particular, μ yields μ̄ by policy improvement if
and only if rμ ∈ Rμ̄. In this figure, the method cycles between
four policies and the corresponding four parameters rμk , rμk+1 ,
rμk+2 , and rμk+3 .

Example 1 (Policy oscillation and chattering) Consider
a discounted problem with two states, 1 and 2, illustrated in
Fig. 3 (a). There is a choice of control only at state 1, and
there are two policies, denoted μ∗ and μ. The optimal pol-
icy μ∗, when at state 1, stays at 1 with probability p > 0
and incurs a cost c < 0 while, when at state 2, returns to
state 1 with 0 cost. The other policy is μ and cycles between
the two states with 0 cost. We consider linear approximation
with a single feature φ(i)′ = i for each of the states i = 1, 2,
i.e.,

Φ =

[
1
2

]
, J̃ = Φr =

[
r

2r

]
.

We first derive the greedy partition using (51):

Rμ∗ =
{
r|p

(
c + α(1 · r)

)
+ (1 − p)α(2 · r) � α(2 · r)

}
= {r|c � αr},

Rμ = {r|c � αr}.

We next calculate the points rμ and rμ∗ that solve the pro-
jected equations

Cμrμ = dμ, Cμ∗rμ∗ = dμ∗ ,

which correspond to μ and μ∗, respectively. We have

Cμ = Φ′Ξμ(1 − αPμ)Φ = [1 2]

[
1 0
0 1

][
1 −α

−a 1

][
1
2

]

= 5 − 9α,

dμ = Φ′Ξμgμ = [1 2]

[
1 0
0 1

][
0
0

]
= 0,

so
rμ = 0.

Similarly, with some calculation,
Cμ∗ = Φ′Ξμ∗(1 − αPμ∗)Φ

= [1 2]

⎡
⎢⎣

1
2 − p

0

0
1 − p

2 − p

⎤
⎥⎦

[
1 − αp − α(1 − p)
−a 1

]
[1 2]

=
5 − 4p − α(4 − 3p)

2 − p
,

dμ∗ = Φ′Ξμ∗gμ∗ = [1 2]

⎡
⎢⎣

1
2 − p

0

0
1 − p

2 − p

⎤
⎥⎦

[
c

0

]
=

c

2 − p
,

so
rμ∗ =

c

5 − 4p − α(4 − 3p)
.

We now note that since c < 0, rμ = 0 ∈ Rμ∗ , while for
p ≈ 1 and α > 1 − α, we have rμ∗ ≈ c/(1 − α) ∈ Rμ;
cf. Fig. 3 (b). In this case, policy iteration cycles between
μ and μ∗. Its optimistic version uses some algorithm that
moves the current value r towards rμ∗ if r ∈ Rμ∗ , and
towards rμ if r ∈ Rμ. Thus, optimistic policy iteration
starting from a point in Rμ moves towards rμ∗ and once
it crosses the boundary point c/α of the greedy partition, it
reverses course and moves towards rμ. If the method makes
small incremental changes in r before checking whether to
change the current policy, it will incur a small oscillation
around c/α. If the incremental changes in r are diminishing,
the method will converge to c/α. Yet, c/α does not corre-
spond to any one of the two policies and has no meaning as
a desirable parameter value.

Fig. 3 The problem of Example 1. (a) Costs and transition probabilities
for the policies μ and μ∗. (b) The greedy partition and the solu-
tions of the projected equations corresponding to μ and μ∗. Nonop-
timistic policy iteration oscillates between rμ and rμ∗ .

Notice that it is hard to predict when an oscillation will
occur and what kind of oscillation it will be. For example,
if c > 0, we have rμ = 0 ∈ Rμ, while for p ≈ 1 and

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 325

α > 1 − α, we have rμ∗ ≈ c/(1 − α) ∈ Rμ∗ . Then, ap-
proximate and optimistic policy iteration converge to μ (or
μ∗) if started with r in Rμ (or Rμ∗ , respectively).

When chattering occurs, the limit of optimistic policy it-
eration tends to be on a common boundary of several subsets
of the greedy partition and may not meaningfully represent
a cost approximation of any of the corresponding policies,
as illustrated by the preceding example. Thus, the limit to
which the method converges cannot always be used to con-
struct an approximation of the cost-to-go of any policy or
the optimal cost-to-go. As a result, at the end of optimistic
policy iteration and in contrast with the nonoptimistic ver-
sion, one must go back and perform a screening process;
that is, evaluate by simulation the many policies generated
by the method starting from the initial conditions of interest
and select the most promising one. This is a disadvantage of
optimistic policy iteration that may nullify whatever prac-
tical rate of convergence advantages the method may have
over its nonoptimistic counterpart.

An additional insight is that the choice of the iterative
policy evaluation method (e.g., LSTD, LSPE, or TD for var-
ious values of λ) makes a difference in rate of convergence,
but does not seem crucial for the quality of the final pol-
icy obtained (as long as the methods converge). The choice
of method affects the targets rμ somewhat, but leaves the
greedy partition unchanged. As a result, different methods
‘fish in the same waters’ and tend to yield similar ultimate
cycles of policies. Generally, there is no guarantee that any
of the policies involved in oscillation is particularly good;
the policy iteration process may be just cycling in a ‘bad’
part of the greedy partition. Moreover, it is hard to know
how far from the optimum the oscillation is occurring, sim-
ilar to the case of local minima in gradient-based optimiza-
tion.

The full ramifications of policy oscillation in practice are
not fully understood at present, but it is clear that they give
serious reason for concern. An interesting case in point is
the game of tetris, which has been used as a testbed for ap-
proximate DP methods [36,46,82–86]. 14 Using policy iter-
ation with policy evaluation based on the projected equation
and a set of 22 features, an average score of a few thousands
was achieved (originally, the LSPE method was used [36];
similar results were obtained with the LSTD method [78]).
Using the same features and a random search method (the
cross-entropy method [65, 87]) in the space of weight vec-
tors r, an average score of 600,000 to 900,000 was achieved

[85, 88]. The causes of this notable failure of approximate
policy iteration have not been clarified yet. It is an open
question whether it is due to the inherent difficulty of the
tetris problem or whether it can be attributed to inherent
pathologies of approximate policy iteration, such as oscilla-
tions/chattering between relatively poor policies, or weak-
nesses of the cost function approximation philosophy. 15

3.6 Conditions for policy convergence

The preceding analysis has indicated that it is desirable to
avoid policy oscillation in policy iteration methods. More-
over, as mentioned earlier, when policies converge, there is a
more favorable error bound associated with the method (43)
versus (42). It is therefore interesting to investigate condi-
tions under which we have convergence of policies. From
the mathematical point of view, it turns out that policy os-
cillation is caused by the lack of monotonicity and the de-
pendence (through Ξ) on μ of the projection operator. With
this in mind, we will replace Π with a constant operator W
that has a monotonicity property. We develop convergence
conditions for an abstract approximate policy iteration algo-
rithm that applied to general (beyond discounted) DP prob-
lems. This leads to conceptual and notational simplification
as well as a more broadly applicable algorithm and analysis.

To this end, consider any (possibly nonlinear) mapping
Hμ : R

n �→ R
n, parametrized by the policy μ, and the

mapping H : R
n �→ R

n, defined by

HJ = min
μ∈M

HμJ, (53)

where M is a finite subset of policies, and the minimization
above is done separately for each component of HμJ ; i.e.,

(HJ)(i) = min
μ∈M

(HμJ)(i), ∀i = 1, . . . , n.

Abstract mappings of this type and their relation to DP have
been studied in Denardo [94], Bertsekas [95], and Bertsekas
and Shreve [96]. A special case is the discounted DP case,
where Hμ = Tμ and H = T . Another special case is a
mapping Hμ that is similar to Tμ but arises in discounted
semi-Markov problems. A special case of a nonlinear map-
ping Hμ arises in constrained policy iteration, cf. the map-
ping T̄μ of (49). Nonlinear mappings Hμ also arise in the
context of minimax DP problems and sequential games; see
Shapley [97], and [94–96].

We will construct a policy iteration method that aims to
find an approximation to a fixed point of H and evaluates
a policy μ ∈ M with a solution J̃μ of the following fixed

14 Local attraction-type phenomena may be causing similar difficulties in other related approximate DP methodologies: policy iteration with function
approximation using the Bellman error method, policy gradient methods, and approximate linear programming (the tetris problem, using the same 22
features, has been addressed by approximate linear programming [82, 83], and with a policy gradient method [84], also with an achieved average score
of a few thousands, roughly comparable to the ones obtained using policy iteration). These connections are interesting subjects for investigation.
15 For a given policy μ, the policy evaluation methods based on the projected equation estimate the cost function of μ by Φrμ, yet the next policy μ̄
obtained by policy improvement is determined by the Q-factor differences Q̃μ(i, u) − Q̃μ

`
i, μ(i)

´
, where

Q̃μ(i, u) =
nP

j=1
pij(u)(g(i, u, j) + αφ(j)′rμ), i = 1, . . . , n, u ∈ U(i),

is the corresponding approximation of the Q-factor Qμ(i, u) of μ (cf. 41). Thus, adding a constant to all components of Φrμ does not affect μ̄. This has
led to proposals of policy evaluation methods that aim to estimate directly Q-factor differences or cost function differences (see Werbos [89, 90], Baird
et al. [91,92] and Bertsekas [93]). There is no solid theory regarding the merits of these methods over methods based on cost or Q-factor approximation,
but it is clear that there are circumstances where they may offer an advantage (see the discussion of Sections 6.6.2 and 6.11 in [1]). The problem is
that policy evaluation based on least-squares criteria tends to capture the large-scale behavior of the function being approximated and may thus be less
sensitive to the fine-scale variations in Qμ(i, u). As a result, the dependence of Qμ on u may be lost when using instead the approximation Q̃μ.

326 D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335

point equation in the vector J :
(WHμ)(J) = J, (54)

where W : R
n �→ R

n is a mapping (possibly nonlinear
but independent of μ). Policy evaluation by solving the pro-
jected equation corresponds to W = Π . Rather than specify
properties of Hμ under which H has a unique fixed point (as
in [94, 95] and [96]), it is simpler for our purposes to intro-
duce corresponding assumptions on the mappings W and
WHμ. In particular, we assume the following:

a) For each J , the minimum in (53) is attained, in the
sense that there exists μ̄ ∈ M such that HJ = Hμ̄J .

b) For each μ ∈ M, the mappings W and WHμ are
monotone in the sense that
WJ � WJ̄, (WHμ)(J) � (WHμ)(J̄), ∀J, J̄ ∈ R

n

with J � J̄ . (55)

c) For each μ, the solution J̃μ of (54) is unique, and for
all J such that (WHμ)(J) � J , we have

J̃μ = lim
k→∞

(WHμ)k(J).

Based on condition a), we introduce a policy improvement
operation that is similar to the case where Hμ = Tμ: the
‘improved’ policy μ̄ satisfies Hμ̄J̃μ = HJ̃μ. Note that con-
dition c) is satisfied if WHμ is a contraction on S, while
condition b) is satisfied if W is a matrix with nonnegative
components and Hμ is monotone for all μ. These condi-
tions also hold for the constrained policy iteration method
(46), (47), where Hμ is the nonlinear mapping T̄μ of (49).

Proposition 6 Let conditions a)–c) hold. Consider the
approximate policy iteration method that uses the fixed
point J̃μ of the mapping WHμ for evaluation of the policy
μ (54) and the equation Hμ̄J̃μ = HJ̃μ for policy improve-
ment. Assume that the method is initiated with some policy
in M, and it is operated so that it terminates when a policy
μ̄ is obtained such that Hμ̄J̃μ̄ = HJ̃μ̄. Then, the method
terminates in a finite number of iterations, and the vector J̃μ̄

obtained upon termination is a fixed point of WH .
Proof Similar to the standard proof of convergence of

(exact) policy iteration, we use the policy improvement
equation Hμ̄J̃μ = HJ̃μ, the monotonicity of W , and the
policy evaluation (54) to write

(WHμ̄)(J̃μ) = (WH)(J̃μ) � (WHμ)(J̃μ) = J̃μ.

By iterating with the monotone mapping WHμ̄ and by us-
ing condition (c), we obtain

J̃μ̄ = lim
k→∞

(WHμ̄)k(J̃μ) � J̃μ.

There are finitely many policies, so we must have J̃μ̄ = J̃μ

after a finite number of iterations, which, using the pol-
icy improvement equation Hμ̄J̃μ = HJ̃μ, implies that
Hμ̄J̃μ̄ = HJ̃μ̄. Thus, the algorithm terminates with μ̄, and
since J̃μ̄ = (WHμ̄)(J̃μ̄), it follows that J̃μ̄ is a fixed point
of WH .

Note the mechanism by which the preceding policy itera-
tion method avoids the oscillations described in Section 3.5.

Again, the policy improvement step yields μ̄ from μ if and
only if J̃μ ∈ Rμ̄, where Rμ̄ = {J |Hμ̄J = HJ} is the
corresponding set of the greedy partition (which is indepen-
dent of the method used for policy evaluation). However, the
monotonicity inherent in the policy evaluation step guaran-
tees that

J̃μ̄ � J̃μ, ∀μ, μ̄ ∈ M such that J̃μ ∈ Rμ̄,

so a policy oscillation is impossible. Note also that the pre-
ceding proof applies to the more general case where for pol-
icy improvement we use any policy μ̄ such that Hμ̄J̃μ � J̃μ,
with strict inequality Hμ̄J̃μ 	= J̃μ when Hμ̄J̃μ 	= J̃μ. This
allows for approximate minimization over candidate poli-
cies in the policy improvement step.

An important special case where Proposition 6 applies
and policies converge is when Hμ = Tμ, H = T , W is
linear of the form W = ΦD, where Φ and D are n × s
and s × n matrices, respectively, whose rows are probabil-
ity distributions, and the policy evaluation uses the linear
feature-based approximation J̃μ = Φrμ. This is the case of
policy evaluation by aggregation, which will be discussed in
the next section. Then, it can be seen that W and WTμ are
monotone and that WTμ is a sup-norm contraction (since
W is nonexpansive with respect to the sup norm), so that
conditions a)–c) are satisfied. The same is true in the more
general case W = ΦD, where the matrix W has nonnega-
tive components, and its row sums are less than or equal to
1, i.e.,

s∑
m=1

ΦimDmj � 0, ∀i, j = 1, . . . , n,

s∑
m=1

Φim

n∑
j=1

Dmj � 1, ∀i = 1, . . . , n.

If Φ and D have nonnegative components, the first of
these relations is automatically satisfied, while the second
is equivalent to the set of n linear inequalities

φ(i)′ζ � 1, ∀i = 1, . . . , n, (56)

where φ(i)′ is the ith row of Φ, and ζ ∈ R
s is the col-

umn vector of row sums of D, i.e., the one that has compo-
nents 16

ζ(m) =
n∑

j=1

Dmj , ∀m = 1, . . . , s.

Even in this more general case, the policy evaluation (54)
can be solved by using simulation and low-order calcula-
tions (see Section 6.8 in [9]).

Given a ‘good’ choice of Φ � 0, an interesting ques-
tion is how to construct effective algorithms for parametric
optimization of a nonnegative matrix D, subject to the con-
straints (56). This is similar to the basis function optimiza-
tion issue mentioned in the introduction.

Finally, let us note that a special case when (56) may be
easily satisfied arises when through a reordering of indexes,
the matrix D can be partitioned in the form D = [Δ 0],
where Δ is a positive definite diagonal matrix with diago-

16 A column of Φ that has both positive and negative components may be replaced with the two columns that contain its positive and the opposite of its
negative components. This will create a new nonnegative matrix Φ with as many as twice the number of columns, and will also enlarge the approximation
subspace S (leading to no worse approximation). Then, the matrix D may be optimized subject to D � 0 and the constraints (56), with respect to some
performance criterion.

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 327

nal elements dm, m = 1, . . . , s, satisfying
s∑

m=1
Φimdm � 1, ∀i = 1, . . . , n.

An example of such a structure arises in coarse grid dis-
cretization/aggregation schemes (see Section 4).
3.7 The case of hard aggregation

If the mapping Hμ is monotone in the sense that HμJ �
HμJ̄ for all J, J̄ ∈ R

n with J � J̄ (as it typically is in
DP models), then the monotonicity assumption (55) is sat-
isfied if W is a projection matrix Π (the same for all μ),
which satisfies ΠJ � 0 for all J with J � 0 (or equiva-
lently ΠR

n
+ = S ∩ R

n
+, where R

n
+ is the nonnegative or-

thant). This is so if and only if all the components of Π
are nonnegative. A special case where this is true is when
Φ has nonnegative components, and has linearly indepen-
dent columns that are orthogonal with respect to the inner
product 〈x1, x2〉 = x′

1Ξx2. This follows from the projec-
tion formula Π = Φ(Φ′ΞΦ)−1Φ′Ξ and the fact that Φ′ΞΦ
is positive definite and diagonal. An interesting special case
is when policy evaluation is done by hard aggregation, one
of the methods from the class to be discussed in the next
section. Here, the state space {1, . . . , n} is partitioned in s
nonempty subsets I1, . . . , Is and:

1) The �th column of Φ has components that are 1 or 0
depending on whether they correspond to an index in I� or
not.

2) The �th row of D is a probability distribution
(d�1, . . . , d�n) whose components are positive depending
on whether they correspond to an index in I� or not, i.e.,
n∑

j=1

d�j = 1, d�j > 0 if j ∈ I�, and d�j = 0 if j 	∈ I�.

With these definitions of Φ and D, it can be verified that
ΦD is given by the projection formula

ΦD = Φ(Φ′ΞΦ)−1Φ′Ξ,

where Ξ is the diagonal matrix with the nonzero compo-
nents of D along the diagonal. In fact, Π , the projection on
S with respect to ‖ · ‖ξ, can be written in the explicit form

(ΠJ)(i) =
∑

j∈I�

d�jJ(j), ∀i ∈ I�, � = 1, . . . , s.

Thus, assuming that D (and hence Π) is held constant,
policies converge and the more favorable error bound (43)
holds. 17

3.8 Q-factor approximations, exploration, and opti-

mistic policy iteration

The policy iteration methods with cost function approx-
imation discussed so far rely on the calculation of the ap-
proximation Φr to the cost function of the current policy
μ, which is then used for policy improvement using the
minimization (41). Carrying out this minimization requires
knowledge of the transition probabilities pij(u) and cal-
culation of the associated expected values for all controls
u ∈ U(i) (otherwise a time-consuming simulation of these
expected values is needed). An interesting ‘model-free’ al-
ternative is to perform approximate policy evaluation by

computing approximate Q-factors

Q̃(i, u, r) ≈ (FμQ)(i, u), ∀(i, u), (57)

where FμQ is the Q-learning mapping given by

(FμQ)(i, u)

=
n∑

j=1

pij(u)
(
g(i, u, j)+αQ(j, μ(j))

)
, ∀(i, u), (58)

and to use the minimization

μ̄(i) ∈ arg min
u∈U(i)

Q̃(i, u, r), ∀i, (59)

for policy improvement. Here, r is an adjustable parameter
vector and Q̃(i, u, r) is a parametric architecture, possibly
of the linear form

Q̃(i, u, r) =
s∑

k=1

rkφk(i, u),

where φk(i, u) are basis functions that depend on both state
and control.

An important point is that given the current policy μ,
we can construct Q-factor approximations for that policy
using any method for constructing cost vector approxima-
tions. The way to do this is to apply the latter method to
the Markov chain whose states are the pairs (i, u), and the
probability of transition from (i, u) to (j, v) is

p(i,u)(j,v) = pij(u)δ
(
v = μ(j)

)
, (60)

where as earlier δ(·) denotes the indicator function: δ
(
v =

μ(j)
)

= 1 if v = μ(j) and is equal to 0 otherwise. This
is the probabilistic mechanism by which state-control pairs
evolve under the stationary policy μ. However, a major con-
cern here is that the state-control pairs (i, u) with u 	= μ(i)
are never generated in this Markov chain, so they are not
represented in the cost samples used to construct the ap-
proximation Q̃(i, u, r). This creates an acute difficulty due
to diminished exploration, which must be addressed in any
simulation-based implementation.

To address the issue of exploration in evaluating (exactly
or approximately) the Q-factors of a given policy, we may
use the LSTD(λ) approach in conjunction with the algo-
rithm (31)–(33) of Section 2.3. We recall that, in this al-
gorithm, row and column sampling is done by generating a
sequence of state-control pairs

{
(i0, u0), (i1, u1), . . .

}
. The

Q-factor approximation is Φr̂, where r̂ is the solution of the
system C

(λ)
k r = d

(λ)
k , with C

(λ)
k and d

(λ)
k generated recur-

sively by

C
(λ)
k =

(
1 − 1

k + 1

)
C

(λ)
k−1 +

1
k + 1

zk

(
φ(ik, uk)

−α
p(ik,uk)(ik+1,uk+1)

�(ik,uk)(ik+1,uk+1)
φ(ik+1, uk+1)

)′
, (61)

d
(λ)
k =

(
1 − 1

k + 1

)
d
(λ)
k−1

+
1

k+1
zkα

p(ik,uk)(ik+1,uk+1)

�(ik,uk)(ik+1,uk+1)
g(ik, uk, ik+1), (62)

17 Van Roy [47] has established especially favorable error bounds for a hard aggregation-based approximate DP method. However, the policy iteration
method considered in [47] is not the same as the one considered here, because the corresponding matrix Π is not constant and policy convergence is not
guaranteed. It is not clear whether it is practically advantageous to select Π in the manner suggested by Van Roy [47], compared to keeping it constant
as in the standard hard aggregation scheme of Section 4.

328 D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335

where zk is generated by

zk = λα
p(ik−1,uk−1)(ik,uk)

�(ik−1,uk−1)(ik,uk)
zk−1 + φ(ik, uk). (63)

Here, φ(i, u)′ is the row of Φ corresponding to (i, u),
p(i,u)(j,v) are the transition probabilities between state-
control pairs given by (60), and �(i,u)(j,v) are the corre-
sponding transition probabilities governing row and column
sampling. A particularly interesting choice is

�(i,u)(j,v) = pij(u)ν(v|j), (64)
where ν is a randomized policy that affects exploration by
mapping a state j to control v with probability ν(v|j). Then,
from (60) and (64), we see that the ratios in algorithm (61)–
(63) simplify

p(i,u)(j,v)

�(i,u)(j,v)
=

δ
(
v = μ(j)

)
ν(v|j) ,

(again, we adopt the convention 0/0 = 0), so knowledge of
pij(u) is not needed, and the algorithm maintains its model-
free character.

Recently, an alternative approach to Q-learning with ex-
ploration enhancement has been proposed, which is new
even in the context of exact DP (Bertsekas and Yu [75]).
It is based on replacing the Q-learning mapping Fμ of (58)
with the mapping

(FJ,νQ)(i, u)

=
n∑

j=1

pij(u)
(
g(i, u, j)

+α
∑

v∈U(j)

ν(v|j) min{J(j), Q(j, v)}
)
, ∀(i, u), (65)

which depends on a vector J ∈ R
n, with components de-

noted J(i), and on a randomized policy ν, which for each
state j defines a probability distribution

{ν(v|j)|v ∈ U(j)}
over the feasible controls at j, and may depend on the ‘cur-
rent policy’ μ. Thus, solving a linear equation (the tradi-
tional policy evaluation method) is replaced by solving an
optimal stopping problem: finding a fixed point of the map-
ping (65) (a similarity with the constrained policy iteration
(46), (47) described earlier).

The exploration-enhanced policy iteration algorithm is
similar to the ordinary version (57)–(59), except that it is
based on the mapping FJ,ν in place of Fμ. Its policy evalu-
ation phase is

Q̃(i, u, r) ≈ (FJ,νQ)(i, u), (66)
and its policy improvement phase is (59). At the end of an
iteration, the vector J is set to

J(i) = min
u∈U(i)

(FJ,νQ̃)(i, u), ∀i. (67)

The policy ν may be chosen arbitrarily at each iteration. It
may encode aspects of the ‘current policy’ μ but may also
allow for arbitrary and easily controllable amount of explo-
ration. For extreme choices of ν and a lookup table rep-
resentation, the algorithm yields as special cases the clas-
sic Q-learning/value iteration and policy iteration methods.
Together with linear Q-factor approximation, the algorithm
may be combined with the TD(0)-like method of Tsitsiklis
and Van Roy [76], which can be used to solve the associated
stopping problems with low overhead per iteration, thereby

resolving the issue of exploration.
The enhanced policy iteration algorithm also has some

interesting properties in the context of exact/lookup table
policy iteration: it admits asynchronous and stochastic it-
erative implementations, which can be attractive alterna-
tives to standard methods of asynchronous/optimistic pol-
icy iteration and Q-learning. Its advantage is more robust
convergence properties (it is not susceptible to the fragility
of asynchronous policy iteration demonstrated by Williams
and Baird [19] and of optimistic policy iteration with lookup
table representation discussed by Section 5.4 in [1]); see
Bertsekas and Yu [75,98] for further elaboration. An impor-
tant fact regarding these properties is that, for every random-
ized policy ν, the mapping underlying the algorithm (66),
(67),

(Q, J) �→ (FJ,νQ, MFJ,νQ) , (68)
where

(MFJ,νQ)(i) = min
u∈U(i)

(FJ,νQ)(i, u), ∀i,

is a sup-norm contraction of modulus α, and its unique fixed
point is the optimal Q-factor and cost vector pair (Q∗, J∗).

The contraction property just described, and other simi-
lar properties, forms the basis for a variety of asynchronous
stochastic Q-learning algorithms, which update Q-factors
and relate to policy iteration with an optimistic character (a
limited number of samples used to update Q for fixed J and
ν, between updates of J). These algorithms may naturally
involve enhanced exploration through the use of policies ν,
which may relate but need not be identical to the policies
under evaluation. We refer to Bertsekas and Yu [75] for
a detailed discussion, convergence analysis, and also error
bounds (in the case, where Q-factors are compactly repre-
sented through a set of basis functions).

The contraction property of the mapping (68) may also
be used to construct deterministic asynchronous policy it-
eration algorithms with an optimistic character, which up-
date costs (rather than Q-factors); see [75, 98]. In these al-
gorithms, we use deterministic policies μk in place of ν, and
for each state i, there is a set of times T (i) at which we do
a ‘policy evaluation’ iteration at i, given by

V k+1(i) =
n∑

j=1

pij

(
μk(i)

)(
g
(
i, μk(i), j

)
+α min{Jk(j), V k(j)}

)
,

and we leave Jk(i), μk(i) unchanged. There is also an infi-
nite set of times T (i) [disjoint from T (i)] at which we do a
‘policy improvement’ at i, given by

Jk+1(i) = V k+1(i)

= min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j)

+α min{Jk(j), V k(j)}
)
,

while setting μk+1(i) to a u that attains the minimum
above. Based on the sup-norm contraction property of map-
ping (68), it can be shown that this algorithm satisfies
lim

k→∞
Jk(i) = lim

k→∞
V k(i) = J∗(i) for all i, with arbitrary

initial conditions (J0, V 0, μ0), thus overcoming the conver-
gence difficulties demonstrated by Williams and Baird [19]
for the natural version of asynchronous policy iteration.

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 329

4 Policy evaluation by aggregation

In this section, we consider policy iteration with aggre-
gation-based approximate policy evaluation. The aggrega-
tion approach resembles the projected equation approach
because it also constructs cost approximations of the form
Φr. However, there are some differences, the most impor-
tant of which is that in aggregation methods there are re-
strictions in the form of Φ, so there is less freedom in choos-
ing the approximation subspace. Moreover, from a mathe-
matical point of view, in the aggregation approach, there are
no projections with respect to Euclidean norms, the simu-
lations can be done more flexibly, and the underlying con-
tractions are with respect to the sup-norm rather than a Eu-
clidean norm.

From a conceptual point of view, the most important dif-
ference from the projected equation approach is that ag-
gregation is based on problem approximation (rather than
Bellman equation approximation): the original problem is
approximated with a related ‘aggregate’ problem, which
is then solved exactly to yield a cost-to-go approximation
for the original problem. As a result, policy iteration with
the aggregation approach is not afflicted by some of the
pathologies that emanate from compact feature-based repre-
sentations of cost functions, such as policy oscillations and
chattering. The sequence of generated policies converges (to
an optimal policy of the aggregate problem) with monotonic
cost improvement (for the aggregate problem), and a more
favorable error bound can be derived than for the projected
equation case.

To construct an aggregation framework for the discounted
MDP of the preceding section, we introduce a finite set A of
aggregate states, and we introduce two sets of probabilities,
which relate the original system states with the aggregate
states:

1) For each aggregate state x and original system state
i, we specify the disaggregation probability dxi (we have
n∑

i=1

dxi = 1 for each x ∈ A). Roughly, dxi may be inter-

preted as the ‘degree to which x is represented by i’.
2) For each aggregate state y and original system state

j, we specify the aggregation probability φjy (we have∑
y∈A

φjy = 1 for each j = 1, . . . , n). Roughly, φjy may

be interpreted as the ‘degree of membership of j in the ag-
gregate state y’. The vectors {φjy|j = 1, . . . , n} may also
be viewed as basis functions that will be used to provide a
cost approximation for the original problem.

We mention a few examples, and we refer to [18] Vol. I,
Section 6.3, and to [9] for further discussion and examples.

a) In hard and soft aggregation, we group the original sys-
tem states into subsets, and we view each subset as an ag-
gregate state. In hard aggregation, each state belongs to one
and only one subset, and the aggregation probabilities are

φjy = 1 if system state j belongs to
aggregate state/subset y.

The disaggregation probabilities could be

dxi = 1/nx if system state i belongs to
aggregate state/subset x,

where nx is the number of states of x (this implicitly as-
sumes that all states that belong to aggregate state/subset y
are ‘equally representative’). In soft aggregation, we allow
the aggregate states/subsets to overlap, with the aggregation
probabilities φjy quantifying the ‘degree of membership’ of
j in the aggregate state/subset y.

b) In various discretization schemes, each original system
state j is associated with a convex combination of aggregate
states:

j ∼
∑

y∈A
φjyy,

for some nonnegative weights φjx, whose sum is 1, and
which are viewed as aggregation probabilities (this makes
geometrical sense if both the original and the aggregate
states are associated with points in a Euclidean space).

c) In coarse grid schemes, a subset of representative states
is chosen, each being an aggregate state. Thus, each aggre-
gate state x is associated with a unique original state ix, and
we may use the disaggregation probabilities dxi = 1 for
i = ix and dxi = 0 for i 	= ix. The aggregation probabili-
ties are chosen as in the preceding case b).

The aggregation approach approximates the cost vector
of a policy with Φr, where r ∈ R

s is a weight vector to
be determined, and Φ is the matrix whose jth row consists
of the aggregation probabilities φj1, . . . , φjs. Thus, aggre-
gation involves an approximation architecture similar to the
one of projected equation methods: it uses as features the
aggregation probabilities. There is a reciprocal possibility:
starting from a set of s features for each state, we may con-
struct a feature-based hard aggregation scheme by group-
ing together states with ‘similar features’. In particular, we
may use a more or less regular partition of the feature space,
which induces a possibly irregular partition of the original
state space into aggregate states (all states whose features
fall in the same set of the feature partition form an aggregate
state). This is a general approach for passing from a feature-
based approximation of the cost vector to an aggregation-
based approximation (an interesting special case is when
one of the features is a vector that approximates the cost
vector of some known suboptimal policy). Unfortunately, in
the resulting aggregation scheme, the number of aggregate
states may become very large.

The aggregation and disaggregation probabilities specify
a dynamical system involving both aggregate and original
system states. In this system:

i) From aggregate state x, we generate original system
state i according to dxi.

ii) We generate transitions from original system state i
to original system state j according to pij(u), with cost
g(i, u, j).

iii) From original system state j, we generate aggregate
state y according to φjy .

Let us now introduce the vectors J̃0, J̃1, and R∗ where
R∗(x) is the optimal cost-to-go from aggregate state x;
J̃0(i) is the optimal cost-to-go from original system state
i that has just been generated from an aggregate state (left
side of Fig. 4); and J̃1(j) is the optimal cost-to-go from
original system state j that has just been generated from an
original system state (right side of Fig. 4).

330 D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335

Note that because of the intermediate transitions to ag-
gregate states, J̃0 and J̃1 are different.

These three vectors satisfy the following three Bellman’s
equations:

R∗(x) =
n∑

i=1

dxiJ̃0(i), x ∈ A,

J̃0(i) = min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j)+αJ̃1(j)

)
,

i = 1, . . . , n,

J̃1(j) =
∑

y∈A
φjyR∗(y), j = 1, . . . , n.

By combining these equations, we obtain an equation for
R∗:

R∗(x) = (FR∗)(x), x ∈ A,

where F is the mapping defined by

(FR)(x) =
n∑

i=1

dxi min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j)

+α
∑

y∈A
φjyR(y)

)
, x ∈ A. (69)

It can be seen that F is a sup-norm contraction mapping and
has R∗ as its unique fixed point. This follows from standard
contraction arguments and the fact that dxi, pij(u), and φjy

are all transition probabilities. 18

Once R∗ is found, the optimal cost-to-go of the original
problem may be approximated by J̃1 = ΦR∗, and a subop-
timal policy may be found through the minimization defin-
ing J̃0. Again, the optimal cost function approximation J̃1

is a linear combination of the columns of Φ, which may be
viewed as basis functions.

Fig. 4 Illustration of the transition mechanism of a dynamical system in-
volving both aggregate and original system states.

4.1 Aggregation-based policy iteration

A policy iteration algorithm to find R∗ may be con-
structed using aggregation for policy evaluation. It starts
with a stationary policy μ0 for the original problem, and
given μk, it finds Rμk satisfying Rμk = FμkRμk , where Fμ

is the mapping defined by

(FμR)(x) =
n∑

i=1

dxi

n∑
j=1

pij(μ(i))
(
g(i, μ(i), j)

+α
∑

y∈A
φjyRμ(y)

)
, x ∈ A (70)

(this is the policy evaluation step). It then generates μk+1

by

μk+1(i) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j)

+α
∑

y∈A
φjyRμk(y)

)
, ∀i (71)

(this is the policy improvement step). Using the analysis of
Section 3.6 and Proposition 6 (with W equal to the mono-
tone mapping ΦD), it can be shown that this policy iteration
algorithm terminates finitely to some policy corresponding
to the unique fixed point of F . The key fact here is that F
and Fμ are not only sup-norm contractions, but also have the
monotonicity property of DP mappings, which is used in an
essential way in the convergence proof of ordinary policy
iteration.

We may implement the preceding policy iteration method
by simulation using either a matrix inversion or an itera-
tive approach. For a given policy μ, the aggregate version
of Bellman’s equation, R = FμR, is linear of the form (70)

R = DTμ(ΦR),
where Tμ is the DP mapping associated with μ. We can thus
write this equation as

ER = f,

where
E = I − αDPΦ, f = Dg, (72)

in analogy with the corresponding matrix and vector for the
projected equation.

We may use low-dimensional simulation to approxi-
mate E and f based on a given number of samples, sim-
ilar to (20) in Section 2. In particular, a sample sequence{
(i0, j0), (i1, j1), . . .

}
is obtained by first generating a se-

quence of states {i0, i1, . . .} by sampling according to a dis-
tribution {ξi|i = 1, . . . , n} (with ξi > 0 for all i), and then
by generating for each t the column index jt using sampling
according to the distribution {pitj |j = 1, . . . , n}. Given the
first k + 1 samples, we form the matrix Êk and vector f̂k

given by⎧⎪⎪⎨
⎪⎪⎩

Êk = I − α

k + 1

k∑
t=0

1
ξit

d(it)φ(jt)′,

f̂k =
1

k + 1

k∑
t=0

1
ξit

d(it)g
(
it, μ(it), jt

)
,

(73)

where d(i) is the ith column of D and φ(j)′ is the jth row
of Φ. The convergence Êk → E and f̂k → f follows from
the expressions

E = I − α
n∑

i=1

n∑
j=1

pij

(
μ(i)

)
d(i)φ(j)′,

f =
n∑

i=1

n∑
j=1

pij

(
μ(i)

)
d(i)g(i, μ(i), j),

the relation

lim
k→∞

k∑
t=0

δ(it = i, jt = j)
k + 1

= ξipij ,

and law of large numbers arguments (cf. Section 2).

18A quick proof is to observe that F is the composition F = DTΦ, where T is the usual DP mapping, and D and Φ are the matrices with rows the
disaggregation and aggregation distributions, respectively. Since T is a contraction with respect to the sup-norm ‖ · ‖∞, and D and Φ are sup-norm
nonexpansive in the sense

‖Dx‖∞ � ‖x‖∞, ∀x ∈ R
n, ‖Φy‖∞ � ‖y‖∞, ∀y ∈ R

s,

it follows that F is a sup-norm contraction.

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 331

It is important to note that the sampling probabilities
ξi are restricted to be positive, but are otherwise arbitrary
and need not depend on the current policy. Moreover, their
choice does not affect the obtained approximate solution of
the equation ER = f . Because of this possibility, the prob-
lem of exploration is less acute in the context of policy iter-
ation when aggregation is used for policy evaluation. This is
in contrast with the projected equation approach, where the
choice of ξi affects the projection norm and the solution of
the projected equation as well as the contraction properties
of the mapping ΠT .

Note also that, instead of using the probabilities ξi to sam-
ple original system states, we may alternatively sample the
aggregate states x according to a distribution {ζx|x ∈ A},
generate a sequence of aggregate states {x0, x1, . . .}, and
then generate a state sequence {i0, i1, . . .} using the disag-
gregation probabilities. In this case, ξi =

∑
x∈A

ζxdxi and

(73) should be modified as follows:

Êk = I − α

k + 1

k∑
t=0

m

dxtit

d(it)φ(jt)′,

f̂k =
1

k + 1

k∑
t=0

m

dxtit

d(it)g
(
it, μ(it), jt

)
,

where m is the number of aggregate states.
The corresponding LSTD-type method generates R̂k =

Ê−1
k f̂k and approximates the cost vector of μ with the vec-

tor ΦR̂k:

J̃μ = ΦR̂k.

There is also a regression-based version that is suitable for
the case where Êk is nearly singular (cf. Section 2), as well
as an iterative regression-based version of LSTD, which
may be viewed as a special case of the (scaled) LSPE-type
method (39), (40). The latter method takes the form

R̂k+1 = (Ê′
kΣ−1

k Êk + βI)−1(Ê′
kΣ−1

k f̂k + βR̂k), (74)

where β > 0 and Σk is a positive definite symmetric matrix.
Note that, contrary to the projected equation case, for a dis-
count factor α ≈ 1, Êk will always be nearly singular [since
DPΦ is a transition probability matrix, (72). However, the
iteration (74) is valid even if Êk is singular.

As noted earlier, the nonoptimistic version of the
aggregation-based policy iteration method does not exhibit
the oscillatory behavior of the one based on the projected
equation approach (cf. Section 3.6). The generated policies
converge since by aggregation, we are essentially solving
exactly the DP problem associated with the aggregate sys-
tem of Fig. 4. The convergence of policies in turn implies
that the error bound (42) holds. This suggests a more reg-
ular behavior and an advantage in terms of approximation
quality of aggregation-based approximate policy iteration
relative to its projected equation-based counterpart.

A related property holds for optimistic policy iteration
methods. They behave similar to optimistic policy iteration
for the DP problem associated with the aggregate system of
Fig. 4, and they do not exhibit the chattering phenomenon
described in Section 3.5.

In conclusion the aggregation approach holds an advan-
tage over the projected equation approach in terms of regu-

larity of behavior, error guarantees, and exploration-related
difficulties. Note, however, that the basis functions in the
aggregation approach are restricted by the requirement that
the rows of Φ must be probability distributions. For exam-
ple, in the case of a single basis function (s = 1), there is
only one possible choice for Φ in the aggregation context,
namely the matrix whose single column is the unit vector.
In practice this means that the number of columns of Φ may
be much larger than in the projected equation approach.
4.2 Multistep aggregation

The aggregation methodology of this section can be gen-
eralized by considering a multistep aggregation-based dy-
namical system. This system, illustrated in Fig. 5, is speci-
fied by disaggregation and aggregation probabilities as be-
fore but involves k > 1 transitions between original system
states in between transitions from and to aggregate states.

Fig. 5 The transition mechanism for multistep aggregation. It is based on
a dynamical system involving aggregate states, and k transitions
between original system states in between transitions from and to
aggregate states.

We introduce vectors J̃0, J̃1, . . . , J̃k, and R∗ where:
R∗(x) is the optimal cost-to-go from aggregate state x.
J̃0(i) is the optimal cost-to-go from original system state

i that has just been generated from an aggregate state (left
side of Fig. 5).

J̃1(j1) is the optimal cost-to-go from original system
state j that has just been generated from an original system
state i.

J̃m(jm), m = 2, . . . , k, is the optimal cost-to-go from
original system state jm that has just been generated from
an original system state jm−1. These vectors satisfy the fol-
lowing set of Bellman equations:

R∗(x) =
n∑

i=1

dxiJ̃0(i), x ∈ A,

J̃0(i) = min
u∈U(i)

n∑
j1=1

pij1(u)
(
g(i, u, j1) + αJ̃1(j1)

)
,

i = 1, . . . , n, (75)

J̃m(jm) = min
u∈U(jm)

n∑
jm+1=1

pjmjm+1(u)
(
g(jm, u, jm+1)

+αJ̃m+1(jm+1)
)
, jm = 1, . . . , n,

m = 1, . . . , k − 1, (76)
J̃k(jk) =

∑
y∈A

φjkyR∗(y), jk = 1, . . . , n. (77)

By combining these equations, we obtain an equation for
R∗:

R∗(x) = (FR∗)(x), x ∈ A,

where F is the mapping defined by

FR = DT k(ΦR),

332 D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335

where T is the usual DP mapping of the problem. As ear-
lier, it can be seen that F is a sup-norm contraction, but its
contraction modulus is αk rather than α.

There is a similar mapping corresponding to a fixed pol-
icy and it can be used to implement a policy iteration algo-
rithm, which evaluates a policy through calculation of a cor-
responding vector R and then improves it. However, there is
a major difference from the single-step aggregation case: a
policy involves a set of k control functions {μ0, . . . , μk−1},
and while a known policy can be easily simulated, its im-
provement involves multistep lookahead using the mini-
mizations of (75)–(77), and may be costly. Thus, multistep
aggregation is a useful idea only for problems where the
cost of this multistep lookahead minimization (from a sin-
gle given starting state) is not prohibitive. By contrast, pol-
icy improvement using projected equation-based multistep
policy evaluation methods such as TD(λ) does not have this
limitation. On the other hand, note that from the theoretical
point of view, a multistep scheme provides a means of better
approximation of the true optimal cost vector J∗ indepen-
dent of the use of a large number of aggregate states. This
can be seen from (75)–(77), which based on classical value
iteration convergence results, show that J̃0(i) → J∗(i) as
k → ∞ regardless of the choice of aggregate states.
4.3 Distributed asynchronous aggregation

We now consider the distributed solution of discounted
DP problems using aggregation. We envision a network
of s processors/agents, with each processor updating asyn-
chronously a local policy and a local cost function, de-
fined on a subset of the state space. Aggregate estimates of
the computed values are communicated asynchronously be-
tween processors and are used to perform local cost updates
and possibly local policy updates. In extreme cases, the ag-
gregate estimates available to the agents may be greatly out-
dated, or otherwise may carry marginally useful informa-
tion, thereby approaching a multiagent system model where
each agent makes decisions based solely on local informa-
tion.

In a synchronous value iteration method, each processor
a = 1, . . . , s, maintains/updates a (local) cost Ja(i) for ev-
ery state i in a subset of states Ia and also an aggregate cost

Ra =
∑

i∈Ia

daiJa(i),

where {dai|i ∈ Ia} is a probability distribution. We assume
that the subsets Ia, a = 1, . . . , s, form a partition of the
state space (as in hard aggregation, cf. Section 3.7), and
we generically denote by J and R the vectors with com-
ponents Ja(i), i ∈ Ia, and Ra, a = 1, . . . , s, respectively.
Note that J is an n-dimensional vector, the Cartesian prod-
uct J = Π

a=1,...,s
Ja. For state i, J(i) is the ith component

of the vector Ja corresponding to the processor a for which
i ∈ Ia.

We first discuss a value iteration algorithm, which in-
volves updating both R and J according to
Rt

a =
∑

i∈Ia

daiJ
t
a(i), ∀a = 1, . . . , s, (78)

J t+1
a (i)= min

u∈U(i)
Ha(i, u, J t, Rt), ∀i ∈ Ia, a = 1, . . . , s,

(79)

where the mapping Ha is defined for all a = 1, . . . , s,
i ∈ Ia, u ∈ U(i), and J ∈ R

n, R ∈ R
s, by

Ha(i, u, J,R) =
n∑

j=1

pij(u)g(i, u, j) + α
∑

j∈Ia

pij(u)J(j)

+α
∑

j /∈Ia

pij(u)Ra(j), (80)

and where for each original system state j, we denote by
a(j) the subset to which j belongs (i.e., j ∈ Ia(j)). Thus,
the iteration (79) is the same as ordinary value iteration, ex-
cept that the aggregate costs Ra(j) are used for the states
j /∈ Ia, whose costs are updated by other processors. It is
possible to show that the iteration (78), (79) involves a sup-
norm contraction mapping of modulus α, so it converges to
the unique solution of the following system of equations in
(J,R) ⎧⎪⎨

⎪⎩
Ra =

∑
i∈Ia

daiJa(i), ∀a = 1, . . . , s,

Ja(i) = min
u∈U(i)

Ha(i, u, J,R), ∀i ∈ Ia

(81)

(The contraction property follows from the fact that
{dai|i ∈ Ia} is a probability distribution.)

In the algorithm (78), (79), all processors a must be up-
dating their aggregate costs Ra and local costs Ja(i) syn-
chronously and communicate the aggregate costs to the
other processors before a new iteration may begin. In a more
practical asynchronous version of the method, the aggre-
gate costs Ra may be outdated because of communication
‘delays’ between processors. In this case, the iteration (78),
(79) is modified to take the form

J t+1
a (i) = min

u∈U(i)
Ha

(
i, u, J t, R

τa1(t)
1 , . . . , Rτas(t)

s

)
,

∀i ∈ Ia, a=1, . . . , s, (82)
with 0 � τaa′(t) � t for a, a′ = 1, . . . , s, and

Rτ
a =

∑
i∈Ia

daiJ
τ
a (i), ∀a = 1, . . . , s.

The differences t− τaa′(t), a, a′ = 1, . . . , s, in (82) may be
viewed as ‘delays’ between the current time k and the times
τaa′(t) when the corresponding aggregate costs were com-
puted by other processors. Moreover, the iteration (82) may
be executed only at a subset Ta of times for each processor
a, whereas for the other times t /∈ Ta the vector Ja remains
unchanged, i.e., J t+1

a (i) = J t
a(i) for all i ∈ Ia. The conver-

gence of this algorithm to the unique solution of (81) can be
shown using the theory of asynchronous distributed DP de-
veloped in Bertsekas [99], and has been discussed recently
in the paper by Bertsekas and Yu [98].

An asynchronous policy iteration method involving ag-
gregation operates similarly, except that each processor a
performs a policy evaluation iteration at a subset of times
t ∈ Ta, a policy improvement iteration at a subset of times
t ∈ T̄a ⊂ Ta, and no update at the remaining times. The
local policy improvement iteration is

μt+1
a (i)=

⎧⎪⎪⎨
⎪⎪⎩

arg min
u∈U(i)

Ha

(
i, u, J t, R

τa1(t)
1 , . . . , R

τam(t)
m

)
if t ∈ T̄a,

μt
a(i) if t /∈ T̄a,

∀i ∈ Ia.

(83)

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 333

The local policy evaluation is iterative/optimistic according
to

J t+1
a (i) =

⎧⎪⎨
⎪⎩

Ha

(
i, μt

a(i), J t, R
τa1(t)
1 , . . . , R

τas(t)
s

)
if t ∈ Ta,

J t
a(i) if t /∈ Ta,

∀i ∈ Ia. (84)

Unfortunately, this algorithm can fail even under favorable
circumstances, as shown by Williams and Baird [19]: a
lookup table representation (one processor for each state),
only one processor updating at a time, and a deterministic
system. An alternative and almost as simple algorithm was
proposed recently in [98], which was shown to converge to
the optimum under the most general conditions. In this al-
gorithm, the iteration (84) is replaced by

J t+1
a (i)

=

⎧⎪⎨
⎪⎩

min
{
V t

a (i), Ha

(
i, μt

a(i), J t, R
τa1(t)
1 , . . . , R

τas(t)
s

)}
if t ∈ Ta,

J t
a(x) if t /∈ Ta,

∀i ∈ Ia.

(85)

where V t
a (i) is the value of the minimum computed during

the latest policy improvement iteration (83):

V t+1
a (i)=

⎧⎪⎪⎨
⎪⎪⎩

min
u∈U(i)

Ha

(
i, u, J t, R

τa1(t)
1 , . . . , R

τas(t)
s

)
if t ∈ T̄a,

V t
a (i) if t /∈ T̄a,

∀i ∈ Ia. (86)

Other related algorithms, similarly convergent to the unique
solution of (81), have also been discussed in [98].

5 Conclusions

We have surveyed some aspects of policy iteration meth-
ods with cost function approximation. From an analytical
point of view, this is a subject with a rich theory and in-
teresting algorithmic issues. From a practical point of view,
this is a methodology that can address very large and dif-
ficult problems, and yet present major technical difficulties
(such as exploration deficiencies and nearly singular equa-
tions) and exhibit unpredictable behaviors (such as policy
oscillations and chattering), which are not fully understood
at present and may seriously challenge practitioners.

We have contrasted two policy evaluation approaches:
projected equation and aggregation. It appears that agg-
regation-based methods have more regular behavior, offer
better error bound guarantees, and have less exploration-
related difficulties than projected equation-based methods.
On the other hand, aggregation methods are restricted in the
choice of basis functions that they can use, and this can be
a significant limitation for many problems.

Acknowledgements

Many thanks are due to Huizhen (Janey) Yu for extensive
helpful discussions and suggestions.

References

[1] D. P. Bertsekas, H. Yu. Solution of Large Systems of Equations Using
Approximate Dynamic Programming Methods. Report LIDS-P-2754.
Cambridge: Laboratory for Information and Decision Systems, MIT,
2007.

[2] R. S. Sutton, A. G. Barto. Reinforcement Learning. Cambridge: MIT
Press, 1998.

[3] A. Gosavi. Simulation-Based Optimization Parametric Optimization
Techniques and Reinforcement Learning. New York: Springer-Verlag,
2003.

[4] X. R. Cao. Stochastic Learning and Optimization: A Sensitivity-Based
Approach. New York: Springer-Verlag, 2007.

[5] H. Chang, M. Fu, J. Hu, et al. Simulation-Based Algorithms for
Markov Decision Processes. New York: Springer-Verlag, 2007.

[6] S. Meyn. Control Techniques for Complex Networks. New York:
Cambridge University Press, 2007.

[7] W. B. Powell. Approximate Dynamic Programming: Solving the
Curses of Dimensionality. New York: John Wiley & Sons, 2007.

[8] L. Busoniu, R. Babuska, B. De Schutter, et al. Reinforcement
Learning and Dynamic Programming Using Function Approximators.
New York: CRC Press, 2010.

[9] D. P. Bertsekas. Approximate dynamic programming. Web-based
chapter. Dynamic Programming and Optimal Control. 3rd ed.
Belmont, MA: Athena Scientific, 2010: 321 – 540.

[10] D. White, D. Sofge. Handbook of Intelligent Control. New York: Van
Nostrand Reinhold, 1992.

[11] J. Si, A. Barto, W. Powell, et al, eds. Learning and Approximate
Dynamic Programming. New York: IEEE, 2004.

[12] F. L. Lewis, G. G. Lendaris, D. Liu. Special issue on adaptive dynamic
programming and reinforcement learning in feedback control. IEEE
Transactions on Systems, Man, and Cybernetics – Part B, 2008, 38(4):
896 – 897.

[13] A. G. Barto, S. J. Bradtke, S. P. Singh. Real-time learning and control
using asynchronous dynamic programming. Artificial Intelligence,
1995, 72(1/2): 81 – 138.

[14] V. S. Borkar. Reinforcement learning: a bridge between numerical
methods and Monte Carlo. Perspectives in Mathematical Science –
I: Probability and Statistics, World Scientific Publishing Co., 2009:
71 – 91.

[15] F. L. Lewis, D. Vrabie. Reinforcement learning and adaptive dynamic
programming for feedback control. IEEE Circuits and Systems
Magazine, 2009, 9(3): 32 – 50.

[16] C. Szepesvari. Reinforcement Learning Algorithms for MDPs. Report
TR09-13. Edmonton, CA: Department of Computing Science,
University of Alberta, 2009.

[17] M. L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. New York: John Wiley & Sons, 1994.

[18] D. P. Bertsekas. Dynamic Programming and Optimal Control. 3rd ed.
Belmont, MA: Athena Scientific, 2007.

[19] R. J. Williams, L. C. Baird. Analysis of Some Incremental Variants
of Policy Iteration: First Steps Toward Understanding Actor-critic
Learning Systems. Report NU-CCS-93-11, Boston, MA: College of
Computer Science, Northeastern University, 1993.

[20] I. Menache, S. Mannor, N. Shimkin. Basis function adaptation
in temporal difference reinforcement learning. Annals Operation
Research, 2005, 134(1): 215 – 238.

[21] H. Yu, D. P. Bertsekas. Basis function adaptation methods for cost
approximation in MDP. Proceedings of 2009 IEEE Symposium on
Approximate Dynamic Programming and Reinforcement Learning
(ADPRL 2009), New York: IEEE, 2009: 74 – 81.

[22] L. Busoniu, D. Ernst, B. De Schutter, et al. Cross-entropy
optimization of control policies with adaptive basis functions. IEEE
Transactions on Systems, Man, and Cybernetics – Part B, 2010, 41(1):
1 – 14.

334 D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335

[23] D. D. Castro, S. Mannor. Adaptive Bases for Reinforcement Learning.
Berlin: Springer-Verlag, 2010.

[24] D. P. Bertsekas, H. Yu. Projected equation methods for approximate
solution of large linear systems. Journal of Computational and
Applied Mathematics, 2009, 227(1): 27 – 50.

[25] A. L. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, 1959, 3(3): 210
– 229.

[26] A. L. Samuel. Some studies in machine learning using the game
of checkers – II: recent progress. IBM Journal of Research and
Development, 1967, 11(6): 601 – 617.

[27] A. G. Barto, R. S. Sutton, C. W. Anderson. Neuronlike elements that
can solve difficult learning control problems. IEEE Transactions on
Systems, Man, and Cybernetics, 1983, 13(5): 835 – 846.

[28] R. S. Sutton. Learning to predict by the methods of temporal
differences. Machine Learning, 1988, 3(1): 9 – 44.

[29] G. J. Tesauro. Practical issues in temporal difference learning.
Machine Learning, 1992, 8(3/4): 257 – 277.

[30] L. Gurvits, L. J. Lin, S. J. Hanson. Incremental Learning of
Evaluation Functions for Absorbing Markov Chains: New Methods
and Theorems. Princeton: Siemens Corporate Research, 1994.

[31] T. Jaakkola, M. I. Jordan, S. P. Singh. On the convergence
of stochastic iterative dynamic programming algorithms. Neural
Computation, 1994, 6(6): 1185 – 1201.

[32] F. Pineda. Mean-field analysis for batched TD(λ). Neural Com-
putation, 1997, 9: 1403 – 1419.

[33] J. N. Tsitsiklis, B. V. Roy. An analysis of temporal-difference learning
with function approximation. IEEE Transactions on Automatic
Control, 1997, 42(5): 674 – 690.

[34] J. N. Tsitsiklis, B. Van Roy. Average cost temporal-difference
learning. Automatica, 1999, 35(11): 1799 – 1808.

[35] S. J. Bradtke, A. G. Barto. Linear least-squares algorithms for
temporal difference learning. Machine Learning, 1996, 22(1/3): 33
– 57.

[36] D. P. Bertsekas, S. Ioffe. Temporal Differences-Based Policy Iteration
and Applications in Neuro-dynamic Programming. Report LIDS-P-
2349. Cambridge: Laboratory for Information and Decision Systems,
MIT, 1996.

[37] M. A. Krasnoselskii, J. B. Rutitcki, V. J. Stecenko, et al.
Approximate Solution of Operator Equations. Translated by D.
Louvish, Groningen: Wolters-Noordhoff Publisher, 1972.

[38] C. A. J. Fletcher. Computational Galerkin Methods. New York:
Springer-Verlag, 1984.

[39] D. P. Bertsekas. Projected Equations, Variational Inequalities, and
Temporal Difference Methods. Report LIDS-P-2808. Cambridge:
Laboratory for Information and Decision Systems, MIT, 2009.

[40] H. Yu, D. P. Bertsekas. Error bounds for approximations from
projected linear equations. Mathematics of Operations Research,
2010, 35(2): 306 – 329.

[41] H. Yu. Least Squares Temporal Difference Methods: An Analysis
Under General Conditions. Technical report C-2010-39, Finland:
Department Computer Science, University of Helsinki, 2010.

[42] H. Yu. Convergence of least squares temporal difference methods
under general conditions. Proceedings of the 27th International
Conference on Machine Learning, Haifa, Israel, 2010: 1207 – 1214.

[43] S. P. Singh, T. Jaakkola, M. I. Jordan. Learning without state-
estimation in partially observable Markovian decision processes.
Proceedings of the 11th Machine Learning Conference, San
Francisco, CA: Morgan Kaufmann Publishers Inc., 1994: 284 – 292.

[44] S. P. Singh, T. Jaakkola, M. I. Jordan. Reinforcement learning with
soft state aggregation. Advances in Neural Information Processing
Systems 7, Vancouver, BC, Canada, 1995: 361 – 368.

[45] G. J. Gordon. Stable function approximation in dynamic pro-
gramming. Machine Learning: Proceedings of the 12th International
Conference, Pittsburgh, PA: mCarnegie Mellon University, 1995.

[46] J. N. Tsitsiklis, B. V. Roy. Feature-based methods for large-scale
dynamic programming. Machine Learning, 1996, 22(1/3): 59 – 94.

[47] B. Van Roy. Performance loss bounds for approximate value iteration
with state aggregation. Mathematics of Operations Research, 2006,
31(2): 234 – 244.

[48] B. Scherrer. Should one compute the temporal difference fixed point
or minimize the Bellman residual: the unified oblique projection
view. Proceedings of International Conference on Machine Learning,
Haifa, Israel, 2010: 959 – 966.

[49] C. Thiery, B. Scherrer. Least-squares policy iteration: bias-variance
trade-off in control problems. Proceedings of 27th International
Conference on Machine Learning, Haifa, Israel. 2010: 1071 – 1078.

[50] M. Wang, N. Polydorides, D. P. Bertsekas. Approximate Simulation-
Based Solution of Large-scale Least Squares Problems. Report
LIDS-P-2819. Cambridge: Laboratory for Information and Decision
Systems, MIT. 2009.

[51] H. Yu, D. P. Bertsekas. Convergence results for some temporal
difference methods based on least squares. IEEE Transactions on
Automation Control, 2009, 54(7): 1515 – 1531.

[52] D. P. Bertsekas, J. N. Tsitsiklis. Neuro-dynamic Programming.
Belmont, MA: Athena Scientific, 1996.

[53] H. Yao, Z. Liu. Preconditioned temporal difference learning.
Proceedings of the 25th International Conference on Machine
Learning, Helsinki, Finland. 2008: 1208 – 1215.

[54] D. P. Bertsekas, E. Gafni. Projection methods for variational
inequalities with applications to the traffic assignment problem.
Mathmatical Programmming Studies, 1982, 17(17): 139 – 159.

[55] B. Martinet. Regularisation d’inequations variationnelles par appro-
ximations successives. Revue Francaise Informatique Recherche
Operationnelle, 1970, 4(R-3): 154 – 159.

[56] R. T. Rockafellar. Monotone operators and the proximal point
algorithm. SIAM Journal on Control and Optimization, 1976, 14(5):
877 – 898.

[57] D. P. Bertsekas. Convex Optimization Theory. Belmont, MA: Athena
Scientific, 2009.

[58] G. Strang. Linear Algebra and its Applications. 4th ed. Wellesley,
MA: Wellesley-Cambridge Press, 2009.

[59] L. N. Trefethen, D. Bau. Numerical Linear Algebra. Philadelphia:
SIAM, 1997.

[60] J. A. Boyan. Technical update: least-squares temporal difference
learning. Machine Learning, 2002, 49(2/3): 1 – 15.

[61] A. Nedić, D. P. Bertsekas. Least squares policy evaluation algorithms
with linear function approximation. Discrete Event Dynamic Systems:
Theory and Applications, 2003, 13(1/2): 79 – 110.

[62] D. P. Bertsekas, V. S. Borkar, A. Nedić. Improved temporal
difference methods with linear function approximation. Learning and
Approximate Dynamic Programming. J. Si, A. Barto, W. Powell, et
al., eds. New York: IEEE, 2004: 231 – 255.

[63] D. S. Choi, B. Van Roy. A generalized Kalman filter for fixed point
approximation and efficient temporal-difference learning. Discrete
Event Dynamic Systems: Theory and Applications, 2006, 16(2): 207
– 239.

[64] J. Liu. Monte Carlo Strategies in Scientific Computing. New York:
Springer-Verlag, 2001.

[65] R. Y. Rubinstein, D. P. Kroese. Simulation and the Monte Carlo
Method. 2nd ed. New York: John Wiley & Sons, 2008.

[66] N. Polydorides, M. Wang, D. P. Bertsekas. Approximate Solution of
Large-scale Linear Inverse Problems with Monte Carlo Simulation.
Report LIDS-P-2822. Cambridge: Laboratory for Information and
Decision Systems, MIT, 2009.

D. P. BERTSEKAS / J Control Theory Appl 2011 9 (3) 310–335 335

[67] V. S. Borkar. Stochastic Approximation: A Dynamical Systems
Viewpoint. Cambridge: Cambridge University Press, 2008.

[68] R. Munos. Error bounds for approximate policy iteration. Proceedings
of the 20th International Conference on Machine Learning,
Washington D. C., 2003: 560 – 567.

[69] D. P. Bertsekas. Pathologies of temporal difference methods
in approximate dynamic programming. Proceedings of IEEE
Conference on Decision and Control. New York: IEEE, 2010.

[70] H. Yu. Least Squares Temporal Difference Methods: An Analysis
Under General Conditions. Report C-2010-39. Finland: Department
of Computer Science, University of Helsinki, 2010.

[71] H. Yu. Convergence of least squares temporal difference methods
under general conditions. Proceedings of the 27th International
Conference on Machine Learning, Haifa, Israel, 2010: 1207 – 1214.

[72] R. S. Sutton, C. Szepesvari, H. R. Maei. A convergent O(n)
algorithm for off-policy temporal-difference learning with linear
function approximation. Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 2008: 1 – 8.

[73] H. R. Maei, C. Szepesvari, S. Bhatnagar, et al. Convergent temporal-
difference learning with arbitrary smooth function approximation.
Advances in Neural Information Processing Systems, Vancouver, BC,
Canada, 2009: 1204 – 1212.

[74] R. S. Sutton, H. R. Maei, D. Precup, et al. Fast gradient-
descent methods for temporal-difference learning with linear function
approximation. Proceedings of the 26th International Conference on
Machine Learning, New York, 2009: 1 – 8.

[75] D. P. Bertsekas, H. Yu. Q-Learning and enhanced policy iteration in
discounted dynamic programming. Report LIDS-P-2831. Cambridge:
Laboratory for Information and Decision Systems, MIT, 2010.

[76] J. N. Tsitsiklis, B. Van Roy. Optimal stopping of Markov processes:
hilbert space theory, approximation algorithms, and an application
to pricing financial derivatives. IEEE Transactions on Automatic
Control, 1999, 44(10): 1840 – 1851.

[77] H. Yu, D. P. Bertsekas. A Least Squares Q-learning Algorithm for
Optimal Stopping Problems. Report 2731. Cambridge: Labotary for
Information and Decision Systems, MIT, 2006.

[78] M. G. Lagoudakis, R. Parr. Least-squares policy iteration. Journal of
Machine Learning Research, 2003, 4: 1107 – 1149.

[79] T. Jung, D. Polani. Kernelizing LSPE(λ). IEEE International Sym-
posium on Approximate Dynamic Programming and Reinforcement
Learning, New York: IEEE, 2007: 338 – 345.

[80] L. Busoniu, D. Ernst, B. De Schutter, et al. Online least-squares
policy iteration for reinforcement learning control. American Control
Conference, New York: IEEE, 2010: 486 – 491.

[81] D. P. Bertsekas. Lecture at NSF Workshop on Reinforcement
Learning. Harpers Ferry, New York, 1996.

[82] V. V. Desai, V. F. Farias, C. C. Moallemi. Approximate
dynamic programming via a smoothed approximate linear program.
Advances in Neural Information Processing Systems 22. Vancouver,
BC, Canada, 2009: http://www.moallemi.com/ciamac/papers/salp-
2009.pdf.

[83] V. F. Farias, B. Van Roy. Tetris: a study of randomized constraint
sampling. Probabilistic and Randomized Methods for Design Under
Uncertainty. G. Calafiore, F. Dabbene, eds. New York: Springer-
Verlag, 2006: 189 – 202.

[84] S. Kakade. A natural policy gradient. Advances in Neural Information
Processing Systems. Vancouver, BC, Canada, 2002: 1531 – 1538.

[85] I. Szita, A. Lorinz. Learning tetris using the noisy cross-entropy
method. Neural Computation, 2006, 18(12): 2936 – 2941.

[86] B. Van Roy. Feature-Based Methods for Large Scale Dynamic
Programming. Report LIDS-TH-2289. Cambridge: Laboratory for
Information and Decision Systems, MIT, 1995.

[87] P. T. de Boer, D. P. Kroese, S. Mannor, et al. A tutorial on the cross-
entropy method. Annals of Operations Research, 2005, 134(1): 19 –
67.

[88] C. Thiery, B. Scherrer. Improvements on learning tetris with cross-
entropy. International Computer Games Association Journal, 2009,
32(1): 23 – 33.

[89] P. J. Werbos. Approximate dynamic programming for real-time
control and neural modeling. Handbook of Intelligent Control. New
York: Van Nostrand, 1992: 493 – 525.

[90] P. J. Werbös. Neurocontrol and supervised learning: an overview and
valuation. Handbook of Intelligent Control. D. A. White, D. A. Sofge,
eds. New York: Van Nostrand, 1992: 65 – 89.

[91] L. C. Baird. Advantage Updating. Report WL-TR-93-1146. Wright-
Patterson Air Force Base, OH: Wright Laboratory, 1993.

[92] M. E. Harmon, L. C. Baird, A. H. Klopf. Advantage updating applied
to a differential game. G. Tesauro, D. S. Touretzky, T. K. Leen, eds.
Advances in Neural Information Processing Systems, Denver, CO,
1994: 353 – 360.

[93] D. P. Bertsekas. Differential training of rollout policies. Proceedings
of the 35th Allerton Conference on Communication, Control, and
Computing, Allerton Park, IL, 1997.

[94] E. V. Denardo. Contraction mappings in the theory underlying
dynamic programming. SIAM Review, 1967, 9(2): 165 – 177.

[95] D. P. Bertsekas. Monotone mappings with application in dynamic
programming. SIAM Journal on Control and Optimization, 1977,
15(3): 438 – 464.

[96] D. P. Bertsekas, S. E. Shreve. Stochastic Optimal Control: the
Discrete Time Case. New York: Academic Press, 1978.

[97] L. S. Shapley. Stochastic games. Proceedings of National Academy
Sciences, 1953, 39(10): 1095 – 1100.

[98] D. P. Bertsekas, H. Yu. Asynchronous distributed policy iteration
in dynamic programming. Proceedings of Allerton Conferrence on
Information Sciences and Systems, Allerton Park, IL, 2010.

[99] D. P. Bertsekas. Distributed dynamic programming. IEEE Trans-
actions on Automatic Control, 1982, 27(3): 610 – 616.

Dimitri P. BERTSEKAS studied engineering at
the National Technical University of Athens,
Greece, obtained his M.S. degree in Electrical En-
gineering at the George Washington University,
Washington D.C. in 1969, and his Ph.D. in System
Science in 1971 at the Massachusetts Institute of
Technology. He has held faculty positions with the
Engineering-Economic Systems Department, Stan-
ford University (1971 – 1974) and the Electrical

Engineering Department of the University of Illinois, Urbana (1974 –
1979). Since 1979 he has been teaching at the Electrical Engineering and
Computer Science Department of the Massachusetts Institute of Technol-
ogy (MIT), where he is currently McAfee Professor of Engineering. He
consults regularly with private industry and has held editorial positions in
several journals. His research at MIT spans several fields, including opti-
mization, control, large-scale computation, and data communication net-
works, and is closely tied to his teaching and book authoring activities.
He has written numerous research papers, and fourteen books, several of
which are used as textbooks in MIT classes.

He was awarded the INFORMS 1997 Prize for Research Excellence in
the Interface Between Operations Research and Computer Science for his
book ‘Neuro-dynamic Programming’ (coauthored with John Tsitsiklis), the
2000 Greek National Award for Operations Research, the 2001 ACC John
R. Ragazzini Education Award, and the 2009 INFORMS Expository Writ-
ing Award. In 2001, he was elected to the United States National Academy
of Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

