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Abstract: This paper studies the consensus problems for a group of agents with switching topology and time-varying
communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus
protocol is proposed, which only depends on the agent’s own information and its neighbors’ partial information. By intro-
ducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the
multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient con-
ditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication
delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the
group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable
linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group
of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.
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1 Introduction
Consensus problems for networks of dynamic agents

have been extensively studied by researchers from dis-
tinct points of view. As to the dynamics of agents, there
are discrete-time forms [1∼7], single-integrator dynamics
[8∼16], double-integrator dynamics [17,18] and so on. The
topological structures of networks, which are employed to
describe the complex interconnections among agents, in-
clude bidirectional graphs, unidirectional graphs, random
graphs, small-world networks, networks with zero/nonzero
communication delays, etc. Some researchers have con-
sidered the consensus problems for multi-agent systems
based on leader-follower control and model-reference con-
trol [13, 14, 18∼20]. Applications of this research pertain
to cooperative control of unmanned aircraft, autonomous
formation flight, control of communication networks, dis-
tributed sensor fusion in sensor networks, swarm-based
computing, and rendezvous in space ( [21∼25] and the ref-
erences therein).

In general, the multi-agent systems achieving consensus
aim at steering the states of all the agents to a common
desired quantity by implementing appropriate consensus
protocols. Most designs of consensus protocols are deeply
based on the distributed control theory, that is, the control
laws of each agent only depend on the local information
available to it. In [1], a simple local rule was introduced
for a discrete-time multi-agent system, and it was shown
that the headings of all the agents converged to a com-
mon value. Reference [2] theoretically analyzed and gen-
eralized the results of [1] via algebraic graph theory, matrix

theory and control theory. Systematically, [8] investigated
the consensus problems for networks of single-integrator
agents with fixed/switching topologies and zero/nonzero
time-delays. Also, further results on the consensus problems
for networks of single-integrator agents can be found in
[9]. Recently, [17, 18] have proposed some distributed con-
sensus protocols for networks of double-integrator agents.
Under the proposed consensus protocol, Xie and Wang
[17] solved the average-consensus problem for a group of
double-integrator agents with fixed/switching topologies.
Reference [18] proved that the states of all the double-
integrator agents with jointly connected interactions could
converge to the state of a given leader.

In this paper, we mainly investigate the consensus prob-
lem for multi-agent systems, where the dynamics of agents
is modeled as a high-order integrator. The idea of model-
ing the dynamics of agents as high-order integrator comes
from the following facts. First, it was shown in [26] that
any completely controllable continuous-time linear time-
invariant (LTI) system could be equivalently broken down
into a collection of decoupled and independently controlled
chains of integrators under an appropriate nonsingular lin-
ear transformation and a suitable state feedback. Second,
in practical control systems, almost all the continuous-time
LTI systems are completely controllable (see [27] and the
references therein). Third, the high-order-integrator model
of agents is a generalization of the single-integrator model
and the double-integrator model. Finally, based on the con-
sensus protocol of networks of high-order agents, we can
propose a consensus protocol for a group of identical agents
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with dynamics modeled as a completely controllable LTI
system, such that the convergence to consensus of this group
is equivalent to that of a network of high-order agents.
Hence, it is of physical interest and of theoretical interest
to investigate the consensus problem for networks of high-
order agents. Some related works can be found in [20].

For a network of high-order agents, a linear distributed
consensus protocol is proposed to solve the consensus prob-
lem in the case where the interactions (or communication
links) among agents are switching and with time delays. The
proposed consensus protocol for each agent depends on the
agent’s overall information and its neighbors’ partial infor-
mation. Specifically, neighbors’ partial information means
that the control law only depends on the neighbors’ delayed
information variables themselves instead of their all-order
derivatives. The interactions among agents are described by
graphs, which capture the characterization of the topologies
of multi-agent systems. On the basis of Lyapnov-Krasovskii
theory for the stability of time-delayed systems, some suf-
ficient conditions for the convergence to consensus are es-
tablished in the form of linear matrix inequalities. More-
over, a method to estimate the maximal upper bound on
admissible communication delays is provided. It is shown
that the information variables of all the agents achieve a de-
sired common value, and the all-order derivatives of all the
information variables converge to zero. To emphasize the
physical and theoretical interests of seeking the consensus
of the network of high-order agents, a consensus protocol is
provided for a group of agents with dynamics modeled as
a completely controllable LTI system. It is proved that the
convergence to consensus of this group is equivalent to that
of the network of high-order agents.

The remainder of this paper is organized as follows. In
the next section, we present some mathematical preliminar-
ies on algebraic graph theory. In Section 3, we set up the
model of agents and give the definitions of consensus. Sec-
tion 4 states the main results on the convergence analysis for
the network of high-order agents with switching topology
and time-varying communication delays. Section 5 presents
some numerical examples to illustrate the effectiveness of
the theoretical results, and the last section makes some con-
clusions.

Notation Let R and R+ be the set of real numbers and
the set of nonnegative real numbers, respectively. R

N is
the N -dimensional real vector space. R

N×N is the set of
N -by-N matrices. Let IN ∈ R

N×N be an identity ma-
trix. 0 denotes a zero matrix with appropriate order. Let
1N = [1 · · · 1]T ∈ R

N with all the entries being 1,
and e1 = [1 0 · · · 0]T ∈ R

m. N = {1, · · · , N} and
m − 1 = {1, · · · , m−1} are two index sets. For symmetric
matrices X and Y with the same dimension, we say X > Y
if X-Y is positive definite. ‖ · ‖ defines the Euclidean norm
on R

N . Given a subspace W ⊂ R
N , W⊥ denotes the or-

thogonal complement space of W . ⊗ denotes the Kronecker
product.

2 Mathematical preliminaries
A directed graph (or digraph for short) G consists of a

vertex set V = {v1, · · · , vN}, an arc set E ⊂ V × V and a
weighted adjacency matrix A = [aij ] ∈ R

N×N with non-

negative entries aij , denoted by G = (V, E ,A). An arc of
G is denoted by eij := (vi, vj), and eij ∈ E if and only if
aji > 0, which means that there exists a link from vi to vj ;
vi and vj are called the tail and the head of eij , respectively.
If eij = (vi, vj) is an arc, then we say that vi is a neigh-
bor of vj . We assume that aii = 0, namely, the graph has
no self-loops. If aij = aji, then the graph is called undi-
rected graph. It is evident that the adjacency matrix A is
symmetric for an undirected graph. Denote the neighbors
of vertex vi by Ni = {vj : eji = (vj , vi) ∈ E}. A di-
rected path from vi to vj means that there is a sequence
of distinct arcs in E , (vi, v1), (v1, v2), · · · , (vr, vj). A di-
graph is called strongly connected, if there exists a path
between any two distinct vertices of the graph; for undi-
rected graph it is called connected. Denote the in-degree
and the out-degree of vertex vi as degin(vi) =

∑
j

aij and

degout(vi) =
∑
j

aji, respectively. A vertex vi is said to be

balanced if degin(vi) = degout(vi). A digraph is said to be
balanced if all of its vertices are balanced. An undirected
graph is called complete if its adjacency matrix A satisfies
aij > 0 for all i �= j.

Define the degree matrix of a graph with N vertices by
a diagonal matrix D = diag{degin(v1), · · · , degin(vN )}.
Then the Laplacian matrix of a graph is defined as:

L = D −A.

Some basic and fundamental properties of the Laplacian
matrix L are presented as follows, which will be helpful to
develop the main results [8, 28]:

1) L has a zero eigenvalue and a corresponding right
eigenvector 1N , i.e., L1N = 0;

2) if a digraph G is strongly connected, then the associ-
ated Laplacian matrix L has only one zero eigenvalue and
all other nonzero eigenvalues have positive real parts; for a
connected undirected graph the associated Laplacian matrix
is positive semi-definite and rank(L) = N − 1;

(3) a digraph is balanced if and only if 1T
NL = 0.

3 Agent model and consensus problem
Consider a multi-agent system of N autonomous agents,

which are labeled from 1 to N . The dynamics of each agent
is described by the following mth order integrator⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ
(1)
i = x

(2)
i ,

...
ẋ

(m−1)
i = x

(m)
i ,

ẋ
(m)
i = ui, i ∈ N,

(1)

where m is a positive integer and denotes the dimension
of the agents’ state space; xi = [x(1)

i · · · x
(m)
i ]T is the

stacked state of agent i; x
(1)
i ∈ R is called the informa-

tion variable of agent i for the convenience of description;
x

(l+1)
i , l ∈ m − 1 is the lth order derivative of x

(1)
i ; ui ∈ R

is the control input to be designed in a distributed form.
Herein, the control input ui is also called a consensus pro-
tocol. We make use of graph G = (V, E ,A) to describe
the interactions or communication relations among agents.
Each vertex in V represents an agent of the multi-agent sys-
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tem, each arc eji in E means that there is an interaction or a
communication link from agent j to agent i, and aij is the
weight of the communication link eij .

It is known that the disturbance of communication de-
lays is unavoidable in a real network due to the lim-
ited communication capacity of sensing/transmitting equip-
ment. The consensus problems for networks of single-
integrator/double-integrator agents with communication de-
lays had been studied in [8], [15] and [19]. There are no re-
sults on the consensus problem for networks of high-order
agents with communication delays in the literature. By tak-
ing the communication delays into account, we give the fol-
lowing time-delayed consensus protocol for the high-order
multi-agent system (1)

ui(t) = −
m−1∑
l=1

clx
(l+1)
i (t) − ∑

j∈Ni(t)

aij(t)
(
x

(1)
i (t − τij(t))

−x
(1)
j (t − τij(t))

)
, (2)

where the parameters cl > 0, l ∈ m − 1 are feedback gains
and τij(t) are the time-varying communication delays ex-
isting in the communication link from agent j to agent i.
The above time-delayed consensus protocol involves both
the real-time state information of agent i and the relative in-
formation between the time-delayed information variables
of agent i and those of its neighbors. In practical applica-
tions, we assume that agent i can record and transmit not
only the values of its state variables but also the associated
time stamps. In this paper, we study the simple case where
the communication delays τij(t) = τ(t), i, j ∈ N with τ(t)
being piecewise continuous and satisfying

A1) 0 � τ(t) � τ0 and 0 � τ̇(t) � d < 1 for t � 0, or
A2) 0 � τ(t) � τ0 for t � 0,

where τ0 > 0 and d � 0 are constants. Notice that A2) in-
cludes the case when there is no prior knowledge about the
derivative of τ(t).

Define the state vector of the multi-agent system (1) as
x(t) = [xT

1 (t), · · · , xT
N (t)]T. Assume the initial state of the

system is φ(t) = x(0), t ∈ [−τ0, 0]. Let χ : R
mN → R be

a continuous function of the agents’ initial states. In this pa-
per, we study the following consensus problem for system
(1).

Definition 1 For a given protocol ui, we say the pro-
tocol globally asymptotically solves the consensus prob-
lem for the multi-agent system (1), if for any initial state
φ(t) = x(0), t ∈ [−τ0, 0] the states of all the agents satisfy
that

lim
t→∞

(
x

(1)
i (t) − x

(1)
j (t)

)
= 0,

lim
t→∞x

(l+1)
i (t) = 0, l ∈ m − 1

for all i, j ∈ N .
Definition 2 For a given protocol ui, we say the pro-

tocol globally asymptotically solves the χ-consensus prob-
lem for the multi-agent system (1), if there exists a func-
tion χ : R

mN → R such that for any initial state φ(t) =
x(0), t ∈ [−τ0, 0], the states of all the agents satisfy

lim
t→∞

(
x

(1)
i (t) − χ(x(0))

)
= 0,

lim
t→∞x

(l+1)
i (t) = 0, l ∈ m − 1

for all i, j ∈ N . The function χ(·) : R
mN → R is called the

consensus function of system (1), χ(x(0))e1 with e1 ∈ R
m

is called the consensus state of the system (1).
Under the protocol (2), we can rewrite the dynamics (1)

of agent i as the following concise form

ẋi(t) = Emxi(t) −
∑

j∈Ni(t)

aij(t)Fm

×(
xi(t − τ(t)) − xj(t − τ(t))

)
, (3)

where

Em =
[
0 Im−1

0 θT

]
, Fm =

[
0 0
1 0

]
,

θ = [−c1 − c2 · · · − cm−1]T.

4 Main results
In this section, we consider the consensus problem for

the multi-agent system (1) with switching topology and
time-varying communication delays. It is known that there
might exist link failures or creations in a communication
network of mobile agents, due to the finite communica-
tion/sensing region of sensing devices or the effect of envi-
ronment (such as in the case of nearest neighbor information
exchange [2]). Therefore, the topologies of such a network
might be switching or time-varying. For simplicity, we as-
sume that the topological structures of the network are time-
variant but the weights of the communication links are time-
invariant, that is, at any time t when agent j is a neighbor of
agent i, aij(t) = aij , i, j ∈ N and aij are given constants.
Let G b be a collection of balanced graphs with N vertices,
and G scb ⊂ G b be a subset composed of strongly connected
graphs. It is evident that G b is a finite set if the weights of
communication links are chosen from a finite set, and all
the undirected graphs belong to G b. Refer to IG b and IG scb

as the index sets of G b and G scb, respectively. Next, intro-
duce a switching signal σ(t) : R+ → IG b and a switch-
ing time sequence t0 = 0, t1, · · · , ts, · · · , at which the
network topology changes. Then the graphs remain time-
invariant over the time intervals [ ts, ts+1), s = 0, 1, · · · .
Under the protocol (2), the multi-agent system (1) with
switching topology becomes the following hybrid system{

ẋ(t) = (IN ⊗ Em)x(t) − (Lσ(t) ⊗ Fm)x(t − τ(t)),
φ(t) = x(0), t ∈ [−τ0, 0],

(4)

where Em and Fm are given in (3), Lσ(t) (or Lσ for short)
is the associated Laplacian matrix of the graph Gσ(t).

According to the aforementioned properties of the Lapla-
cian matrix, we can obtain that for any switching signal σ,

the function χ(x(t)) :=
1

Nc1
1T

N ⊗ [c1 · · · cm−1 1]x(t)

is time-invariant along system (4). This is because 1T
N ⊗

[c1 · · · cm−1 1] is a left eigenvector of IN ⊗Em−Lσ⊗Fm

associated with the zero eigenvalue for any σ. Consequently,
the state x(t) of system (4) can be written as

x(t) = χ(x(0))1N ⊗ [1 0 · · · 0︸ ︷︷ ︸
m−1

]T + δ(t). (5)

From (IN ⊗ Em − Lσ ⊗ Fm)1N ⊗ [1 0 · · · 0︸ ︷︷ ︸
m−1

]T = 0, we

obtain that 1T
N ⊗ [c1 · · · cm−1 1]δ(t) = 0 and δ(t) satisfies
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the following dynamics
δ̇(t) = (IN ⊗ Em)δ(t) − (Lσ ⊗ Fm)δ(t − τ(t)). (6)

Denote W1 := span{1N ⊗ [c1 · · · cm−1 1]T}⊥ and
W2 := span{[c1 · · · cm−1 1 0 · · · 0︸ ︷︷ ︸

m(N−1)

]T}⊥. The follow-

ing lemma gives the relationship between them.
Lemma 1 For a given connected graph G,

W1 = (UG ⊗ Im)W2, (7)
where UG is an orthogonal matrix such that UT

G LGUG =
diag{0, μ2, · · · , μN} with μ2, · · · , μN being the nonzero
eigenvalues of LG .

Proof Define Λ = diag{0, μ2, · · · , μN}. Then
LG1N = 0 implies that ΛUT

G 1N = 0. As a result,

UT
G 1N = k[1 0 · · · 0︸ ︷︷ ︸

N−1

]T

for k ∈ R. Hence
(UT

G ⊗ Im)(1N ⊗ [c1 · · · cm−1 1]T)
= k[c1 · · · cm−1 1 0 · · · 0︸ ︷︷ ︸

m(N−1)

]T,

and therefore (UT
G ⊗ Im) span{1N ⊗ [c1 · · · cm−1 1]T} =

span{[c1 · · · cm−1 1 0 · · · 0︸ ︷︷ ︸
m(N−1)

]T}. Since UG is orthogonal,

we can derive that the conclusion holds.
Let Gc ∈ G b be a complete graph, all the weights of

which are 1. Denote the associated Laplacian matrix as Lc.
Suppose Uc is an orthogonal matrix with the first column

being
1√
N

1N , such that UT
c LcUc = diag{0, N, · · · , N︸ ︷︷ ︸

N−1

}.

Based on the orthogonal matrix Uc we have the following
result.

Lemma 2 For any digraph G ∈ G scb, let L̄G =[
0 IN−1

]
UT

c LGUc

[
0

IN−1

]
. Then the matrix L̄G + L̄T

G is

positive definite.
Proof Since the graph G is strongly connected and bal-

anced, we have UT
c LGUc =

[
0 0
0 L̄G

]
. According to the re-

sult of Theorem 7 in [8], Lsym =
LG + LT

G
2

is a valid Lapla-
cian matrix of a graph. In addition, the strongly connected
graph G indicates that the graph of Lsym is connected. Thus,
Lsym is positive semi-definite and rank(Lsym) = N − 1.
This implies that L̄G + L̄T

G is positive definite.
Lemma 3 [15] For any differentiable vector function

y(t) ∈ R
N and any N × N positive definite matrix P , the

following inequality
τ−1
0 [ y(t) − y(t − τ(t))]TP [ y(t) − y(t − τ(t))]

�
� t

t−τ(t)
ẏT(s)P ẏ(s)ds, t � 0

holds, where τ(t) satisfies A1) or A2).
Lemma 4 (Schur complement theorem) [29] Let X ,

Y, Z be some given matrices with appropriate dimensions

such that Z < 0. Then
[
X Y

Y T Z

]
< 0 if and only if

X − Y Z−1Y T < 0.
We start the main results with investigating the consen-

sus problem for system (1) in the case where the switch-
ing topology keeps strongly connected and balanced across
each successive interval [ ts, ts+1), s = 0, 1, · · · . In this
case, we denote the switching signal as ς(t) : R+ → IG scb

for clarity.
Theorem 1 Consider system (4) with σ(t) replaced

by ς(t). Suppose that the assumption A1) holds and the
parameters c1, · · · , cm−1 make the polynomial sm−1 +
cm−1s

m−2 + · · · + c2s + c1 Hurwitz stable. For arbitrary
switching signal ς(t) : R+ → IG scb , if there exist symmet-
ric matrices P > 0, Q > 0, R > 0 with proper dimensions,
such that the following linear matrix inequalities

Φς =

⎡
⎣Φ11 Φ12 GTR

∗ Φ22 (G − Hς)TR

∗ ∗ −τ−1
0 R

⎤
⎦ < 0 (8)

hold for a suitable τ0 > 0, then the protocol (2) glob-
ally asymptotically solves the χ-consensus problem for

system (1) with χ(x(0)) =
1

Nc1

N∑
i=1

c̃Txi(0) and c̃ =

[c1 · · · cm−1 1]T ∈ R
m. Here, “∗” represents the elements

below the main diagonal of a symmetric matrix and
G = Em ⊗ IN−1, Hς = −Fm ⊗ L̄ς ,

Φ11 = (G + Hς)TP + P (G + Hς) + dQ,

Φ12 = −PHς + (1 − d)Q,

Φ22 = −τ−1
0 R + (d − 1)Q

with L̄ς being associated to the graph Gς and defined as in
Lemma 2.

Proof Following Lemma 1, we have W1 = (Uc ⊗
Im)W2 with Uc given in Lemma 2. Then for any δ ∈ W1,
there exists η = [ ηT

1 , ηT
2 ]T ∈ W2 with

η1 = [ η(1)
1 · · · η

(m)
1 ]T ∈ R

m,

η2 = [ η(1)
2 · · · η

(m)
2 · · · η

(1)
N · · · η

(m)
N ]T ∈ R

m(N−1),

such that δ = (Uc ⊗ Im)η. According to the dynamics (6)
with σ replaced by ς , we have

η̇1(t) = Emη1(t), (9a)
η̇2(t) = (IN−1⊗Em)η2(t)−(L̄ς⊗Fm)η2(t−τ(t)). (9b)

From η ∈ W2, it follows that c1η
(1)
1 + · · ·+ cm−1η

(m−1)
1 +

η
(m)
1 = 0. From the assumption that c1, · · · , cm−1 make the

polynomial sm−1+cm−1s
m−2+· · ·+c2s+c1 Hurwitz sta-

ble, we have that subsystem (9a) is globally asymptotically
stable. As to subsystem (9b), we redefine the state vector η2

as η̄ = [η(1)
2 · · · η

(1)
N · · · η

(m)
2 · · · η

(m)
N ]T. Consequently,

subsystem (9b) can be rewritten as
˙̄η(t) = Gη̄(t) + Hς η̄(t − τ(t)), (10)

where G and Hς are defined as in the theorem. In order to
investigate the stability of the zero solution for system (6),
the remaining work is to prove the stability of the zero solu-
tion for subsystem (10).

Take the candidate Lyapunov functional as

V1(t) = η̄T(t)P η̄(t) +
� t

t−τ(t)
η̄T(s)Qη̄(s)ds

+
� t

t−τ0
(s − t + τ0) ˙̄ηT(s)R ˙̄η(s)ds.
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Then the time derivative of V1(t) along subsystem (10) sat-
isfies
V̇1(t) � η̄T(t)(GTP + PG)η̄(t) + 2η̄T(t)PHς η̄(t − τ(t))

+η̄T(t)Qη̄(t) + (d − 1)η̄T(t − τ(t))Qη̄(t − τ(t))

+τ0 ˙̄ηT(t)R ˙̄η(t) −
� t

t−τ0

˙̄ηT(s)R ˙̄η(s)ds.

Denote ξ(t) = η̄(t) − η̄(t − τ(t)). Then

V̇1(t) � η̄T(t)[(G + Hς)TP + P (G + Hς)]η̄(t)
−2η̄T(t)PHςξ(t) + η̄T(t)Qη̄(t)
+(d − 1)η̄T(t − τ(t))Qη̄(t − τ(t))

+τ0 ˙̄ηT(t)R ˙̄η(t) −
� t

t−τ(t)
˙̄ηT(s)R ˙̄η(s)ds

� η̄T(t)[(G + Hς)TP + P (G + Hς) + dQ]η̄(t)
−2η̄T(t)[(d − 1)Q + PHς ]ξ(t)
+ξT(t)[−τ−1

0 R + (d − 1)Q]ξ(t) + τ0[Gη̄(t)
+Hς η̄(t − τ(t))]TR[Gη̄(t) + Hς η̄(t − τ(t))]

=
[
η̄T(t) ξT(t)

]{[
Φ11 Φ12

∗ Φ22

]

+
[

GT

(G − Hς)T

]
τ0R

[
G (G − Hς)

]}[
η̄(t)
ξ(t)

]

�
[
η̄T(t) ξT(t)

]
Σς

[
η̄(t)
ξ(t)

]
.

By adding the terms ±(d − 1)ξT(t)Qξ(t) and ±(d −
1)η̄T(t)Qη̄(t) to the right hand of the first inequality,
Lemma 3 results in the second inequality. Then following
the Schur complement theorem, the inequality (8) implies
that the matrix Σς is negative definite. Accordingly, there
exists some scalar γ > 0 such that

V̇1(t) � −γ[η̄T(t)η̄(t) + ξT(t)ξ(t)] � −γη̄T(t)η̄(t),
which proves that the zero solution of subsystem (10) is
globally asymptotically stable. And so is the zero solution
of system (6). Hence, for any 0 � d < 1 and a suitable
τ0 > 0 satisfying (8), the protocol (2) globally asymptot-
ically solves the χ-consensus problem for system (1). The
proof is completed.

By making use of the linear matrix inequality (LMI
for short) toolbox of the MATLAB software, we can find
the feasible solution of the inequalities (8) and maximize
the upper bound on the admissible communication delays.
Specifically, for any given 0 � d < 1 and the param-
eters c1, · · · , cm−1 which make the polynomial sm−1 −
cm−1s

m−2 − · · · − c2s − c1 Hurwitz stable, the GEVP
(general eigenvalue problem) solver of the LMI toolbox can
work out this problem, that is,

min τ−1
0

subject to P > 0, Q > 0, R > 0 and (8).

For the case when the communication delay τ(t) satisfies
A2), we have the following result.

Theorem 2 Consider system (4) with σ(t) replaced
by ς(t). Suppose that the assumption A2) holds and the
parameters c1, · · · , cm−1 make the polynomial sm−1 +
cm−1s

m−2 + · · · + c2s + c1 Hurwitz stable. For arbitrary
switching signal ς(t) : R+ → IG scb , if there exist symmet-
ric matrices P > 0, Q > 0 with proper dimensions, such

that the following linear matrix inequalities

Ψς =

⎡
⎣Ψ11 −PHς GTQ

∗ −τ−1
0 Q (G − Hς)TQ

∗ ∗ −τ−1
0 Q

⎤
⎦ < 0 (11)

hold for a suitable τ0 > 0, where
Ψ11 = (G + Hς)TP + P (G + Hς),

G and Hς are defined as in Theorem 1, then the protocol (2)
globally asymptotically solves the χ-consensus problem for
system (1) with χ(x(0)) defined as in Theorem 1.

Proof According to the proof of Theorem 1, system (6)
with σ replaced by ς can be transformed into the decoupled
systems (9a) and (9b). In order to analyze the stability of
the zero solution for subsystem (9b), we take the following
candidate Lyapunov functional

V2(t) = η̄T(t)P η̄(t) +
� t

t−τ0
(s − t + τ0) ˙̄ηT(s)Q ˙̄η(s)ds.

Then the time derivative of V2(t) along subsystem (9b) sat-
isfies
V̇2(t) = η̄T(t)(GTP + PG)η̄(t) + 2η̄T(t)PHς η̄(t − τ(t))

+τ0 ˙̄ηT(t)Q ˙̄η(t) −
� t

t−τ0

˙̄ηT(s)Q ˙̄η(s)ds

� η̄T(t)Ψ11η̄(t) − 2η̄T(t)PHςξ(t) + τ0 ˙̄ηT(t)Q ˙̄η(t)
−τ−1

0 ξT(t)Qξ(t)

=
[
η̄T(t) ξT(t)

]{[
Ψ11 −PHς

∗ −τ−1
0 Q

]

+
[

GT

(G − Hς)T

]
τ0Q

[
G G − Hς

]}[
η̄(t)
ξ(t)

]

�
[
η̄T(t) ξT(t)

]
Ξς

[
η̄(t)
ξ(t)

]
,

where ξ(t) = η̄(t)−η̄(t−τ(t)). Following the proof of The-
orem 1, we can derive that for a suitable τ0 > 0 satisfying
(11), the protocol (2) can solve the χ-consensus problem for
system (1) globally asymptotically. The proof is completed.

As to the linear matrix inequalities (11), we can follow
the same method as (8) to find a feasible solution and maxi-
mize the upper bound on the admissible communication de-
lays.

Theorem 1 and Theorem 2 indicate that the consensus
problem for system (1) can be solved when the switch-
ing topology keeps strongly connected and balanced across
each successive interval [ ts, ts+1), s = 0, 1, · · · . We next
extend the results above to the case where the switching
topology does not always keep strongly connected. Suppose
there exists a sequence of time intervals, [ Tk, Tk+1), k =
0, 1, · · · with T0 = 0, Tk+1 = Tk + T and T > 0 being
a sufficiently large constant. Each interval [ Tk, Tk+1) con-
tains a number of small intervals [ ts, ts+1), across which
the topology is time-invariant. Here we assume that ts+1 −
ts � d0, s = 0, 1, · · · , where d0 > 0 is called the dwell
time. Refer to T scb

k as the total length of the intervals, across
which the graphs are in G scb, over [ Tk, Tk+1); T b

k as the
total length of the intervals, across which the graphs are in
G b/G scb, over [ Tk, Tk+1). Suppose that there is a positive
constant T b such that T b

k � T b, k = 0, 1, · · · . It is evident
that T scb

k � T − T b, k = 0, 1, · · · . Let T scb = T − T b.
Theorem 3 Consider system (4). Suppose that the as-
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sumption A1) holds and the parameters c1, · · · , cm−1 make
the polynomial sm−1 + cm−1s

m−2 + · · · + c2s + c1 Hur-
witz stable. For a given constant α > 0 and a switch-
ing signal σ(t) : R+ → IG b , if T scb

k , k = 0, 1, · · ·
are sufficiently large and there exist symmetric matrices
P > 0, Q > 0, R > 0 such that the following linear matrix
inequalities

Ωs =

⎡
⎣Ω11 Ω12 GTR

∗ Ω22 (G − Hs)TR

∗ ∗ −τ−1
0 R

⎤
⎦ < 0 (12)

hold for a suitable τ0 > 0, where the index s ∈
IG scb

⋂{σ(t) : t � 0},
Ω11 = (G + Hs)TP + P (G + Hs) + αP

+Q + (d − 1)e−ατ0Q,

Ω12 =−PHs + (1 − d)e−ατ0Q,

Ω22 =−e−ατ0τ−1
0 R + (d − 1)e−ατ0Q,

G and Hs are given in Theorem 1, then the protocol (2)
globally asymptotically solves the χ-consensus problem for
system (1) with χ(x(0)) defined as in Theorem 1.

Proof Analogously, we only need to analyze the stabil-
ity of the zero solution for subsystem (10) with ς replaced
by σ. Take the candidate Lyapunov functional as

V3(t) = η̄T(t)P η̄(t) +
� t

t−τ(t)
eα(s−t)η̄T(s)Qη̄(s)ds

+
� t

t−τ0
eα(s−t)(s − t + τ0) ˙̄ηT(s)R ˙̄η(s)ds.

Then the time derivative of V3(t) along subsystem (10) is
V̇3(t)
= −αV3(t)+αη̄T(t)P η̄(t)+2η̄T(t)P ˙̄η(t)+η̄T(t)Qη̄(t)

+(τ̇(t) − 1)e−ατ(t)η̄T(t − τ(t))Qη̄(t − τ(t))

+τ0 ˙̄ηT(t)R ˙̄η(t) −
� t

t−τ0
eα(s−t) ˙̄ηT(s)R ˙̄η(s)ds.

Denote ξ(t) = η̄(t) − η̄(t − τ(t)), we have
V̇3(t) + αV3(t)

�
[
η̄T(t) ξT(t)

]{[
Ω11 Ω12

∗ Ω22

]

+
[

GT

(G − Hσ)T

]
τ0R

[
G (G − Hσ)

]}[
η̄(t)
ξ(t)

]

�
[
η̄T(t) ξT(t)

]
Σ̂σ

[
η̄(t)
ξ(t)

]
. (13)

For the sake of notational convenience, we use Ω11 and Ω12

in (13) to denote the matrices (G+Hσ)TP +P (G+Hσ)+
αP + Q + (d − 1)e−ατ0Q and −PHσ + (1 − d)e−ατ0Q,
respectively. First, for t ∈ [ ts, ts+1), over which the cor-
responding graph belongs to G scb, the Schur complement
theorem and (12) imply that Σ̂σ is negative definite. Hence
V̇3(t) + αV3(t) � 0, t ∈ [ ts, ts+1). This proves that

V3(t) � e−α(t−ts)V3(ts), t ∈ [ ts, ts+1). (14)
Next, for t ∈ [ tb, tb+1), over which the corresponding graph
belongs to G b/G scb, we obtain from (13) that

V̇3(t) + αV3(t) � λmax(Σ̂σ)(‖η̄(t)‖2 + ‖ξ(t)‖2),
where λmax(·) denotes the largest eigenvalue of a matrix. If
λmax(Σ̂σ) � 0, then V̇3(t) + αV3(t) � 0, t ∈ [ tb, tb+1),

which enhances the stability of the zero solution of sub-
system (10). If λmax(Σ̂σ) > 0, then from ‖ξ(t)‖2 �
2(‖η̄(t)‖2 + ‖η̄(t − τ(t))‖2) we have

V̇3(t) + αV3(t) � λmax(Σ̂σ)(
3

λmin(P )
+

2eατ0

λmin(Q)
)V3(t),

where λmin(·) denotes the smallest eigenvalue of a matrix.

Let β = λmax(Σ̂σ)(
3

λmin(P )
+

2eατ0

λmin(Q)
). Then β > 0.

Consequently,
V3(t) � e(β−α)(t−tb)V3(tb), t ∈ [ tb, tb+1). (15)

According to (14) and (15), we obtain

V3(Tk+1) � e−αT+β(T−T scb)V3(Tk).
Denote γ = βT scb − (β − α)T . If β − α � 0, it is evident

that γ > 0; if β − α > 0, then we take T scb >
(β − α)T

β
which guarantees γ > 0. Thus,

V3(Tk+1) � e−(k+1)γV3(0).
Till now, for any t > 0, there exists an appropriate integer k
satisfying Tk � t < Tk+1 such that

V3(t) � eβTb
V3(Tk) � eβTb

e−kγV3(0) → 0, t → ∞.

This implies that the zero solution of subsystem (10) is glob-
ally asymptotically stable. The proof is completed.

If the assumption A2) holds, we can take the following
candidate Lyapunov functional for subsystem (10) with ς
replaced by σ

V4(t) = η̄T(t)P η̄(t)

+
� t

t−τ0
eα(s−t)(s − t + τ0) ˙̄ηT(s)Q ˙̄η(s)ds.

The related result is stated in the following theorem.
Theorem 4 Consider system (4). Suppose that the as-

sumption A2) holds and the parameters c1, · · · , cm−1 make
the polynomial sm−1 +cm−1s

m−2 + · · ·+c2s+c1 Hurwitz
stable. For a given constant α > 0 and a switching signal
σ(t) : R+ → IG b , if T scb

k , k = 0, 1, · · · are sufficiently
large, and there exist symmetric matrices P > 0, Q > 0
such that the following linear matrix inequalities

Γs =

⎡
⎣Γ11 −PHs GTQ

∗ −e−ατ0τ−1
0 Q (G − Hs)TQ

∗ ∗ −τ−1
0 Q

⎤
⎦ < 0 (16)

hold for a suitable τ0 > 0, where Γ11 = (G + Hs)TP +
P (G + Hs) + αP, the index s, G and Hs are defined as
in Theorem 3, then the protocol (2) globally asymptotically
solves the χ-consensus problem for system (1) with χ(x(0))
defined as in Theorem 1.

The proof is similar to that of Theorem 3, and hence is
omitted.

Remark 1 As aforementioned, a consensus protocol
for a group of identical agents with dynamics modeled by a
completely controllable LTI system, can be derived from the
consensus protocol (2) of the network of high-order agents.
For simplicity of expression, we take the completely con-
trollable single-input LTI system for example. Consider a
group of N agents with dynamics modeled by

ξ̇i = Aξi + bvi, i ∈ N, (17)
where ξi ∈ R

m is the state of agent i, vi ∈ R is the con-



58 F. JIANG et al. / J Control Theory Appl 2010 8 (1) 52–60

trol input and (A, b) is completely controllable. Suppose the
characteristic polynomial of A is sm−amsm−1−· · ·−a2s−
a1. Based on the consensus protocol (2), we can provide a
distributed consensus protocol for the multi-agent system
(17) as

vi = fTT−1ξi(t) −
∑

j∈Ni(t)

aij(t)eT
1 T−1

×(
ξi(t − τij(t)) − ξj(t − τij(t))

)
, (18)

where f = [−a1 −(c1 + a2) · · · −(cm−1 + am) ]T ∈
R

m with c1, · · · , cm−1 given in (2); e1 ∈ R
m; T ∈ R

m×m

is a nonsingular matrix such that T−1AT = Ac, T
−1b =

[0 · · · 0︸ ︷︷ ︸
m−1

1]T � bc with (Ac, bc) being the associated con-

trollable canonical form. Then there exists a nonsingu-
lar linear transformation between the closed-loop dynam-
ics (17)(18) and system (3). As a matter of fact, if we let
ξi = Txi, i ∈ N , then

ẋi(t) = Acxi(t) + bcf
Txi(t) −

∑
j∈Ni(t)

aij(t)bce
T
1

×(
xi(t − τij(t)) − xj(t − τij(t))

)
= Emxi(t) −

∑
j∈Ni(t)

aij(t)Fm

×(
xi(t − τij(t)) − xj(t − τij(t))

)
,

where Em and Fm are defined as in (3). This indicates that
the protocol (18) solves a consensus problem for system
(17) if and only if the protocol (2) solves a consensus prob-
lem for the high-order multi-agent system (1).

5 Numerical examples
In this section, we present some numerical examples for

the multi-agent system (1) with m = 3 to demonstrate the
effectiveness of the theoretical results.

These numerical simulations are performed with six
agents. Fig.1 shows four possible connected graphs G1 ∼
G4 with the six agents.

Fig. 1 Four possible connected graphs with six vertices: G1 ∼ G4.
Fig.2 displays a switching law of the four graphs, which

starts from G1 and then switches one by one along the ar-
rows.

Fig. 2 A switching law of the graphs G1 ∼ G4 shown in Fig. 1.
The switching period is one time unit. We first estimate

the upper bound on the allowable communication delays via
the LMI toolbox of MATLAB software. Take c1 = c2 = 12.
The inequalities (8) of Theorem 1 result in the upper bound
τ0 = 2.1939 with d = 0.6, while the inequalities (11) of
Theorem 2 lead to the upper bound τ0 = 0.0915. (Note
that when the time-varying delay τ(t) satisfies both A1)
and A2), plenty of numerical simulations indicate that the
upper bound on tolerant time delays derived from (8) is al-
ways larger than that derived from (11).) Next, by taking
τ(t) = 0.5 arctan(t), t � 0, Fig.3 presents the state trajec-
tories of the six agents with the switching topology shown
in Fig.2.

Fig. 3 For m = 3, c1 = c2 = 12 and τ(t) = 0.5 arctan(t), the state
trajectories of six agents with switching topology shown in 2.

By taking τ(t) = 0.0518| sin t|, t � 0, Fig.4 shows the
state trajectories of the six agents with the switching topol-
ogy shown in Fig.2.

Fig. 4 For m = 3, c1 = c2 = 12 and τ(t) = τ(t) = 0.0518| sin t|,
the state trajectories of six agents with switching topology shown
in Fig.2.

The last numerical simulation reports the consensus prob-
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lem for the six agents with switching topology shown in
Fig.5.

Fig. 5 A possible unconnected graph with six vertices and a switching law
of the graphs G2 ∼ G5.

The switching law starts from G5 and then switches
one by one along the arrows with switching period being
one time unit. This kind of switching topology indicates
that there exist balanced but not strongly connected graphs
among the switching topology, such as G5. Following The-
orem 4, if we take α = 0.1 and c1 = c2 = 12, the lin-
ear matrix inequalities (16) are solvable with τ0 = 0.09.
Fig.6 depicts the state trajectories of the six agents with the
switching topology shown in Fig.4 and the time-varying de-
lay τ(t) = 0.09| sin t|, t � 0.

Fig. 6 For m = 3, c1 = c2 = 12 and τ(t) = τ(t) = 0.09| sin t|,
the state trajectories of six agents with switching topology shown
in Fig.5.

6 Conclusions
This paper has considered the consensus problem for

a network of high-order dynamic agents with switching
topology and time-varying communication delays. A linear
distributed consensus protocol has been proposed, which
only depends on the agent’s overall information and its
neighbors’ partial information. Based on the Lyapunov-
Krasovskii approach, some sufficient conditions for the con-
vergence to consensus have been established in the form of
linear matrix inequalities. The results from the consensus
seeking of the network of high-order agents have been ex-
tended to a group of agents with dynamics modeled as a
completely controllable linear time-invariant system. It has
been proved that the convergence to consensus of this group
is equivalent to that of the network of high-order agents. An-
other topic is to consider the case where the communication

time-delays are nonuniform and time-varying.
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