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Robust fault-tolerant controller design for linear
time-invariant systems with actuator failures:
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Abstract: In this paper, indirect adaptive state feedback control schemes are developed to solve the robust fault-
tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems.
A more general and practical model of actuator faults is presented. While both eventual faults on actuators and perturba-
tions are unknown, the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and
perturbations online, as well as to estimate control effectiveness on actuators. Thus, on the basis of the information from
adaptive schemes, an adaptive robust state feed-back controller is designed to compensate the effects of faults and pertur-
bations automatically. According to Lyapunov stability theory, it is shown that the robust adaptive closed-loop systems can
be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations. An example is
provided to further illustrate the fault compensation effectiveness.
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1 Introduction

As we know, the failure of system components (includ-
ing actuators, sensors, and even the plant itself) may oc-
cur at uncertain time with unknown size of faults in practi-
cal systems. Some serious faults may result in performance
degradation or even instability of the systems. Therefore,
the fault-tolerant control (FTC) systems design, which en-
sures safe operation of the systems and proper performances
whenever component is faulted or healthy, has received sig-
nificant attention over the past two decades (see, e.g., refer-
ences [1~22]).

According to the existing researches for FTC systems, the
FTC design methods can be classified into two types, that
is, the passive method [1~7] and the active method [8~22].
Generally, the passive method uses a robust control strat-
egy to construct a fixed control gain to maintain the stabil-
ity and performance of systems. Many related methods have
been introduced in literature, such as the algebraic Riccati
equation (ARE)-based approach [1~3], the linear matrix in-
equality (LMI)-based approach [5, 6], the pole region as-
signment approach [7], etc. The passive method is easy to
obtain a controller for the presumed faults relative to the ac-
tive method, since it is not relying on online adjustment for
control gains. However, it is well known that along with the
increase of possible faults and redundancy degree of sys-
tem, the FTC design becomes conservative. Thus, the fault
tolerant capability of the passive method seems limited.
Correspondingly, the active method provides more power-
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ful fault tolerant capability for compensating for faults of
the systems in terms of reconfiguring control strategies on-
line or switching to a more suitable precomputed control
law based on the fault information. Nowadays, the adap-
tive method [8~17,22] and the fault detection and isolation
(FDI)-based method [18~21] can be considered as two typ-
ical and effective active methods for fault compensations.

For the FTC system based on FDI method, a more suit-
able controller can be chosen for the fault case and the better
performance can be obtained than the passive FTC system.
But it should be pointed out that the FDI mechanism might
give incorrect fault information to reconfigure or restruc-
ture the controller. Therefore, the adaptive method which
needs no mechanism to estimate the exact faults on actu-
ators is worthy to be studied. In references [13~16], the
model reference adaptive fault-tolerant control designs were
introduced to track the given reference signals. Under con-
sidering the fault of loss actuator effectiveness, a perfect
performance tracking result was obtained in reference [9].
However, it is worth pointing out that the above FTC sys-
tems [9~14] have no perturbation rejection capability, even
under some special conditions such as

lim z(t) =0
t—oo

(2(t) is perturbation) [15] and constant perturbation [16].
On the other hand, direct adaptive methods were developed
in references [11, 12] to ensure stability of the FTC sys-
tems with constant and time-varying parameterizable stuck-
actuator faults. The unparameterizable stuck faults were
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considered in reference [13], but the upper bounds of faults
were assumed to be known and asymptotic tracking could
not be achieved. The asymptotic stability result was ob-
tained in recent paper [8] via designing an adaptive gain
function with direct adaptive method when considering the
unparameterizable stuck faults and perturbations without
the knowledge of upper bounds of them. In this paper, dif-
fering from the direct adaptive method, a robust indirect
adaptive scheme is proposed to make sure asymptotic stabil-
ity of the FTC system with time-varying unparameterizable
faults and perturbations.

This paper is concerned with the fault-tolerant compen-
sation control design problem with a general actuator fault
model, including normal operation, loss of effectiveness,
outage, and unparameterizable stuck. The requirement of
knowledge of each control effectiveness is not needed, and
the bounds of time-varying stuck faults and perturbations
are also assumed to be unknown. For the sake of compen-
sating the faults and the perturbations completely, an indi-
rect adaptive method is developed to construct a class of
state feedback controllers. Some adaptive schemes are pro-
posed to estimate the unknown bounds of stuck faults and
perturbations and control effectiveness online firstly. Then,
based on the updated information of these estimated val-
ues, the control gains are adjusted online to compensate for
faults and perturbations. In terms of Lyapunov stability the-
ory, the resulting robust adaptive closed-loop FTC system
can be ensured to be asymptotically stable even in the case
of faults on actuators and perturbations. It should be empha-
sized that different from the FDI method with the need for a
mechanism to provide the exact fault information, the new
proposed indirect adaptive design method is not necessary
for the estimations to give the exact fault information.

The rest of the paper is organized as follows. Section 2
describes the FTC problem formulation. In Section 3, the
indirect adaptive robust state feedback controller is devel-
oped. Section 4 gives an example and simulation. Finally,
conclusions are included in Section 5.

2 Preliminaries and problem statement

First, notations are introduced as follows. R denotes the
set of real numbers, and for a real matrix D, DT and D!
denote its transpose, and inverse, respectively. Given matri-
ces Ex,k = 1,2,--- ,n, the notation diag};_,{F}} repre-
sents the block diagonal matrix with the diagonal element
E.. For brevity, it is also described by diag { F }. For eas-
ing the notation of partitioned symmetric matrices, the sym-
bol () stands for each of its symmetric blocks generically.

In this paper, we consider a linear time-invariant
continuous-time model captured by the state space equation
as

z(t) = Az(t) + Brw(t) + Bau(t), 1)

where 2:(t) € R™ denotes the state, u(t) € R™ represents
the control input, and w(¢) € R? is a continuous vector
function which stands for the perturbations for the system.
A, B, By are known real constant matrices with appropri-
ate dimensions.

Here, we formulate that the faults cover actuator outage,
loss of effectiveness and stuck. Let u;(t) stand for the sig-
nal from the ¢th faulted actuator in the jth faulty mode.
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Then, we describe the following fault model [3, 13]:
uli(t) = plui(t) + ol ugi(t), )

where i = 1,2--- ,m,j = 1,2---, L, pf and o] are un-
known constants, the index j represents the jth faulty mode,
and the total number of faulty modes is L, and ﬁf and BZ
denote respectively the known upper and lower bounds of

pz ; and ug;(t) is the unknown time-varying bounded fault-
stuck in the ith actuator. Following the practical case, we

have 0 < Bf < pl < pl,and o is defined as
. j
ol — 0, p} >0, 3)
0Oorl, p;=0.

Note that, when B{ = [)f = 1, there is no fault on the ith
actuator u; in the jth fault mode. The case of gg = ,6{ =0
and ag' = 0 means that the 7th actuator is outage in the jth
fault mode. When BZ = p! = 0and o] = 1, the fault-stuck
is occurred on the ith actuator in the jth fault mode. The

case of 0 < pg < ﬁ{ < 1 denotes that actuator u; loses

its effectiveness in the jth fault mode. Then, Table 1 can be
given to illustrate the fault model generally.
Table 1 Fault model.

Fault model Bf ﬁg crf
Normal 1 1 0
Outage 0 0 0
Loss of effectiveness >0 <1 0
Stuck 0 0 1
Denote
ul () = [ui;(t) - ub; (017 = plu(t) + o/us(t), ()
where

,Pf'n}’ Pg € [Bz7ﬁ3]>
yol Yy, j=1,2,--- L.
Then, the set with above structure is defined by
Apf = {pj : pj = diag{ﬁ{v co apzn}v Pg € [BZaﬁZ]}v (5)
and we can also define a set as follows
Ny = ¢ o/ = diag{ps-- - i},

pl = pl orpl = pl}, (6)
where ¢t = 1,2,--- ,m, j = 1,2,---, L. Thus, the set N,
includes a maximum of 2" elements.

For convenience, in the following, actuator fault model is
uniformly exploited by:

u®' (t) = pu(t) + oug(t), 7

where p= diag{pla T 7pm} € {p17 e 7pL}'
Therefore, consider actuator fault (7), the dynamics of (1)

is written by

&(t) = Ax(t) + Bapu(t) + Baous(t) + Biw(t). (8)
To ensure the achievement of the fault-tolerant objective,
two standard requirements are that all the states of system
are available at every instant for state feedback case, and
the system {A, Byp} is uniformly completely controllable
for any fault mode p € {p'...p"}. Besides, the following
assumptions in the FTC design are also assumed to be valid.

p = diag{pi, 5, --

o) = diag{o], 09, -
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Assumption 1 For the FTC system (8), there exists a
matrix function F' of appropriate dimensions such that

By = ByF. C))

Assumption 2 rank[Bsp| = rank[Bs] for any actuator
failure mode p € {p'--- pl}.

Remark 1 Assumption 1 defines a matching condition
about the perturbations. It is necessary to compensate for
perturbation completely. Based on the knowledge of linear
algebra theory, we should design a control law K (¢) to make
Bop(t)K (t)x(t) = Byw(t) for compensating the perturba-
tion according to (8). Thus, there must exist an appropri-
ate dimensions matrix F' such that B3 = By F to ensure
that the equation holds true. It is a standard assumption for
the robust control problem [23]. Assumption 2 introduces a
condition of actuator redundancy in the system, and is also
necessary for completely compensating the stuck-actuator
faults. The reason can be explained from the controllability
of system or linear algebra theory. Many practical systems
belongs to this class of systems and some studies [8,10~13]
had also been proposed based on the redundant condition.
Although it is still under the condition, a novel FTC will be
proposed.

Thus, by using adaptive mechanism, the purpose of this
paper is to design an adaptive robust state feed-back con-
troller such that the state of closed-loop system (8) con-
verges to zero asymptotically under normal or faulted ac-
tuators and perturbations.

3 Indirect adaptive FTC system design

In Section 3, some adaptive schemes are designed to es-
timate the unknown fault effect factors p and ¢ of actua-
tors, the unknown upper and lower bounds of stuck faults,
s and ug, and also the unknown upper and lower bounds
of perturbations, w and w, respectively. Then, a result of
asymptotic stability of the system is introduced in Theorem
1 via constructing an indirect adaptive robust fault-tolerant
controller.

Now, the indirect adaptive robust fault-tolerant controller
model is described by

u(t) = Kra(t) + p(t)Ksa(?)
K (D] = )i (1) + 7y (1)

+ K4 [(I — 1) w(t) + T@(t)], (10)

where p, & are the estimates of p, o respectively; 1is(t) and
i, (t) denote respectively the estimates of unknown upper
and lower bounds of u(t); w and w represent the unknown
upper and lower bounds of w(t), respectively, and w(t) and
w(t) are their estimations; 7, is defined as

0, T Pby; >0
) 1 = ) 11
1, fZ;TPbQi <0, (i

,m is the ith column of Bsy; and 7,

Ty = diag{Tul» T aTum}7 Tui = {

where by;, 7 = 1,2, -
is defined as
0, xTPBka >0,
1, JiTPBka <0,
where fi, k = 1,2,---,q is the kth column of F' which
satisfied (9).

Then, substituting (10) into (8), the closed-loop FTC sys-

Tw:diag{Twly"' aqu}a ka:{ (12)
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tem model is captured by

#(t) = (A+ BapKi + Bapp(t)Ko)x(t)
+B2pK3[(1 — Tu)ﬁS(t) + Tudls(t)]
+BopK4[(I — ) w(t) + T @(t)]
+Bsous(t) + BoFw(t). (13)

Before giving our main result, we first introduce the sys-
tem matrices’ decomposed form as

F=1[fi f2 - fo] € R,
By = [b21 bog -+ - bgm] S Rnxm’
K3 = [k31 k32 -+ kgm] € R™X™,
Ky = [k41 kyo - - k4q] € Rm*q,
Denote
M :=zTPB,,
R :=6[(I — 7,)is + Tu1y],

S = F[(I — 7)W + Toi], (14)
where M, R and S are bound vector functions described by
M =[M; My --- M,,] € R™>*™
R=[R; Ry --- Ry|T eR™,
S=1[8 Sy -+ ST eR™,

which will be used later; P is a positive symmetric matrix.
In particular, the unknown p; is estimated by p;(¢) which
is adjusted by the adaptive laws such as

dp;(t) [0, if p;=0.1and L, <0, 15)
dt | L,, otherwise,
where ¢ =1,2,--- ,m, and

1. . .
Ly, = =bLl5p(0) M + p; ()M Ri + i (1) M;S].
(16)

The unknown o; is estimated by &;(¢), which is adjusted
according to the adaptive laws: 1 = 1,2,--- ,m,

d6;(t)
at

Besides, us; and U, are the estimates of upper and lower
bounds of wus;(t), respectively, which are updated by the
adaptive laws:

= 512" (t) Pbo;[(I — To)ts + Tut].  (17)

diig; (t)

TR 5942 T (t) Phay, (18)
d@glzt(t) = SQiZ‘T (t)Pbgi. (19)

Similarly, wy,(t) and 1, (t) are the estimates of upper and
lower bounds of unknown perturbations wy(t), respectively,
updated by the following adaptive laws:

dvg (
% = rea” (t)PBa fr, (20)
da, (¢
Tft( ) _ iz (t)PBa fi, 21
where £k = 1,2,---,q. The constants [; > 0, sy; > 0 and

S2; > 0, 7 > 0 are the adaptive law gains to be designed
based on practical application [24]. Then, the FTC closed-
loop system can be drawn as in Fig.1.
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w(l)

] Plant |

— Controller

Let

Pt =p(t)—p, &) =5(t) -0,
Us(t) = us(t) — us, U (t) = as(t) —u,,  (22)
w(t) =w(t) —w, @) =) - w,

where

p = diag;{p;}, o = diag;{o;}, i=1,2,---,m,

Us = [Us1 Us2 - asm}Ta ug=[ug U - Qsm]T7

W= [0 Wy - W], w=lwy wy e wy]T

Because p;, 0y, Usi, um,wk and w,, are unknown con-
stants, the error system is written by the following equa-
tions:

ﬁz(t) = pi(t), : i
'l:L'sz' (t) = ﬂ.si (t)7 @m (t) = sz (t)’
U:)k (t) = Ui)k (t)v f

(23)

iy, (1) = 1y (1)

Then, for the FTC system described in (13), the control
gain functions K5, K3 and K, in the controllers (10) are
designed by

K»— —LBIP,

2
Kz =—p~'(t), (24)
Ky =—p ' (DF,

and K, P will be given according to the following lemma
which comes from reference [25].

Lemma 1 If there exist matrices Y > 0, H > 0 and
appropriate dimensions matrices W and V' such that LMI

wj * *
(BQ[) W) V—VT *
0 (Y — V)T —-H

<0 25)

holds true, where
P! = AY + Y A" + BoplW + (Bapl W)

1=1,2,- ,2m,j:1,2,--~,L.
Then for K1 = WV ~land P = Y1, the following matrix
inequality

(A+ Bop! K1)TP + P(A+ Bapl K1) <0
is feasible.
Proof Firstly, we give a fact of a matrix inequality ad-
dressed in reference [26], namely,

Z''z>z2+ 77 -1, (27)
which holds for all U > 0 and square matrix Z with appro-

(26)
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priate dimensions.

Then as (25) means that V + VT > 0, matrix V is a non-
singular. By using Schur complement to the third row and
the third column of LMI (25) and considering the inequality
(27), we yield

¥ *
(Bepl W)™ = VIV —V)H~
< 0.

Y -V
(28)

Then applying again Schur complement to the second row
and the second column of that LMI, we have

Gl Bap]WVHY =V H (Y =V TV T (Bopl )T
<0. 29)

We also follow inequality (27) and let K; = WV ~1. From
(29), we have

0> ¢! + Bopl WV LY = V)H LY
VOV (Byplw)T
> ) — H+ BoplWVHY = V) + (Y
_VT)VfT( jW)T
= ) — H + Bap! K\Y — Bop!W + YKL (Bap))T
—(BaplW)"

= AY + YA + Bop! K\)Y + YK (Bop))T.  (30)

Let P = Y !, and pre- and post-multiplying both sides
of (30) by P, we obtain (26).

Hence, the following theorem, which shows the uniform
ultimate boundedness of error system (23) and closed-loop
system (13), can be stated as follows.

Theorem 1 Consider the closed-loop FTC system de-
scribed by (13) satisfying Assumptions 1~2. If there exists
a symmetric matrix P > 0, and by using the state feed-
back controller u(t) described in (10) with adaptive laws
(16)~(21), and control gain functions (24), then all closed-
loop system signals are bounded and )E?o z(t) = 0 for any

p€ly,j=1,2,--- L.
Proof For the closed-loop system (13), we define the
following Lyapunov function first:

V(t) = 2" Pz + Z Z
l i=1 514
~2
Moo (1 — Ty ) Uy, OiTuills;
+y 7 _
=1 524 =1 592
q — Tk W2 94 TyurW
+Z( DUy 5 Tk
Tk k=1 Tk

The time derivative of V(¢) with a certain fault mode p €
Apj is
V(1)
= 2T[(A+ BypK1)TP + P(A + BypK)) |z
+2T[(BoppKo)T P + P(BaoppKy)|x
+2I’TPBQCTUS(t)+2ITPBQpK36'(ﬁS+Tu@s*Tu’IQLS)
+2wTPBlw + 22T PByp Ky (0 + Tt
2p
+ Z pzpz + E

’L

— TuW)

20’10'l

S1i
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UL 201(1 - Tui)’ﬁsiési QUZ,SZQM
+ 4y e

2; 524 z; 524

a 2(1 — By ton 2Tkl W
+ Z ( TUIk) + Z TwkWpWp

k=1 Tk Tk

= 2T[(A + BopK,)TP + P(A + BapKy)le
20iDi m 25}5}
eTPBy (5 p)pBY P + 35 P 3

i=1 lz i=1 S1i

+2.’ETPBQ Z OilUs; + 2xTPBQ Z fkwk

i=

m

+2xTPBQP(Z kSzUz(l Tui)usz+ Z k310'747'7”u%)

1_1 z:l
+22T PBap( Z Kar (1 — T )Wy, + Z KarTwry,)
k=1 k=1
2U’L — Tui ﬁszﬁaz Ul 20'17574@51
+ 3 2l Tt 8 20 0t
52 i=1 524
991 — Top)ptr L 2Ty i
Z ( T k) + Z TwkWy k (32)
k=1 Tk k=1 Tk
Note that
tTPBy Y ojus < Z (1 = Tui) s
i=1 i=1
FTuills; ), (33)
2" PB, Z frwr, <2 PBs Z Jr((1 = Twr) W
k=1 k=1
+ka‘wk)7 (34)

where 7,; and 7,,; are denoted in (11) and (12), respectively.
With the adaptive laws chosen in (17)~(21) and controller
gain function chosen in (24), (32) can be rewritten by
1% (t)
< 2T [(A+ BopKy)'P + P(A + BopKy)|z

20101

2 1M
+a2TPByppBy P + Z pidi + Z

i=1 l; i=1 S1i

+22TPBy Z 0i(Us; + Tuilly;
=1

+22T PBy(

- Tuiasi)

M=

S |

T Xi: kwk—é Twk feWr)

=

Ms L

m
Tui)asi + E k?)ia-i'rui@si)
=1

., 4 )
K (1 — Twr) Wi + > karTwrly,)
k=1

+296TPBQP ksioi(1 —

.
Il
A

M.a

+2xTPng(

Il
-

- Tui)ﬁsiﬁsi UL 20'1'11 @
+ + ST Zsizsi
i 52 z; 52;
3 21— k) byig E
k=1 Tk Tk
2 [(A+ BapK1)'P + P(A + Bap)]z

2 1M
+2TPByjppBy Px + Z l; pi
i=1 %

—

Qkawkwk

m
+2$TPBQ Z 0; (ﬂsi + Tui@si
=1

- Tuiﬁsi)
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a q .
+22TPBy (S friin Z R Z Twk frWk)
k=1 k=1 =1
+22 T PBop( Y ksi(1 — 7ui)Gitlsi + 3 k3ibiTuilly;)
i=1 i=1
—22 " PBop( Y ksi(1 — Tui)Gitisi + 3 k3iGiTuitly;)
=1 1=1
. q R d N
+22 " PBop( > kar(1 — ok )Wk + Y kapTuwriy,)

~
Il
_

k=1

~ q N
—22TPByj( Z k(1 — Twr)Wr + > karTwiWy,)
k=1 E=1

= 2T[(A + BopK1)TP + P(A + BapK,)|z

+2 T PByppBL Py + 3 p;pl
=1 i
+2z PBQﬁpA_l&[(I - 7—u)és + Tu@S]
+22 T PBoypp~ F(I — 7)) + 7 )]
= ,I‘T[(A + ngKl)TP + P(A + B2KJK1)}$

+ 3 i ME 42 pip; MR,
=1 =1

m o m 2~i Li
23 pip T MiSi + Y %, (35)
i=1 i=1 i
where M;, R; and S; are denoted in (14).
In terms of the adaptive law chosen in (16), (35) can be

rewritten by
V(t) < 2T[(A + BopK)T P+ P(A 4 BopK,)]z. (36)

According to Lemma 1, we yield P and K; for any
p € A, such that

(A4 BopK1)'P + P(A+ BypK) < 0. (37)

Hence, it is easy to see that V(t) < 0 for any initial value
2(0). The solutions to the closed-loop fault tolerant control
system (13) are uniformly ultimate bounded, and the system
state x(t) converges to zero asymptotically.

Thus, in terms of the above description, an algorithm is
introduced to demonstrate the controller design procedure:

Algorithm 1

Step 1 Solving the LMIs (25), we obtain controller pa-
rameter K; and Lyapunov matrix P.

Step2 Following (18)~(21), we obtain the estimates of
upper and lower bounds of fault-stuck wug; (t), i.e., ug; (t) and
a,;(t), i = 1,2,--- ,m, respectively, and the estimates of
upper and lower bounds of perturbations wy(t), i.e., Wy (t)
and Wy, (t), k =1,2,- -, g, respectively. On the other hand,
in terms of (24), we get K.

Step 3 According to the adaptive laws (17), we obtain
the estimate of 03,2 = 1,2, .-+ , m.

Step 4 The estimations of fault effect factors p;(¢),
i=1,2,--- ,m are achieved by the adaptive laws (15) with
the information from Steps 1~3.

Step 5 After Step 4, the control gain functions K3 and
K, are obtained by equation (24).

Thus, all controller parameters have been obtained by Al-
gorithm 1.

Remark 2 Since using ﬁi_l, i = 1,2,...,m in the
adaptive laws (16) and control gain functions (24), it seems
that it cannot solve the model of actuator outage or stuck
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under the proposed adaptive method if p;(t) reaches zero.
However, it should be pointed out that it is not necessary to
make the estimation of p; convergent to its true value in our
adaptive robust FTC design, that is, p; is not necessary to be
converge to zero in the case of p; = 0. Following (15), we
can choose [; sufficiently small to avoid the estimation to
reach the lower bound with the initial condition 5;(0) = 1.
Therefore, under the proposed control schemes, we may still
solve the problem of actuator outage and stuck.

Remark 3 Through estimating the bound of actuator-
stuck faults ug(t), the proposed method can also solve the
actuator fault such as unparametrizable stuck faults with-
out the knowledge of bound of faults. Although the similar
problem can be solved by the direct adaptive method pro-
posed in reference [8], the novel indirect adaptive method
provides another effective technique to deal with it. Fur-
thermore, by comparing to other existing direct adaptive
methods introduced in references [10, 11], the proposed
method provides more powerful fault tolerant capability for
the time-varying unparametrizable fault compensations.

4 An example and simulation results

Here, we consider the linear time-invariant continuous-
time system (8) with the following system matrices:

~1 0.2 2 -15 1
A= { 1 0.1]’ Bz = [1 —1 —0.5]’

1.5 1
m=| 50

Consider the following four possible faulty modes.
Normal mode 1 All of the actuators are normal, that is,
1 1 _ 1 _
p1=py=p3=1

Fault mode 2 The first actuator is stuck or outage, the
second and third actuators can be normal or have lost effec-
tiveness, described by p? = 0,a2 < p3 < 1,a3 < p2 <
1,a9 = 0.5,a3 = 0.3, which denote the maximum loss of
effectiveness for the second and third actuators.

Fault mode 3 The second actuator is stuck or outage,
the first and the third actuators may lose effectiveness or
normal, that is, p3 = 0,0 < p} < 1,b3 < p3 < 1,0y =
0.5, b3 = 0.3, which denote the maximum loss of effective-
ness for the first and the third actuators.

Fault mode 4 The third actuator is stuck or outage, the
first and the second actuators can be normal or have lost
effectiveness, namely, p3 = 0,¢; < p < 1,c0 < p3 <
1,¢1 = 0.5,¢c2 = 0.2, which denote the maximum loss of
effectiveness for the first and second actuators.

Following Lemma 1, we obtain

_113.6443 3.7195
T | 3.7195 10.3080 |’
—0.1703 —0.2824

0.1309 0.2553
—0.1761 —0.2874
For the sake of verifying the effectiveness of proposed in-

direct adaptive approach, the following parameters and ini-
tial conditions are provided in the simulation:

li=0.1, s1; =10, s2; =5, 1, =1, p;(0) =1,
us(0) = [1.2,0.6,0.6]", @,(0) = [~1.2,-0.6,—0.6]T,

Ky =
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6:(0) =0, @(0) =0.5, @, (0)=—0.5,
21(0) = 0.5, 25(0)=—-05, i=1,23, k=1,2.

Now, in the simulation, we consider the following faulty
cases, i.e., before the second second, the system operates in
the normal case, and the perturbations

w(t) = [-0.5, 0.5sin(2t)]"

enter into the systems at the beginning (¢ > 0). At the fifth
second, some faults occurred on actuators, which can be de-
scribed as p = diag{0, 1, 1}, and at the fifth second, the first
actuator has stuck at

us1(t) = 14 0.1sin(2¢)

and the second actuator has lost effectiveness of 50%.

Fig.2 shows the response curves of the states of system
with adaptive robust state feed-back controller in the above-
mentioned faulty cases. Fig.3 shows the response curves of
the estimate of control effectiveness p and o, respectively.
Fig.4 denotes the estimate of the upper and lower bounds
of stuck fault us(t), respectively. Fig.5 shows the estimate
of the upper and lower bounds of perturbations w and 1, re-
spectively. It is easy to see that the estimates is convergence.
Following Fig.3, p will never reach the lower bound p = 0;
then there is no problem to solve the case of actuator outage
using the proposed adaptive method. As the illustration of
Figs.2~5, it is obvious that the estimates of p, o, Us, u, and
W, W are not necessarily to converge to their exact values in
our design.
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Fig. 2 Response curves of the system states x(t).
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Fig. 3 Response curves of the estimates of actuator fault effect factors p
and o.
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Fig. 4 Response curves of the estimates of stuck faults us ().
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Fig. 5 Response curves of the estimates of upper bound and lower bound
of w(t).

5 Conclusions

This paper presented an indirect adaptive method to deal
with the robust fault-tolerant compensation control problem
with actuator faults and perturbations. A general actuator
fault model was adopted, which covers the cases of normal
operation, loss of effectiveness, outage and stuck. Based on
estimating the unknown bounds of stuck faults and pertur-
bations, and the unknown control effectiveness on actuators
on-line, an indirect adaptive state feedback controller was
constructed for automatically compensating the fault on ac-
tuators and perturbation effects. And the asymptotic stabil-
ity result of the system was obtained according to Lyapunov
stability theory. The simulation results confirm the proper-
ties of the proposed method.
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