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Abstract: A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a 

class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant is built by LS-SVM with 

radial basis fimction (RBF) kernel. In the process of system miming, the off-line model is lmearized at each sampling instant, and 

the generalized prediction control (GPC) algorithm is employed to implement the prediction control for the controlled plant. The 

obtained algorithm is applied to a boiler temperature control system with complicated nonlinearity and large time delay. The results 

of the experiment verify the effectiveness and merit of the algorithm. 
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1 Introduction 

Model prediction control (MPC) ,  based on prediction 

model and receding horizon optimization, has become an 

attractive feedback control strategy, because it has found 

successful applications, especially in the process 

industry[ 1 ] .  For this kind of control strategy, the prediction 

model is a crucial component because the essence of MPC 

is to optimize the forecast of process behavior[2], and the 

forecast is accomplished with the prediction model. If the 

controlled plant is linear or slightly nonlinear, it can be fit 

by linear prediction model effectively. But, if the plant 

possesses highly nonlinear characteristics and operates over a 

large region in variable space, a nonlinear prediction model 

must be used to approximate the system dynamics. So far 

linear MPC (LMPC) using linear prediction model is quite 

satisfying, but nonlinear MPC (NMPC) based on nonlinear 

prediction model is still an open topic. 

The learning algorithms for traditional nonlinear 

modeling approaches, including classical neural networks 

and fuzzy modeling, etc . ,  are almost based on the 

expectation risk minimization principle. These kinds of 

algorithm ot~en cause the problem of  overfitting[ 3 J. Simply 

speaking, for a given learning task with a given finite 

amount of training data, the smaller training error may 

result in the poorer generalization performance. Based on 

the statistical learning and structural risk minimization 

principle, Vapnik presented the support vector machines 

(SVM),  which emphasize both the expectation risk and the 

generalization performance and can be used to approximate 

nonlinear functions [4~. Furthermore, Suykens [51 

presented the LS-SVM method, in which equality 

constraints are used and the quadratic programming problem 

existing in the standard SVM need not be solved. 

In the modeling process of  the complex nonlinear 

system, an open-loop dynamical data set, which includes 

sufficient information about the system, is usual/y necessary 

for training the system model. If the training data set do not 

include sufficient information, the generalization capacity of  

the system model must be improved to ensure the model 

performance. The objection function of the LS-SVM 

includes two parts, one of  which is responsible for 

improving the generalization performance and the other is 

in charge of  abating the expectation risk. It is simple for 

LS-SVM to switch model performance between 

generalization capability and model precision. 

Generally, it is difficult to obtain the process data 

including the whole bunch of  the system information. 

Therefore, it is very important to obtain a system model 

with better generalization performance. Compared with 

other modeling methods, the LS-SVM and even SVM 

methods possess a remarkable merit that they can easily 
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improve the generalization performance o f  the model. In 

this paper, the LS-SVM with radial basis function (RBF)  

kernel is employed to build the off-line model o f  the 

controlled system, and the pruning procedure[6] is used to 

impose sparseness property on the off-line model. 

2 LS-SVM 

SVM is one o f  the methods by which the statistical 

learning theory can be applied to practice. It has its own 

advantages in settling pattern recognition problem with 

small samples, nonlinearity, and higher dimension. SVM can 

be easily apphed to learning problem, such as function esti- 

mation. 

O n  the basis o f  classical SVM, Suykens[ 5 ] presented the 

LS-SVM approach, in which the following function is used 

to approximate the unknown function, 

y ( x )  = w T ~ ( x )  + b,  (1)  

where, x ~ R n , y ~ R, 9 ( ' )  : R ~ --~ Rnh is a nonlinear 

function which maps the input space into a higher 

dimension feature space, w is the weight vector and b 

denotes a bias term. 
N Given training data set { x k , Yk tk = 1 with input data x k E 

R n and corresponding output Yk ~ R,  LS-SVM defines an 

optimization problem as follows: 
N 

1 T l ~ _ _ _ ~  2 
m i n J ( w , e )  = ~ -w  w + u 2 k , e k '  ~' > 0,  (2)  
w , b , e  = 

subject to the equality constraints 

Yk = wTT~(xk) + b + ek, k = 1 , ' " , N .  (3)  

To solve this optimization problem, one can define the 

following Lagrange function, 
N 

L ( w , b , e ; a )  : J ( w , e )  - ~ O L k t w T ~ ( x k )  
k = l  

+ b + ek - Yk}, (4)  

where a is the Lagrange multiplier. Calculating the partial 

derivatives o f  L( w,  b ,  e ; a ) with respect to w,  b ,  e ,  4 ,  

respectively, one gets the optimal condition for Eq. ( 4 ) ,  

3L  N 
= : 

k = l  

N 
3 L = O - ~  ~-] ak = 0 

k = l  

(5) 3L  = 0 - - "  
~ek ak = ),'e k,  

13~k_ = O - - ~ w T ~ ( x k )  + b + ek - Yk = O, 

--  1 , ' " , N .  

Expressing ek and w with ak and b,  one can transform the 

above equality into 

o ~T 

where y = [TI,'",TN]T,I= [ 1 , " ' , l ] T , a  = [ a l , ' " ,  

aN] T, and s is a square matrix in which the element 

located o n  k th column and / th r o w  is 

;2kz = ~ ( x k ) T ~ ( x l )  = K ( x ~ , x l ) ,  k , 1  = 1 , ' " , N .  

Choosing u > 0,  ensure that the matrix 

is invertible. Then we have the analytical solution of  a and b 

Substituting Eq. (7)  into Eq. ( 5 ) ,  we get 
N 

y ( x )  = ~ K ( x , x ~ )  + b, (8) 
k = l  

where K ( x , x k )  is the Kernel function, and it can be any 

symmetric function satisfying Mercer 's  condi t ion[7] .  In 

this paper,the RBF is used as the Kernel function, 

K ( x , x k )  = e x p { -  II x - x~ 11@/,~2t. (9)  

Note that in the case o f  RBF kernel function, LS-SVM has 

only two undetermined parameters: 2' in Eq. (2)  and a in 

Eq. ( 9 ) .  

Standard SVM possesses a sparseness property in the sense 

that many ak values are equal to zeros, but this is not the 

case in LS-SVM due to the fact that ak = Yek in Eq. ( 5 ) .  

From Eq. (3)  to Eq. ( 5 ) ,  we can see that any element in a 

is not equal to zero. That means that all the data vectors in 

training set are support vectors. So, LS-SVM loses the 

sparseness property. To get a sparse support vector set, we 

use the pruning procedure presented by Suykens[6] .  In this 

procedure, the importance o f  the k th support vector is 

determined by the corresponding I ak I (absolute value o f  

al,). The bigger I a~ I is, the more important the support 

vector is. On  the premise that model performance index 

does not degrade seriously, some unimportant support 

vectors can be removed from the support vector set step by 

step. In the pruning process, the value o f  2' and a can be 

adjusted to improve the model performance. 

The following input-output model 

y = f ( x )  
is employed to denote the controlled system characteristic. 

Where,  x = [ x ( 1 ) , x ( 2 ) , ' " , x ( n u  + n y ) ]  denotes the 

regression vector including the past input-output data o f  the 

system, f ( .  ) ,  a nonlinear function, is used to fit the 

system characteristic, nu and ny are input and output 

orders o f  the system respectively. Input-output data o f  the 
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system are collected and constitute the training data set { xk, 
N Yk }k= I. Here, Xk is the regression vector in different 

sampling instants and Yk is the system output corresponding 

to xk. Using the above LS-SVM with RBF kernel, given 

selected )' and o ,  we get the off-line nonlinear model of  the 

controlled system as follows: 
N 

y ( x )  = ~ akexp{- II x - x~ II @/0 2} + b, (10) 
k = l  

where N is the number of  support vectors and is determined 

by the result of  pruning procedure. 

3 M o d e l  l i n e a r i z a t i o n  a n d  G P C  

3.1  R e a l - t i m e  l i n e a r i z a t i o n  of  m o d e l  

To avoid solving the nonlinear programming problem, 

the off-line nonlinear model of  the controlled plant 

(Eq. (10))  is linearized at each sampling period of  system 

running. 

Let the current instant be the k th sampling instant and the 

current sampling point be x ( k ) .  For the sake of  simple 

expression, let x0 = x ( k ) .  Linearizing Eq. (10)  at x0, we 

have 

3y I x ( l )  - x0(1)] + "'" 
y ( x )  = y ( x )  I x = x 0 + ~  x=*0 

ay  [ x ( n u + . y ) - x o ( n U + n y ) ]  
+ 3 x ( n u + n y )  x=x ~ 

3y Xo(1) . . . .  
= y ( x )  Ix=x0 - a x ( 1 )  ~=x0 

3y  
- ~o (n~  + ny )  

3 x ( n u  + ny)  ~=x0 

3 y  x(1)  + "'" 
+ 0 ~  X=Xo 

3 y  x ( n u  + ny)  
+ O x ( n u  + ny)  *=~0 

= p  + b l ~ x ( 1 )  + " "  + b ~ = ~ x ( n u )  

- al ~ ~ ( n u  + 1) . . . . .  any ~ x ( n u  + n y ) ,  

where p is constant in the current sampling period and 

depends only on the current sampling point. 

Given the following regression vector 

x ( k ) =  [ x ( 1 ) , ' " , x ( n u  + n y ) ]  

= [ ~ ( k  - 1 ) , . . . , ~ ( k  - ~ ) ,  
y ( k -  1 ) , ' " , y ( k -  n y ) ] ,  

the input-output difference equation model is obtained as 

follows, 

y ( k )  = p  + b l u ( k  - 1) + "" + b ,~u(k  - nu )  

- a l y ( k  - l )  . . . . .  a~yy(k  - n y ) .  ( l l )  

Namely, 

A ( z - 1 ) y ( k )  = B ( z - 1 ) u ( k  - 1) + p ,  (12) 

where 
A ( z  -1) = 1 + a l z  -1 + "" + anyZ -ny, 

B ( z  -1) = bl + b2 z-1 + "'" + bnuz -nu+l 

3.2 GPC of the controlled system 
According to the input-output linear model at current 

sampling time ( E q . ( 1 2 ) ) ,  we can characterize the 

controlled system as a discrete difference equation 

(Eq. (13))  in the neighbor of  the current sampling point. 

A ( z - a ) y ( t )  = B ( z - ' ) u ( t  - 1) + v ( t ) ,  (13) 

where v ( t )  is the error and disturbance resulting from one 

fitting current system characterized by E q . ( 1 3 ) .  We 

decompose v ( t ) as follows 

v ( t )  = Vdc + Vac(t) ,  
where, vac, including the constant p emerging in the 

linearization process, is the direct-current component 

independent of  time. The amphtude of Vdc is equal to the 

mean of v ( t ) .  vac is the AC component whose mean is 

zero. Modeling Vac with w ( t ) / A ,  we can transform the 

input-output equation at the current time into 

A ( z - 1 ) y ( t )  = B ( z - 1 ) u ( t - n d - 1 ) + v a ~ + w ( t ) / A ,  

(14) 

where, w ( t )  is the disturbance with zero mean, A = 1 - 

z- l  is the difference operator. In order to forecast the future 

system output based on the past input-output data and the 

future system input, we introduce the following 

Diophantine equations, 
1 = E j ( z - 1 ) A ( z - ' ) A  + z - J F j ( z - 1 ) ,  (15) 

E j ( z - i ) B ( z  -1) = Gj(z  -1) + z - J H j ( z - I ) .  (16) 

Multiplying both the sides of  Eq. (14) by E j ( z - l ) A z  j , 

we have 

E j ( z - 1 ) A ( z - 1 ) , ~ y ( t  + j )  

= E j ( z - 1 ) B ( z - 1 ) A u ( t  + j - 1) 

+ E j ( z - 1 ) ( A v d o  + w ( t  + j ) ) .  (17) 

Vdc is independent of  time, so AVdc = 0. Then the above 

equation is simplified as 
E j ( z - 1 ) a ( z - 1 ) A y ( t  + j )  

= E j ( z - 1 ) B ( z - 1 ) A u ( t  + j -  1) 

+ E j ( z - ~ ) w ( t  + j ) .  (18) 

Accordingly, the well-known method[8] is used to 

obtain the multistep prediction of y ( t ) ,  which can be 

denoted as the following expression in the form of vector 

yO = Gu + F y ( t )  + H A u ( t  - 1). (19) 

Finally, the control law is constructed as follows: 
U = (GTG + , ' ] , I ) - I G T [ y  r - F ~ ( t )  - H A u ( t  - 1) ] .  

(20) 
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All the polynomials, vectors and matrices in the 

Eqs. ( 1 5 ) -  (20) have the same definition as in Clarke's 

paper[8] . 

3 . 3  P r e d i c t i v e  contro l  b a s e d  o n  L S - S V M  

Based on the given off-line nonlinear model of  the 

controlled plant, the online linear model is obtained by 

real-time linearization, and then the GPC algorithm is 

employed to compute control increment at each sampling 

instant. The block diagram of the prediction control system 

based on LS-SVM model is given in Fig. 1. 

Off-line 
model 

I 

Fig. 1 Structure of the control system. 

The algorithm of the prediction control based on LS-SVM 

is described as follows: 

1 ) Given the dynamical input-output data set of  the 

controlled plant, the off-line model is obtained by the 

LS-SVM method. 

2)  The off-line model is linearized according to the 

input-output data of  current instant at each sampling time. 

3) Given the hnear online model of  current samphng 

period, the GPC strategy is used to compute the control in- 

crement. 

4) Go to 2 ) ,  unless the control process is over. 

4 Experiment 

The EFPT process-control experiment system is a set of  

integrative experiment equipment. It can provide several 

kinds of  controlled objects such as temperature, pressure and 

hqnid level. In this section, the presented algorithm is used 

to control the inner barrel temperature of  the boiler in the 

EFPT system. 

We construct a computer control system, which is 

composed of  the boiler in the EFPT, the temperature 

transducer, a data acquisition card PCLS18L, a D / A  output 

card PCL726 and an industrial computer. The boiler 

comprises two-part inner barrel and interlayer. The 

temperature of  both the parts influences each other and the 

temperature of  the interlayer is immesurable, which results 

in the complicated nonlinear characteristic of  the controlled 

object. The sketch map of the computer control system is 

shown in Fig. 2. 

In Fig.2, the output signal is collected by the data 

acquisition card PCL818L and treated by the industrial 

computer. The control signal is calculated according to the 

presented control algorithm and then implemented by D / A  

card PCL726 and SCIk control module. 

~1 ~ Temperature ~ . - , -  t, s  er 

PCL818L(A/D) 

Industrialcompute] I ~,I" __ ~__~ SCRcontrol ] I 
1 module V PCL726(D/A) 

Fig. 2 Sketch map of the computer control system. 

Using the LS-SVM method with RBF kernel function 

introduced in Section 2, we can build the off-hne model of  

the controlled object. The white noise is used as the input 

signal of  the system to produce training data set {xk, 

Yk18631. The boiler's temperature control system is a slow 

system with nonlinearity and time delay. Considering the 

specific characteristic of  the controlled object, we choose 

the sampling time as Ts = 20s, and choose the order of  the 

input and output variable as n u  = 6 and n y  = 5 

correspondingly. In fact, the value of n u  and n y  is 

influenced by the value of  Ts ,  and the product of  n u  and 

Ts must be larger than the dead time. For the normalized 

process data, a rational span of )' in Eq. (2) should be 5 ~< 

y ~< 100, the smaller y has better generalization capacity 

and the bigger y is of  the higher model precision. Here, the 

parameter y is chosen as 10. In the process of  executing the 

LS-SVM and pruning algorithm, predictive models with 

different amount of  support vectors can be obtained and the 

parameter a in the kernel function can be determined syn- 

chronously. 

In order to test the approximation performance of  the 

off-line model, a signal composed of four kinds of  sine wave 

with different frequency is employed as test input and the 

following performance index is used to test the 

approximation performance 

V A F  = 100 ~ (1 - var( YY - Y M ) / v a r ( Y Y ) ) .  

In the above index, corresponding to the test input, YY 

is the output of  the actual system and Y M  is the output o f  

the system model. Apparendy, the bigger index value 

represents the better approximation performance. 

Performance comparison of four prediction models with 
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different amount of  support vectors is given in Table 1, 

from which we can draw some conclusions. Firstly, in order 

to solve the sparseness problem (decrease the number of  the 

support vectors), the pruning algorithm can be executed 

repeatedly until the model performance degrades 

considerably. Secondly, even if the pruning procedure is not 

executed and the initial prediction model with 863 support 

vectors is adopted, the average calculation thne of the 

control variable in each sampling period can be accepted by 

most practical systems. These results show that the 

prediction control algorithm presented in this paper is 

feasible in real-time control. 

Table 1 Performance comparison of prediction models 

with different amount of  support vectors. 

Number of  Average calculation 
VAF a 

support vectors time/s 

863 99. 8722 6 O. 0999 

716 99.8729 6 0.0847 

552 99.8721 6 O. 0828 

425 99.8675 6 0.0826 

The prediction model with 425 support vectors is used as 

the off-fine model. Given the test input, Fig. 3 compares 

the actual output of  the controlled system with the 

prediction output of  the off-fine model. In Fig. 3, ' Y '  is 

the actual output of  the controlled system and ' Ym' is the 

prediction output of  the off-fine model. 

60 

50 

~ 4o 

30 
- - y  

- - -  I / ' l l l  

2( 1000 2000 3000 
t / s  

Fig. 3 Comparison of prediction and actual output. 

The off-line model is finearized online and the GPC 

strategy is used to compute the control action at each 

sampling point. Let prediction horizon be P = 10, control 

horizon be M = 4, and make sure that the sampling time is 

Ts = 20s. We get the tracking curve of the closed-loop 

system in Fig. 4, in which ' Yr' is the reference trajectory 

and ' Y' is the output of  practical system. In Fig.4, the 

steady state error is less than 0 .3q2,  the maximum 

overshoot is 2~ From Fig. 4, we know that the presented 

prediction algorithm based on LS-SVM can control the given 

compficated nonlinear temperature system quickly and stably. 

60 

~ 40 

301 

20 ~ y 
-Yr 

10 
0 1000 2000 3000 

t / s  

Fig. 4 Tracking curve of  boiler temperature. 

5 Conclusion 

A prediction control algorithm based on LS-SVM is 

proposed in this paper. LS-SVM is a modeling approach 

based on the structural risk minimization principle. It can 

pay attention to both the expectation risk and the 

generalization performance. Its modeling process has analytic 

solution formula and less indeterminated parameters. The 

LS-SVM method is used to build the nonlinear off-line 

model for the controlled system, and then use the pmnning 

procedure to obtain the LS-SVM model with sparse support 

vectors on condition that the approximation capacity of  the 

model should not be spoiled. To avoid the nonlinear 

programming problem to be resolved in each sanapling 

period, we finearize the off-line model online at each 

sampling point and employ GPC strategy to calculate the 

control variable. The results of  the experiment show the 

effectiveness of  the presented algorithm. 
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