
Vol.27 No.2 JOURNAL OF ELECTRONICS (CHINA) March 2010

A CASCADING LATIN SCHEME TO TOLERATE DOUBLE DISK
FAILURES IN RAID ARCHITECTURES1

Lin Sheng Wang Gang Liu Xiaoguang Liu Jing
(Nankai-Baidu Joint Laboratory, College of Information and Technical Science, Nankai University,

Tianjin 300071, China)

Abstract In recent years, a lot of XOR-based coding schemes have been developed to tolerate double
disk failures in Redundant Array of Independent Disks (RAID) architectures, such as EVENODD-code,
X-code, B-code and BG-HEDP. Despite those researches, the decades-old strategy of Reed-Solomon
(RS) code remains the only popular space-optimal Maximum Distance Separable (MDS) code for all
but the smallest storage systems. The reason is that all those XOR-based schemes are too difficult to be
implemented, it mainly because the coding-circle of those codes vary with the number of disks. By
contrast, the coding-circle of RS code is a constant. In order to solve this problem, we develop a new
MDS code named Latin code and a cascading scheme based on Latin code. The cascading Latin scheme
is a nearly MDS code (with only one or two more parity disks compared with the MDS ones). Nev-
ertheless, it keeps the coding-circle of the basic Latin code (i.e. a constant) and the low encod-
ing/decoding complexity similar to other parity array codes.

Key words 2-erasure code; Redundant Array of Independent Disks (RAID); Latin square

CLC index TP302.8

DOI 10.1007/s11767-010-0311-y

I. Introduction
With the increasing requirements of disk sys-

tems, very large storage systems have to face the
problem of two or more disks failing at the same
time. However, there is no easy way to resolve that
just like what the single-failure-tolerable RAID
system does. Therefore, researches on erasure-
coding have blossomed in recent years. The Reed-
Solomon (RS) code[1–3], which introduced from
coding theory, can meet the requirements and be-
comes popular in these years. Actually, RS code has
been used to build some massive storage systems in
real life. However, the RS code’s shortcomings are
also obvious. Following the coding theory, RS code

 1 Manuscript received date: April 19, 2009; revised date:

December 2, 2009.
Supported in part by the National High Technology Re-
search and Development Program of China (2008 AA01Z-
401), the National Science Foundation of China (No.
60903028), Doctoral Fund of Ministry of Education of
China (20070055054), and Science and Technology De-
velopment Plan of Tianjin (08JCYBJC13000).
Communication author: Lin Sheng, born in 1973, male,
Doctor. Nankai-Baidu Joint Laboratory, College of In-
formation and Technical Science, Nankai University,
Tianjin 300071, China.
Email: shshsh.0510@gmail.com.

is a general scheme to solve t-erasure-correcting
problem, and its computational complexity is much
higher than that of XOR-based codes.

In recent years, many XOR-based 2-erasure-
correcting codes have been designed, such as
EVENODD[4–7], X-code[8], B-code[9], BG-HEDP[10–13]
and Liberation-code[14] etc. All of the codes have
reached the Singleton bound, that is to say they are
space-optimal codes. Compared with RS code, the
decoding complexity of these codes is much lower.
However, it is very interesting that RS code is the
only 2-erasure-correcting code which is widely used
by industrial community. RS code became the
winner because it is easier to be implemented than
other codes.

In the following sections of this paper, we dis-
cussed the details of the codes mentioned above and
gave a careful analysis about the reasons of their
difficulties to be implemented. The contributions of
this paper can be described as follows.

Firstly, we gave some new criteria for the code
availability. Secondly, we designed a new 2-erasure-
correcting Maximum Distance Separable (MDS)
code named Latin code. Finally, based on Latin
code, we developed an appropriate scheme which
can meet all new criteria.

244 JOURNAL OF ELECTRONICS (CHINA), Vol.27 No.2, March 2010

II. Analysis of Coding Availability
The XOR-based coding schemes, such as

EVENODD code, have excellent characters to meet
the requirements of massive storage system. We
sum up them as below.

(1) Almost all of them are space-optimal
coding schemes. It means that only two parity disks
are required to tolerate 2-erasure in the system.

(2) They have optimal update penalty. It
means that when a data disk is updated, only two
corresponding parity disks need to be updated.

(3) Compared with other RS-like coding
schemes, the encoding/decoding complexity is
much lower[4,5].

However, the XOR-based coding schemes have
some shortcomings which prevent them from being
applied.

(1) Some schemes, such as EVENODD and
X-code, require the number of disks must be a
prime number. Other schemes, such as B-code and
BG-HEDP, are not so strict, but can not be applied
to any array sizes.

(2) We call the average amount of data units
on every disk in a parity stripe as the coding cycle
of a code scheme. The coding cycle of XOR-based
coding schemes is linear with a number of disks. It
means that the XOR-based coding schemes are not
a general method for massive storage systems.
Because the cycle is related to the number of disks,
users must pay more attention to setting the coding
cycle according to capacity and the number of disks.
On the contrary, RS code is a general code (For a
given GF(2n), its coding cycle can be seen as a
constant), therefore, it can be implemented easily.

(3) The extensibility of XOR-based coding
schemes is weak. The system is difficult to be ex-
tended after having been built. The reason lies in
the changing coding cycle.

If the number of disks n<259, using Fermat
prime numbers, a feasible scheme was presented for
EVENODD code in Ref. [5]. The coding cycle in
this scheme is 256. It is easy to be mapped to
physical storage devices (a coding cycle apropos
construct 32 bytes, namely 256 bits). For storage
systems, 256 devices are enough for most cases.
Unfortunately, the next Fermat prime number is
65537, which is too big for coding cycle. To choose
other primes, it is very difficult to keep the coding

cycle divided exactly by the usually disk read/write
unit size (for instance 4k bytes). Therefore, while n
is bigger than 259, it is a challenge to find a feasible
prime number.

Full-2 code[10,15] is also a general code (its coding
cycle is a constant). But its redundancy is O(n1/2),
which is too high (the optimal value is only 2).

Maximal projective code (Hamming code) has
optimal redundancy when we fixed the coding cycle
to 1, but its update penalty is too high (about n/2
on average, the optimal is 2).

B-code, with an exact 2 update penalty and a
space-optimal character, has a various coding cycle
(linear to the number of disks) that makes it rather
hard to be implemented.

In a word, the tradeoff among code length,
coding cycle, update penalty and redundancy must
be considered when a coding scheme is designed.

From the comparison in Tab. 1, we can conclude
why the RS code is so popular. It is the easiest one
to be implemented for an arbitrary number of disks.
A constant coding cycle is a very important prop-
erty since it determines the way how a scheme be
mapped into a physical system. Compared with the
implementing difficulty, the redundancy may be a
minor problem.

Tab. 1 Comparison between 2-erasure-correcting codes

Coding
scheme

Coding cycle (C)

(Universal)

Disk number
(N)

Encoding
complexity

Redun-
dancy

RS

For the RS code
based on GF(28),
C=8, each cycle
forms one-byte

N<2C

when C=8,

N<256

High 2/N

EVENODD
C=N–1, N should
be a prime num-
ber, not universal

N<=C+3 Low 2/N

X-Code
C=N–2, N should
be a prime num-
ber

N<=C+4 Low 2/N

B-code C=N/2 N<=C/2 Low 2/N

BG-HEDP C=N N<=C+3 Low 2/N

Full-2 C=1 No limit Low N1/2/N

2D array C=1 No limit Low N1/2/N

Hamming
code

C=1 No limit Low lg(N)/N

Based on the above analysis, we give our new

criteria for a “Good” 2-erasure-correcting scheme,
and give more priority to implementing difficulty:

LIN et al. A Cascading Latin Scheme to Tolerate Double Disk Failures in RAID Architectures 245

(1) The Coding cycle keeps a constant num-
ber (it makes the scheme easier to be imple-
mented);

(2) Redundancy (lg)O N≤ for N data disks
(Be the same with Hamming code, it is the best
possibility);

(3) A constant update penalty (Compared
with being fixed to 2, it has been loosed).

In next two sections, we focus on constructing a
code scheme to achieve all these 3 criteria.

III. Latin–code
To achieve the metrics proposed in SectionII,

firstly, we introduce a new MDS code: Latin-code.
Definition 1 A Latin square consists of N per-
mutations of {1, 2, , N} which are arranged in
such a way that no row and column contains the
same number twice[16,17].

We denote the permutation in the i-th column
by ,rσ the symbol in Row i, Column j by ().j iσ We
define 1

, ,r s r sσ σ σ −= that is, the cycle pattern
formed by Column r and Column s.
Definition 2 A Latin square is column-Hamil-
tonian if each pair of columns forms a single cycle,
that is, ,r sσ contains a single cycle[17].

A column-Hamiltonian Latin square of order 9-
L9 is given in Fig. 1.

Suppose L is a given reduced (the first row and
the first column are in natural order) col-
umn-Hamilton Latin square, then we can construct
a new double disk failures tolerable system based
on it.
Algorithm 1
Step 1 Map each column to a disk, and each
symbol in the square represents a stripe unit except
the last row. We regard the last row as a dummy
row and suppose the dummy data unit is always
zero.
Step 2 Add two parity check disks named P, Q to
the system. Suppose Dj,k denotes the k-th stripe
unit in the j-th data disk and Pi and Qi denotes the
i-th stripe units in the first and the second parity
check disk respectively, then Pi and Qi are calcu-
lated by:

,
1

, 1i j i
j n

P D i n
≤ ≤

= ≤ ≤⊕ (1)

,
1 , ()

, 1
j

i j k
j n k i

Q D S i n
σ≤ ≤ =

⎛ ⎞⎟⎜ ⎟= ⊕ ≤ ≤⎜ ⎟⎜ ⎟⎜⎝ ⎠
⊕ (2)

,
1 , ()j

j k
j n k n

S D
σ≤ ≤ =

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
⊕ (3)

1 2 3 4 5 6 7 8 9

2 4 8 9 3 5 1 7 6

3 1 9 2 8 7 5 6 4

4 5 2 3 1 8 6 9 7

5 7 4 1 6 9 8 3 2

6 9 5 8 7 4 2 1 3

7 8 6 5 9 2 3 4 1

8 6 1 7 4 3 9 2 5

9 3 7 6 2 1 4 5 8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Fig. 1 A column-Hamiltonian Latin square of order 9-L9

It is obvious that P is the horizontal parity
check of each row. S is the sum of all symbols la-
beled “n” in the Latin square. The i-th symbol in Q
is the sum of S and all symbols labeled “i”. We call
this check disk the Latin parity disk, the parity
groups on it the Latin parity groups, and the parity
units the Latin parity units.
Theorem 1 System constructed by Algorithm 1
can tolerate any double disk failure.
Proof Without loss of generality, suppose the i-th
and the j-th disks fail (1 <).i j n≤ ≤ We can deduce
that by starting from a dummy unit and recalcu-
lating each error data unit step by step.
Case 1 Suppose two data disks fail. From j, since
the last unit is the dummy one, there is at most one
unit failed (Di,a) in the Latin parity group ()j nσ
(note that ()).j n nσ ≠ So Di,a can be reconstructed.
Then we can reconstruct Dj,a by .aP So the Latin
parity group ()j aσ contains only one failed unit
now, we can reconstruct it, and so on. Note that we
can reconstruct S by XORing all units in the two
parity disks, and constructing algorithm breaks the
single cycle ,i jσ into paths. Therefore, this zigzag
way can reconstruct all failed data units step by
step. Fig. 2 shows an example.
Case 2 Suppose a data disk i and P1 fail. If i=1, S
is calculated first; otherwise S is calculated by

, ()
1 , , () ()

i
j i

j k n
j n j i k n

S D Qσ
σ σ≤ ≤ ≠ =

⎛ ⎞⎟⎜ ⎟= ⊕⎜ ⎟⎜ ⎟⎜⎝ ⎠
⊕

According to the basic properties of Latin

246 JOURNAL OF ELECTRONICS (CHINA), Vol.27 No.2, March 2010

square, it is clear that each Latin parity group only
includes one single failed data unit, therefore all the
failed units in disk i can be reconstructed by Q and
S. Then we can recalculate P by Eq. (1).
Case 3 Suppose a data disk i and the Latin parity
disk Q fail, disk i is reconstructed through P first,
and then Q is recalculated by Eq. (2).
Case 4 Suppose the two check disks fail, decoding
equals to encoding.

Fig. 2 Decoding of Latin-code

We can see that the decoding algorithm is
similar to that of the EVENODD. In fact, when n is
a prime number, Latin code is just EVENODD.
That is, EVENODD is a special case of Latin code.
According Refs. [16,17], there is a bijection between
column-Hamilton Latin squares and the P1Fs
(Perfect 1-Factorizations) of complete bipartite
graphs. Moreover, we can construct a P1F of the
complete bipartite graph Kn,n through a P1F of the
complete graph Kn+1

[16]. There is a long history and
widely believed conjecture in graph theory field:
every complete graph with an even number of
vertices has a P1F[16]. So Latin code exists for all
odd number if this conjecture holds. Latin code is
similar to BG-HEDP and PIHLatin code[11–13] ex-
cept that the latter two preserve S instead of
XORing it into all other Latin parity units. A
common limit of these three coding schemes is that
no theory can guarantee the existence of them for
an arbitrary disk number. Especially for some large
non-prime number, it is very hard to find a proper
column-Hamilton Latin square. Therefore, a sys-
tem developer can not use those schemes directly
and freely. Although horizontal shortening[11] alle-
viates this problem, it leads to bad encoding and
decoding performance. However, we will show that
we can get a good coding scheme for arbitrary disk
number based on a concrete column-Hamilton
Latin square. Specially, the Latin code based on L9
has a coding cycle 8. If a symbol represent one bit,

then a cycle form nicely a byte which is highly
universal.

Now, the remaining problem is how to support
more data disks with less parity disks. Through the
cascading Latin scheme introduced in the next
section, we can see that if one more parity check
disk is used, the amount of data disks supported
increases greatly.

IV. Cascading Latin Scheme
1. The union of the basic-systems

In this section, we will construct a new system
according to the Latin code based on L9 to achieve
the aims described in Section II. For convenience,
we called the L9 based Latin coding system an
L9-basic-system. The scheme is described as fol-
lows.
Algorithm 2
Step 1 We combine k L9-basic-systems into a
large system called k-fold system. It is easy to see
that the new system can also tolerate double disks
failures. It contains 9k data disks { |1 , 1ijD i k≤ ≤

9}j≤ ≤ and 2k parity disks 1 2 1{ , , , , ,kP P P Q

2, , }kQ Q where 1 2{ , , , }kP P P denote the
horizontal parity disks, 1 2{ , , , }kQ Q Q denote the
Latin parity disks.
Step 2 Add a new parity disk named PH, and let

1
PH i

i k
P

≤ ≤
= ⊕ (4)

Apparently, PH is the sum of all data disks.
Now, there are 9k data disks and 2k+1 parity disks
in the system. We call this new system PH-system.
Step 3 We construct an MDS 3-erasure-correcting
system called the Q3-system 1 2{PH, , , , ,kQ Q Q
PP1, PP2, PP3}, that is, we take 1 2{PH, , , ,Q Q

}kQ as data disks and add 3 check disks {PP1, PP2,
PP3}. We name the whole system (including 9k
data disks and 2k+4 parity disks) redundant 3-
erasure based cascading system.

Note that we have not explained the detail how
to calculate PP1, PP2, and PP3, however we know
there are code schemes can do this, such as RS code
or a generalized EVENODD code.
Step 4 Remove 1 2 1 2{PH, , , , , , , , }k kP P P Q Q Q
from the redundant 3-erasure based cascading
system, the remaining 9k data disks and three
check disks {PP1, PP2, PP3} compose a new system
named the 3-erasure based cascading system.

LIN et al. A Cascading Latin Scheme to Tolerate Double Disk Failures in RAID Architectures 247

Theorem 2 A 3-erasure based cascading system
can tolerate any double disk failure.
Proof There are 3 kinds of double disk failures:
Case 1 The two failed disks are all parity disks.

This case is trivial. We can simply re-encode the
failed check disks.
Case 2 A data disk Dij and a check disk PPj fails.

Because of the failure of Di, we can not compute
PH and Qi directly. However, the Q3-system is a 3-
erasure-correcting system, and we can calculate all
other Qs, so we can reconstruct PH, Qi and PPj,
and then Di can be reconstructed using PH.
Case 3 Two data disks fail.

Similarly, PH and at most 2 Qs can not be re-
computed, we can reconstruct them using the
Q3-system. However, we can not reconstruct the
two failed data disks through PH now, let us con-
sider 2 cases:

(1) The two failed data disks Dij and Dik be-
long to the same L9-basic-system Li

Then Pi is the only horizontal parity disk that
can not be reconstructed, we can reconstruct it
using single-erasure-correcting system 1 2{PH, , ,P P

, }, kP and then the two failed data disks can be
reconstructed though Lj (a 2-erasure-correcting
system).

(2) The two failed data disks Dik and Dja be-
long to two different L9-basic_systems Li and Lj.

Then we can not compute Pi, Pj, Qi, Qj , and PH
directly. Like Case 2, we can reconstruct Qi, Qj, and
PH using the Q3-system, and then reconstruct Pi,
Pj and failed data disks in Li, Lj. Q.E.D.

2. 3-erasure-correct scheme

Which 3-erasure-correcting scheme is the best
for constructing the Q3-system? RS codes is a
choice. However, the cascading scheme will not be
superior to other 2-erasure-correcting codes in
computational complexity and coding cycle-exte-
nsibility conflict of RS code. We can use other 3-
erasure-correcting codes, such as STAR code[18],
Weaver code[19] or Hover code[20] to overcome the
high complexity problem. However, most of them
have prime limitation, which may cause serious
imbalance between the data disks and the check
disks.

Considering the special status of PH, we can
design a better scheme.

Algorithm 3
Step 1 Same as the Step 1 of Algorithm 2.
Step 2 Same as the Step 2 of Algorithm 2.
Step 3 We regard 1 2{ , , , }kQ Q Q as k data disks,
and add two parity disks PP1, PP2 to construct a
L9-Basic-System called the Q2-system 1 2{ , , ,Q Q

,kQ PP1, PP2}. The whole system contains 9k data
disks and 2k+3 parity disks. We call it the re-
dundant cascading system.
Step 4 Delete the 2k parity disks 1 2{ , , , ,kP P P

1 2, , , }kQ Q Q from the redundant cascading sys-
tem, then we get a new system with 9k data disks
and 3 parity disks {PH, PP1, PP2}, we name it the
two-level cascading Latin system. Fig. 3 gives il-
lustration.

Note that k must≤ 9, otherwise the Q2-system is
not 2-erasure-correcting.

Fig. 3 Illustration of two-level cascading system.

Theorem 3 If 9,k ≤ the two-level cascading Latin
system can tolerate any double disk failure.
Proof There are 4 kinds of double disk failures:
Case 1 The two failed disks both belong to {PH,
PP1, PP2}.

We can simply re-compute the two failed parity
disks.
Case 2 PH and a data disk Dij (belonging to Lj)
fail.

Qi is the only un-reckonable Latin parity disk,
we can reconstruct it through the Q2-system, then
the failed data disk can be reconstructed using Li,
and then PH is recomputed.
Case 3 One failed disk belongs to {PP1, PP2},
without the loss of generality, suppose PP1 fails.

248 JOURNAL OF ELECTRONICS (CHINA), Vol.27 No.2, March 2010

Another failed disk is a data disk Dij.
 Firstly, we reconstruct Dij using PH, and then

recompute PP1.
Case 4 Two data disks Dik and Dja fail.

 All Latin parity disks can be recomputed ex-
cept Qi and Qj, so we can reconstruct Qi and Qj
using the Q2-system, and then:

 (1) i=j, then Pi can be reconstructed using
PH and other horizontal parity disks, and then the
two failed data disks are reconstructed in Li.

 (2) i≠j, then we can reconstruct the two failed
disks using Qi and Qj. Q.E.D.

3. Analysis of two-level cascading Latin systems

Coding cycle: Cascading Latin scheme has a
constant coding cycle of 8. It is universal and very
easy to be used in large storage system.

Redundancy rate: 3/n.
Coding length: The number of data disks n

should be less than 9k, while k is the number of the
L9-basic-systems.

Extensibility: Within 9k data disks, the system
is very easy to be extended.

The scheme described above achieves universal
property, only at the cost of little extra redundancy,
and keeps low encoding/decoding complexity. But
this scheme has strong restriction on coding length.
The maximum number of data disks is 81, which is
much less than that of EVENODD code. If we use
L17 as basic-system, the whole system can support
up to 17×17=289 data disks.

4. Multi-level cascading Latin construction

In step 3 of Algorithm 3, an L9-basic-system is
used to tolerate double failures in the Q2-system.
However, the L9-basic-system limits the number of
data disks that k should be less than 9. We can use
a two-level cascading system rather than an L9-
Basic-System. It is obvious that the new system
can also tolerate any double disk failure, while the
system can support up to 9×9×9=729 data disks.
To achieve this, another more parity check disk
should be added to the system, and we should take
totally 4 parity disks. Using the Latin scheme in
this manner is the reason why we named the
scheme “Cascading Latin scheme”.

5. The analysis of multi-level cascading Latin
system

In a cascading Latin system, the coding cycle

keeps a constant number. However, while seeking
for the arbitrary system size, the parity disk
overhead increases to [(logcn)+1]/n, c=9 for L9
based cascading Latin scheme. That is to say, we
need logcn+1 check disks to provide 2-erasure-
correcting guarantee for n data disks.

Compared with RS code, cascading Latin
scheme needs much less XOR operations to do
encoding/decoding, the former needs O(n3) XORs[4],
the latter needs only O(n2) XORs, which is com-
parative with EVENODD.

The space efficiency is also a very important
problem, and it is directly related to the coding
cycle. For all other schemes, the coding cycle keeps
changing with the number of disks. The best record
belongs to the RS code, is about O(nlgn). To cas-
cading Latin, it needs only O(n) memory.

At last, another characteristic of cascading
Latin scheme is its unlimited extensibility. System
extension is usually a nightmare for other XOR
based codes. However, for the cascading Latin
scheme, the only thing needed to do is adding ze-
roed new disks and doing a bit of XORs.

The update penalty of the cascading Latin
scheme is not optimal. To update one data disk, we
must change the contents of all the check disks. For
two-level cascading Latin scheme, the update
penalty is 3, while the optimal value is 2. However,
this weakness may cause sharp performance deg-
radation only for the systems with high load, and
most array accesses are small writes. For the sys-
tem where a few of the accesses are small writes,
the cascading Latin scheme will perform as good as
other 2-erasure-correcting codes with optimal up-
date penalty.

In a large system, the only alternative of cas-
cading Latin codes is the RS codes. Which scheme
is more attractable is due to whether the large
amount disk I/Os or the large amount memory and
CPU resource used in encoding is the most serious
bottleneck of the whole system.

V. Conclusion
From the viewpoint of a system developer, this

paper has analyzed the problems of the known
XOR based 2-erasure-correcting codes. With a new
scheme based on column-Hamiltonian Latin
squares—cascading Latin coding scheme, we pro-

LIN et al. A Cascading Latin Scheme to Tolerate Double Disk Failures in RAID Architectures 249

vide the ability to convert the amount of en-
code/decode calculation or the inconvenient vari-
ous coding cycle to a few more redundant parity
check disks. With this ability, system developer can
decide freely which property is the most important
in their system.

Theoretical and practical studies on encod-
ing/decoding algorithms for cascading Latin codes
are the most important future works. Generalizing
this scheme to multiple erasure correcting is also
worth serious study.

References
[1] J. S. Plank. A tutorial on Reed-Solomon coding for

fault-tolerance in RAID-like systems. Software:

Practice and Experience, 27(1999)9, 995–1012.

[2] J S. Plank and Lihao Xu. Optimizing cauchy

reed-solomon codes for fault-tolerant network storage

applications. In Proceedings of the 5th IEEE

International Symposium on Network Computing and

Applications (IEEE NCA, 06), Cambridge, MA, July

2006, 173–180.

[3] Shu Lin and Daniel J. Costello. Error Control Coding.

2nd ed. Prentice Hall, 2004, 156–179.

[4] M. Blaum, J. Brady, J. Bruck, and J. Menon.

EVENODD: An efficient scheme for tolerating double

disk failures in RAID architectures. IEEE Transac-

tions on Computing, 44(1995)2,192–202.

[5] M. Blaum, J. Brady, J. Bruck, J. Menon, and A.

Vardy. The EVENODD code and its generalization:

An efficient scheme for tolerating multiple disk failure

in RAID architectures. in High Performance Mass

Storage and Parallel I/O. John Wiley & Sons, Inc.,

2002, 187–208.

[6] M. Blaum, J. Bruck, and A. Vardy. MDS array codes

with independent parity symbols. IEEE Transactions

on Information Theory, 42(1996)2, 529–542.

[7] M. Blaumund and R. M. Roth. New array codes for

multiple phased burst correction. IEEE Transactions

on Information Theory, 39(1993)1, 66–77.

[8] L. Xu and J. Bruck. X-code. MDS array codes with

optimal encoding. IEEE Transactions on Information

Theory, 45(1999)1, 272–276.

[9] L. Xu, V. Bohossian, J. Bruck, and D. Wagner. Low

density MDS codes and factors of complete graphs.

IEEE Transactions on Information Theory, 45(1999)1,

1817–1826.

[10] Wang Gang, Dong Sha-sha, Liu Xiao-guang, Lin

Sheng, and Liu Jing. Construct double-erasure data

layout using P1F. Acta Electronica Sinica, 34(2006)

12A, 2447–2450 (in Chinese).

王刚, 董沙沙, 刘小光, 林胜, 刘璟. 利用图的完全 1-

因子分解构造双容错数据布局. 电子学报, 34(2006)

12A, 2447–2450.

[11] Wang Gang, Lin Sheng, Liu Xiaoguang, Xie

Guangjun, and Liu Jing. Combinatorial constructions

of multi-erasure-correcting codes with independent

parity symbols for storage systems. IEEE PRDC’2007,

Melbourne, Victoria, Australia, Dec. 2007, 61–68.

[12] Wang Gang, Xiaoguang Liu, Sheng Lin, Guangjun

Xie, and Jing Liu. Constructing double-and tripe-

erasure-correcting codes with high availability using

mirroring and parity approaches. 13th International

Conference on Parallel and Distributed Systems

(ICPADS’07), Hsinchu, 2007, 1–8.

[13] Wang Gang, Lin Sheng, Liu Xiaoguang, Xie

Guangjun, and Liu Jing. Generalization of RDP code

using combinatorial method. Seventh IEEE Interna-

tional Symposium on Network Computing and Ap-

plications, Cambridge, MA, USA, 2008, 93–100.

[14] J. S. Plank. The RAID-6 liberation codes. 6th

USENIX Conference on File and Storage Technologies,

San Francisco, 2008, 97–110.

[15] Lisa Hellerstein, Garth A. Gibson, Richard M. Karp,

Randy H. Katz, and David A. Patterson. Coding

techniques for handling failures in large disk arrays.

Algorithmica, 12(1994)2/3,182–208.

[16] I. M. Wanless. Perfect factorizations of bipartite

graphs and latin squares without proper subrectangles.

The Electronic Journal of Combinatorics, 6(1999)1,

R9.

[17] Charles J. Colbourn and Jeffrey H. Dinitz . Handbook

of Combinatorial Designs. 2nd ed (Discrete Mathem-

atics and Its Applications). Chapman and Hall/CRC,

November 2, 2006, 135–151.

[18] Cheng Huang and Lihao Xu. STAR: An efficient

coding scheme for correcting triple storage node

failures. 4th USENIX Conference on File and Storage

Technologies, San Francisco, 2005, 197–210.

[19] J. L. Hafner. WEAVER codes: highly fault tolerant

erasure codes for storage systems. In Proceedings of

the 4th USENIX Conference on File and Storage

Technologies, San Francisco, 2005, 211–224.

[20] J. L. Hafner. Hover erasure codes for disk arrays.

International Conference on Dependable Systems and

Networks, Philadelphia, PA, USA, 2006, 217-226.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

