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Lin Sheng    Wang Gang    Liu Xiaoguang    Liu Jing  
(Nankai-Baidu Joint Laboratory, College of Information and Technical Science, Nankai University,             

Tianjin 300071, China) 

Abstract In recent years, a lot of XOR-based coding schemes have been developed to tolerate double 
disk failures in Redundant Array of Independent Disks (RAID) architectures, such as EVENODD-code, 
X-code, B-code and BG-HEDP. Despite those researches, the decades-old strategy of Reed-Solomon 
(RS) code remains the only popular space-optimal Maximum Distance Separable (MDS) code for all 
but the smallest storage systems. The reason is that all those XOR-based schemes are too difficult to be 
implemented, it mainly because the coding-circle of those codes vary with the number of disks. By 
contrast, the coding-circle of RS code is a constant. In order to solve this problem, we develop a new 
MDS code named Latin code and a cascading scheme based on Latin code. The cascading Latin scheme 
is a nearly MDS code (with only one or two more parity disks compared with the MDS ones). Nev-
ertheless, it keeps the coding-circle of the basic Latin code (i.e. a constant) and the low encod-
ing/decoding complexity similar to other parity array codes.  
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I. Introduction  
With the increasing requirements of disk sys-

tems, very large storage systems have to face the 
problem of two or more disks failing at the same 
time. However, there is no easy way to resolve that 
just like what the single-failure-tolerable RAID 
system does. Therefore, researches on erasure- 
coding have blossomed in recent years. The Reed- 
Solomon (RS) code[1–3], which introduced from 
coding theory, can meet the requirements and be-
comes popular in these years. Actually, RS code has 
been used to build some massive storage systems in 
real life. However, the RS code’s shortcomings are 
also obvious. Following the coding theory, RS code 
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is a general scheme to solve t-erasure-correcting 
problem, and its computational complexity is much 
higher than that of XOR-based codes. 

In recent years, many XOR-based 2-erasure- 
correcting codes have been designed, such as 
EVENODD[4–7], X-code[8], B-code[9], BG-HEDP[10–13] 
and Liberation-code[14] etc. All of the codes have 
reached the Singleton bound, that is to say they are 
space-optimal codes. Compared with RS code, the 
decoding complexity of these codes is much lower. 
However, it is very interesting that RS code is the 
only 2-erasure-correcting code which is widely used 
by industrial community. RS code became the 
winner because it is easier to be implemented than 
other codes. 

In the following sections of this paper, we dis-
cussed the details of the codes mentioned above and 
gave a careful analysis about the reasons of their 
difficulties to be implemented. The contributions of 
this paper can be described as follows.  

Firstly, we gave some new criteria for the code 
availability. Secondly, we designed a new 2-erasure- 
correcting Maximum Distance Separable (MDS) 
code named Latin code. Finally, based on Latin 
code, we developed an appropriate scheme which 
can meet all new criteria. 
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II.   Analysis of Coding Availability  
The XOR-based coding schemes, such as 

EVENODD code, have excellent characters to meet 
the requirements of massive storage system. We 
sum up them as below. 

(1) Almost all of them are space-optimal 
coding schemes. It means that only two parity disks 
are required to tolerate 2-erasure in the system. 

(2) They have optimal update penalty. It 
means that when a data disk is updated, only two 
corresponding parity disks need to be updated. 

(3) Compared with other RS-like coding 
schemes, the encoding/decoding complexity is 
much lower[4,5]. 

However, the XOR-based coding schemes have 
some shortcomings which prevent them from being 
applied. 

(1) Some schemes, such as EVENODD and 
X-code, require the number of disks must be a 
prime number. Other schemes, such as B-code and 
BG-HEDP, are not so strict, but can not be applied 
to any array sizes. 

(2) We call the average amount of data units 
on every disk in a parity stripe as the coding cycle 
of a code scheme. The coding cycle of XOR-based 
coding schemes is linear with a number of disks. It 
means that the XOR-based coding schemes are not 
a general method for massive storage systems. 
Because the cycle is related to the number of disks, 
users must pay more attention to setting the coding 
cycle according to capacity and the number of disks. 
On the contrary, RS code is a general code (For a 
given GF(2n), its coding cycle can be seen as a 
constant), therefore, it can be implemented easily.  

(3) The extensibility of XOR-based coding 
schemes is weak. The system is difficult to be ex-
tended after having been built. The reason lies in 
the changing coding cycle. 

If the number of disks n<259, using Fermat 
prime numbers, a feasible scheme was presented for 
EVENODD code in Ref. [5]. The coding cycle in 
this scheme is 256. It is easy to be mapped to 
physical storage devices (a coding cycle apropos 
construct 32 bytes, namely 256 bits). For storage 
systems, 256 devices are enough for most cases. 
Unfortunately, the next Fermat prime number is 
65537, which is too big for coding cycle. To choose 
other primes, it is very difficult to keep the coding 

cycle divided exactly by the usually disk read/write 
unit size (for instance 4k bytes). Therefore, while n 
is bigger than 259, it is a challenge to find a feasible 
prime number. 

Full-2 code[10,15] is also a general code (its coding 
cycle is a constant). But its redundancy is O(n1/2), 
which is too high (the optimal value is only 2).  

Maximal projective code (Hamming code) has 
optimal redundancy when we fixed the coding cycle 
to 1, but its update penalty is too high (about n/2 
on average, the optimal is 2).  

B-code, with an exact 2 update penalty and a 
space-optimal character, has a various coding cycle 
(linear to the number of disks) that makes it rather 
hard to be implemented. 

In a word, the tradeoff among code length, 
coding cycle, update penalty and redundancy must 
be considered when a coding scheme is designed. 

From the comparison in Tab. 1, we can conclude 
why the RS code is so popular. It is the easiest one 
to be implemented for an arbitrary number of disks. 
A constant coding cycle is a very important prop-
erty since it determines the way how a scheme be 
mapped into a physical system. Compared with the 
implementing difficulty, the redundancy may be a 
minor problem. 

Tab. 1  Comparison between 2-erasure-correcting codes 

Coding 
scheme 

Coding cycle (C)

(Universal) 

Disk number 
(N) 

Encoding 
complexity

Redun-
dancy

RS 

For the RS code 
based on GF(28),
C=8, each cycle 
forms one-byte 

N<2C 

when C=8, 

N<256 

High 2/N 

EVENODD
C=N–1, N should 
be a prime num-
ber, not universal

N<=C+3 Low 2/N 

X-Code
C=N–2, N should 
be a prime num-
ber 

N<=C+4 Low 2/N 

B-code C=N/2 N<=C/2 Low 2/N 

BG-HEDP C=N N<=C+3 Low 2/N 

Full-2 C=1 No limit Low N1/2/N

2D array C=1 No limit Low N1/2/N

Hamming 
code 

C=1 No limit Low lg(N)/N

 
Based on the above analysis, we give our new 

criteria for a “Good” 2-erasure-correcting scheme, 
and give more priority to implementing difficulty: 
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(1) The Coding cycle keeps a constant num-
ber (it makes the scheme easier to be imple-
mented); 

(2) Redundancy ( lg )O N≤ for N data disks 
(Be the same with Hamming code, it is the best 
possibility); 

(3) A constant update penalty (Compared 
with being fixed to 2, it has been loosed). 

In next two sections, we focus on constructing a 
code scheme to achieve all these 3 criteria. 

III.   Latin–code 
To achieve the metrics proposed in SectionII, 

firstly, we introduce a new MDS code: Latin-code. 
Definition 1  A Latin square consists of N per-
mutations of {1, 2, , N} which are arranged in 
such a way that no row and column contains the 
same number twice[16,17]. 

We denote the permutation in the i-th column 
by ,rσ the symbol in Row i, Column j by ( ).j iσ We 
define 1

, ,r s r sσ σ σ −= that is, the cycle pattern 
formed by Column r and Column s. 
Definition 2  A Latin square is column-Hamil- 
tonian if each pair of columns forms a single cycle, 
that is, ,r sσ contains a single cycle[17]. 

A column-Hamiltonian Latin square of order 9- 
L9 is given in Fig. 1. 

Suppose L is a given reduced (the first row and 
the first column are in natural order) col-
umn-Hamilton Latin square, then we can construct 
a new double disk failures tolerable system based 
on it. 
Algorithm 1 
Step 1  Map each column to a disk, and each 
symbol in the square represents a stripe unit except 
the last row. We regard the last row as a dummy 
row and suppose the dummy data unit is always 
zero.  
Step 2  Add two parity check disks named P, Q to 
the system. Suppose Dj,k denotes the k-th stripe 
unit in the j-th data disk and Pi and Qi denotes the 
i-th stripe units in the first and the second parity 
check disk respectively, then Pi and Qi are calcu-
lated by: 

,
1

, 1i j i
j n

P D i n
≤ ≤

= ≤ ≤⊕            (1) 

,
1 , ( )

, 1
j

i j k
j n k i

Q D S i n
σ≤ ≤ =

⎛ ⎞⎟⎜ ⎟= ⊕ ≤ ≤⎜ ⎟⎜ ⎟⎜⎝ ⎠
⊕        (2) 

,
1 , ( )j

j k
j n k n

S D
σ≤ ≤ =

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
⊕              (3) 

1 2 3 4 5 6 7 8 9

2 4 8 9 3 5 1 7 6

3 1 9 2 8 7 5 6 4

4 5 2 3 1 8 6 9 7

5 7 4 1 6 9 8 3 2

6 9 5 8 7 4 2 1 3

7 8 6 5 9 2 3 4 1

8 6 1 7 4 3 9 2 5

9 3 7 6 2 1 4 5 8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Fig. 1  A column-Hamiltonian Latin square of order 9-L9 

It is obvious that P is the horizontal parity 
check of each row. S is the sum of all symbols la-
beled “n” in the Latin square. The i-th symbol in Q 
is the sum of S and all symbols labeled “i”. We call 
this check disk the Latin parity disk, the parity 
groups on it the Latin parity groups, and the parity 
units the Latin parity units. 
Theorem 1  System constructed by Algorithm 1 
can tolerate any double disk failure. 
Proof  Without loss of generality, suppose the i-th 
and the j-th disks fail (1 < ).i j n≤ ≤ We can deduce 
that by starting from a dummy unit and recalcu-
lating each error data unit step by step. 
Case 1  Suppose two data disks fail. From j, since 
the last unit is the dummy one, there is at most one 
unit failed (Di,a) in the Latin parity group ( )j nσ  
(note that ( ) ).j n nσ ≠ So Di,a can be reconstructed. 
Then we can reconstruct Dj,a by .aP So the Latin 
parity group ( )j aσ contains only one failed unit 
now, we can reconstruct it, and so on. Note that we 
can reconstruct S by XORing all units in the two 
parity disks, and constructing algorithm breaks the 
single cycle ,i jσ into paths. Therefore, this zigzag 
way can reconstruct all failed data units step by 
step. Fig. 2 shows an example. 
Case 2  Suppose a data disk i and P1 fail. If i=1, S 
is calculated first; otherwise S is calculated by  

, ( )
1 , , ( ) ( )

i
j i

j k n
j n j i k n

S D Qσ
σ σ≤ ≤ ≠ =

⎛ ⎞⎟⎜ ⎟= ⊕⎜ ⎟⎜ ⎟⎜⎝ ⎠
⊕  

According to the basic properties of Latin 
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square, it is clear that each Latin parity group only 
includes one single failed data unit, therefore all the 
failed units in disk i can be reconstructed by Q and 
S. Then we can recalculate P by Eq. (1).  
Case 3  Suppose a data disk i and the Latin parity 
disk Q fail, disk i is reconstructed through P first, 
and then Q is recalculated by Eq. (2).   
Case 4  Suppose the two check disks fail, decoding 
equals to encoding. 

 

Fig. 2  Decoding of Latin-code 

We can see that the decoding algorithm is 
similar to that of the EVENODD. In fact, when n is 
a prime number, Latin code is just EVENODD. 
That is, EVENODD is a special case of Latin code. 
According Refs. [16,17], there is a bijection between 
column-Hamilton Latin squares and the P1Fs 
(Perfect 1-Factorizations) of complete bipartite 
graphs. Moreover, we can construct a P1F of the 
complete bipartite graph Kn,n through a P1F of the 
complete graph Kn+1

[16]. There is a long history and 
widely believed conjecture in graph theory field: 
every complete graph with an even number of 
vertices has a P1F[16]. So Latin code exists for all 
odd number if this conjecture holds. Latin code is 
similar to BG-HEDP and PIHLatin code[11–13] ex-
cept that the latter two preserve S instead of 
XORing it into all other Latin parity units. A 
common limit of these three coding schemes is that 
no theory can guarantee the existence of them for 
an arbitrary disk number. Especially for some large 
non-prime number, it is very hard to find a proper 
column-Hamilton Latin square. Therefore, a sys-
tem developer can not use those schemes directly 
and freely. Although horizontal shortening[11] alle-
viates this problem, it leads to bad encoding and 
decoding performance. However, we will show that 
we can get a good coding scheme for arbitrary disk 
number based on a concrete column-Hamilton 
Latin square. Specially, the Latin code based on L9 
has a coding cycle 8. If a symbol represent one bit, 

then a cycle form nicely a byte which is highly 
universal. 

Now, the remaining problem is how to support 
more data disks with less parity disks. Through the 
cascading Latin scheme introduced in the next 
section, we can see that if one more parity check 
disk is used, the amount of data disks supported 
increases greatly. 

IV.   Cascading Latin Scheme 
1. The union of the basic-systems 

In this section, we will construct a new system 
according to the Latin code based on L9 to achieve 
the aims described in Section II. For convenience, 
we called the L9 based Latin coding system an 
L9-basic-system. The scheme is described as fol-
lows. 
Algorithm 2 
Step 1  We combine k L9-basic-systems into a 
large system called k-fold system. It is easy to see 
that the new system can also tolerate double disks 
failures. It contains 9k data disks { |1 , 1ijD i k≤ ≤  

9}j≤ ≤ and 2k parity disks 1 2 1{ , , , , ,kP P P Q   

2, , }kQ Q where 1 2{ , , , }kP P P denote the 
horizontal parity disks, 1 2{ , , , }kQ Q Q denote the 
Latin parity disks. 
Step 2  Add a new parity disk named PH, and let  

1
PH i

i k
P

≤ ≤
= ⊕                (4) 

Apparently, PH is the sum of all data disks. 
Now, there are 9k data disks and 2k+1 parity disks 
in the system. We call this new system PH-system. 
Step 3  We construct an MDS 3-erasure-correcting 
system called the Q3-system 1 2{PH, , , , ,kQ Q Q  
PP1, PP2, PP3}, that is, we take 1 2{PH, , , ,Q Q  

}kQ as data disks and add 3 check disks {PP1, PP2, 
PP3}. We name the whole system (including 9k 
data disks and 2k+4 parity disks) redundant 3- 
erasure based cascading system. 

Note that we have not explained the detail how 
to calculate PP1, PP2, and PP3, however we know 
there are code schemes can do this, such as RS code 
or a generalized EVENODD code. 
Step 4  Remove 1 2 1 2{PH, , , , , , , , }k kP P P Q Q Q  
from the redundant 3-erasure based cascading 
system, the remaining 9k data disks and three 
check disks {PP1, PP2, PP3} compose a new system 
named the 3-erasure based cascading system. 
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Theorem 2  A 3-erasure based cascading system 
can tolerate any double disk failure. 
Proof  There are 3 kinds of double disk failures: 
Case 1  The two failed disks are all parity disks. 

This case is trivial. We can simply re-encode the 
failed check disks. 
Case 2  A data disk Dij and a check disk PPj fails. 

Because of the failure of Di, we can not compute 
PH and Qi directly. However, the Q3-system is a 3- 
erasure-correcting system, and we can calculate all 
other Qs, so we can reconstruct PH, Qi and PPj, 
and then Di can be reconstructed using PH. 
Case 3  Two data disks fail. 

Similarly, PH and at most 2 Qs can not be re-
computed, we can reconstruct them using the 
Q3-system. However, we can not reconstruct the 
two failed data disks through PH now, let us con-
sider 2 cases: 

(1) The two failed data disks Dij and Dik be-
long to the same L9-basic-system Li 

Then Pi is the only horizontal parity disk that 
can not be reconstructed, we can reconstruct it 
using single-erasure-correcting system 1 2{PH, , ,P P   

, }, kP and then the two failed data disks can be 
reconstructed though Lj (a 2-erasure-correcting 
system). 

(2) The two failed data disks Dik and Dja be-
long to two different L9-basic_systems Li and Lj. 

Then we can not compute Pi, Pj, Qi, Qj , and PH 
directly. Like Case 2, we can reconstruct Qi, Qj, and 
PH using the Q3-system, and then reconstruct Pi, 
Pj and failed data disks in Li, Lj.          Q.E.D. 

2. 3-erasure-correct scheme 

Which 3-erasure-correcting scheme is the best 
for constructing the Q3-system? RS codes is a 
choice. However, the cascading scheme will not be 
superior to other 2-erasure-correcting codes in 
computational complexity and coding cycle-exte- 
nsibility conflict of RS code. We can use other 3- 
erasure-correcting codes, such as STAR code[18], 
Weaver code[19] or Hover code[20] to overcome the 
high complexity problem. However, most of them 
have prime limitation, which may cause serious 
imbalance between the data disks and the check 
disks. 

Considering the special status of PH, we can 
design a better scheme. 

Algorithm 3 
Step 1  Same as the Step 1 of Algorithm 2. 
Step 2  Same as the Step 2 of Algorithm 2. 
Step 3  We regard 1 2{ , , , }kQ Q Q as k data disks, 
and add two parity disks PP1, PP2 to construct a 
L9-Basic-System called the Q2-system 1 2{ , , ,Q Q    

,kQ PP1, PP2}. The whole system contains 9k data 
disks and 2k+3 parity disks. We call it the re-
dundant cascading system. 
Step 4 Delete the 2k parity disks 1 2{ , , , ,kP P P  

1 2, , , }kQ Q Q from the redundant cascading sys-
tem, then we get a new system with 9k data disks 
and 3 parity disks {PH, PP1, PP2}, we name it the 
two-level cascading Latin system. Fig. 3 gives il-
lustration. 

Note that k must≤ 9, otherwise the Q2-system is 
not 2-erasure-correcting. 

 

Fig. 3  Illustration of two-level cascading system. 

Theorem 3  If 9,k ≤ the two-level cascading Latin 
system can tolerate any double disk failure. 
Proof  There are 4 kinds of double disk failures: 
Case 1  The two failed disks both belong to {PH, 
PP1, PP2}. 

We can simply re-compute the two failed parity 
disks. 
Case 2  PH and a data disk Dij (belonging to Lj) 
fail. 

Qi is the only un-reckonable Latin parity disk, 
we can reconstruct it through the Q2-system, then 
the failed data disk can be reconstructed using Li, 
and then PH is recomputed. 
Case 3  One failed disk belongs to {PP1, PP2}, 
without the loss of generality, suppose PP1 fails. 
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Another failed disk is a data disk Dij. 
 Firstly, we reconstruct Dij using PH, and then 

recompute PP1. 
Case 4  Two data disks Dik and Dja fail. 

 All Latin parity disks can be recomputed ex-
cept Qi and Qj, so we can reconstruct Qi and Qj 
using the Q2-system, and then: 

 (1) i=j, then Pi can be reconstructed using 
PH and other horizontal parity disks, and then the 
two failed data disks are reconstructed in Li. 

 (2) i≠j, then we can reconstruct the two failed 
disks using Qi and Qj.                   Q.E.D. 

3. Analysis of two-level cascading Latin systems 

Coding cycle: Cascading Latin scheme has a 
constant coding cycle of 8. It is universal and very 
easy to be used in large storage system. 

Redundancy rate: 3/n. 
Coding length: The number of data disks n 

should be less than 9k, while k is the number of the 
L9-basic-systems. 

Extensibility: Within 9k data disks, the system 
is very easy to be extended. 

The scheme described above achieves universal 
property, only at the cost of little extra redundancy, 
and keeps low encoding/decoding complexity. But 
this scheme has strong restriction on coding length. 
The maximum number of data disks is 81, which is 
much less than that of EVENODD code. If we use 
L17 as basic-system, the whole system can support 
up to 17×17=289 data disks. 

4. Multi-level cascading Latin construction 

In step 3 of Algorithm 3, an L9-basic-system is 
used to tolerate double failures in the Q2-system. 
However, the L9-basic-system limits the number of 
data disks that k should be less than 9. We can use 
a two-level cascading system rather than an L9- 
Basic-System. It is obvious that the new system 
can also tolerate any double disk failure, while the 
system can support up to 9×9×9=729 data disks. 
To achieve this, another more parity check disk 
should be added to the system, and we should take 
totally 4 parity disks. Using the Latin scheme in 
this manner is the reason why we named the 
scheme “Cascading Latin scheme”. 

5. The analysis of multi-level cascading Latin 
system 

In a cascading Latin system, the coding cycle 

keeps a constant number. However, while seeking 
for the arbitrary system size, the parity disk 
overhead increases to [(logcn)+1]/n, c=9 for L9 
based cascading Latin scheme. That is to say, we 
need logcn+1 check disks to provide 2-erasure- 
correcting guarantee for n data disks. 

Compared with RS code, cascading Latin 
scheme needs much less XOR operations to do 
encoding/decoding, the former needs O(n3) XORs[4], 
the latter needs only O(n2) XORs, which is com-
parative with EVENODD. 

The space efficiency is also a very important 
problem, and it is directly related to the coding 
cycle. For all other schemes, the coding cycle keeps 
changing with the number of disks. The best record 
belongs to the RS code, is about O(nlgn). To cas-
cading Latin, it needs only O(n) memory. 

At last, another characteristic of cascading 
Latin scheme is its unlimited extensibility. System 
extension is usually a nightmare for other XOR 
based codes. However, for the cascading Latin 
scheme, the only thing needed to do is adding ze-
roed new disks and doing a bit of XORs.      

The update penalty of the cascading Latin 
scheme is not optimal. To update one data disk, we 
must change the contents of all the check disks. For 
two-level cascading Latin scheme, the update 
penalty is 3, while the optimal value is 2. However, 
this weakness may cause sharp performance deg-
radation only for the systems with high load, and 
most array accesses are small writes. For the sys-
tem where a few of the accesses are small writes, 
the cascading Latin scheme will perform as good as 
other 2-erasure-correcting codes with optimal up-
date penalty. 

In a large system, the only alternative of cas-
cading Latin codes is the RS codes. Which scheme 
is more attractable is due to whether the large 
amount disk I/Os or the large amount memory and 
CPU resource used in encoding is the most serious 
bottleneck of the whole system. 

V.   Conclusion 
From the viewpoint of a system developer, this 

paper has analyzed the problems of the known 
XOR based 2-erasure-correcting codes. With a new 
scheme based on column-Hamiltonian Latin 
squares—cascading Latin coding scheme, we pro-
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vide the ability to convert the amount of en-
code/decode calculation or the inconvenient vari-
ous coding cycle to a few more redundant parity 
check disks. With this ability, system developer can 
decide freely which property is the most important 
in their system. 

Theoretical and practical studies on encod-
ing/decoding algorithms for cascading Latin codes 
are the most important future works. Generalizing 
this scheme to multiple erasure correcting is also 
worth serious study. 
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