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CONVERGENCE RATES IN THE STRONG LAWS OF

ASYMPTOTICALLY NEGATIVELY ASSOCIATED

RANDOM FIELDS

Zhang Lixin Wang Xiuyun

Abstract. In this paper, a notion of negative side p-mixing (p--mixing) which can be regarded
as asymptotic negative association is defined, and some Rosenthal type inequalities for p--mix-

ing random fields are established. The complete convergence and almost sure summability on

the convergence rates with respect to the strong law of large numbers are also discussed for p--

mixing random fields. The results obtained extend those for negatively associated sequences and

p"-mixing random fields.

§ 1 Introduction

Let d be a positive integer, Na be the d-dimensional lattice equipped with the coordi-

natewise partial o r d e r , 4 . For any A C N d, set SA= 2 . e A X . , IAI ----- the cardinal n u m b e r

of A. For any n E N a , l e t (n) = { m E N a , m ~ n } , S .=S( ,~ , In ] = ] (n) I -=nlnz... na and ][nI[

denote the Euclidean norm. Occasionally, n , k , etc. will also denote positive integers, the

r e a d e r should not be confused from their context. A d-dimensional discrete field of real

r a n d o m variables {Xk;k E Na} will be called"centered" if EXk = 0. For a r a n d o m variable

X , define [IX lip= (E t XlP) lip. For two nonempty disjoint sets S , T C N a, we define dist (S,

T ) t o be min{[[j--k[[~jES,kET}. Let a(S) be the a-field generated by { X k ; k E S } , and

define a ( T ) similarly. Let %~ be a class of functions which are coordinatewise increasing.

It is easy t o see that for any b ~ c , the functions bV ( x A c ) and x - - b V ( x A c ) are in ~.

A field {Xk~k E Na} is called negatively associated (NA) if for every pair of disjoint

subsets S , T of Na,

C o v { f ( X ~ i E S ) , g ( X j ~ j E T)} ~ 0,
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whenever f , g E %~. { X k ; k E Nd} is called p*-mixing if

p" (s) = s u p { p ( S , T ) ; S , T E Nd,dis t (S ,T) ~ s } -~ O ( s - ~ oo),
where

p ( S , T ) = sup{ [ E ( f - - E f ) ( g -- E g ) / ( l [ f - - Ef[iz[Ig -- Eg[[2)l;

f E L z ( a ( S ) ) , g E L z ( a ( T ) ) } .
In the case of d = l , many limit results for NA sequences were obtained recently (cf.

[ - 1 ~ 5 ] ere). Bu t , it seems that their methods can not be used to the cases of d ~ 2 . By the

way , many weak limit results for p~-mixing fields were obtained in the passed several

years. (of. [ - 6 ~ 9 ] etc. ). Later ly, [-10,11] studied the a lmos t sure convergence p"-mixing

fields. The purpose o f this p a p e r is to put this two kinds o f dependence t o g e t h e r and study

the a lmos t sure convergence for this two kinds of dependent fields simultaneously. In this

section, we define a concept o f p--mixing and s t a t e some basic properties o f i t . In § 2, we

establish some Rosenthal-type inequalities fo r b lock sums of p--mixing f ie lds , which is the

main tool in this paper . In § 3, we obta in the results on the complete convergence and the

Marcinkiewicz-Zygmund law of large numbers . In § 4, we study the a lmos t sure summa-

bili ty of par t ia l s u m s . The resul t s obtained extend those for NA sequences and include

some o f those fo r p'-mixing fields.

Definition. A field { X k ; k E Na} is cal led p--mixing if

p (s) : s u p { p - ( S , T ) ~ S , T E N a , d i s t ( S , T ) ~ s } - - ~ O (s--~oo) ,

where

- I C o v { f ( X ~ ; i E S ) , g ( X ~ ; j E T)} ; f , g E cg~}
p ( S , T ) = 0 V sUPLVar(f(Xi~ i E S)} • V a r { g ( X j ; j E T)} _

L e t x + = 0 V x a n d x - = - - ( 0 A x ) . It is easy to see that if { X k ; k E Na} is p - - m i x i n g ,

then { X + ; k E N u} and {X~-;kEN u} both are also p--mixing with the mixing coefficients

not g rea te r than p - ( s ) .

It is obvious that p - ( s ) ~ p~ (s). It is easy to see that { X k ; k E Na} is negatively associ-

ated if and only if p - ( s ) = 0 fo r s ~ l . So p--mixing is weaker than p"-mixing and can be

regarded as the asymptotically negative association or negative side p'-mixing. The fol-

lowing gives a n example o f a p--mixing sequence which is ne i the r NA nor p'-mixing.

Example 1. Let { 8 . ; n ~ l } , {r/ . ;n~l} and { r . ; n ~ l } be three independent sequences of i.

i. d. standard normal random variables. Let

X = I ~ m , i f n = 2 m - - l n ~r/.~, i f n = 2zm-1
8 . , i f = 2m ' Y" = ~ - - 7Ira' if n = 22m

Lr., o the rwise ,

and Z . = X 2 . + Y . . T h e n { X . ; n ~ l } and {Y. ; n ~ l } are two independent sequences of NA i-

dentically distributed normal variables. A l s o , { X . ; n ~ l } is a 2-dependent sequence, so

{ X . ; n ~ l } is a p*-mixing sequence with p* ( 2 ) = 0 . From Proper ty P3 be low it follows

that {Z. ; n ~ l } is p--mixing with p ( 2 ) = 0 . But , {Z. ; n ~ l } is ne i the r NA nor p~-mixing,
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since

and

C o v { / g m - -1 , Z g m } = Cov{X~m-- 1 , X ~ m } = E~4m - - (E$~) e = 2 > 0

Cov{Z22m--l,Z22m} 1 ¢0 as dist(22m-l,22m) = 22m-1 --~ c~
Var {Z22~-1 }Var{Z22m } 3

The following two properties of p -mixing are obvious from the definitions.

Proper ty P1. A subset o f a p--mixing field {Xk ;k E Nu} with mixing coefficients p - ( s ) is

also p -mixing with mixing coefficients not g rea te r than p (s) .

Proper ty P2. Increasing functions defined on disjoint subsets o f a p--mixing field {Xk ; k

EN d } with mixing coefficients p - ( s ) are also p--mixing with mixing coefficients not

g rea te r than o- (s) .

Proper ty P3. Suppose t h a t { X k ; k E Nd} and { Y k ; k E Na} are two independent p -mixing

fields with mixing coefficients pi- (s) and p~-( s ) ,respectively. T h e n { (Xk,Yk) ;k E N~} is al-

so a p -mixing field with mixing coefficients not g rea te r than p f (s)+p~-(s) .

Proof. It is enough to show that

E { f ( X . , Y . ; n E A ) g ( X . , Y . ; n E B)}

E { f ( X . , Y . ; n E A ) } E { g ( X . , Y . , n E B)} q-

( p ~ ( r ) + p ~ ( r ) ) { E f z ( X . , Y . ; n E A)}~/2{EgZ(X.,Y.;n E B)} ~/2,

where f , g E C~ and r = d i s t ( A , B ) . Let f l ( Y . ; n E A ) = E x f and g l ( Y . ; n E A ) = E x g , w h e r e
Exis the expectation taken over { X . ; n ~ l } on ly , i .e . E x ( . ) = E ( o l Y . ; n ~ l ) , and Eris

defined similarly. T h e n f~ and g l are also in c~,. From the Fubin i theorem, it follows that

E f g = E g { E x f g } ~ Ey{( E x f ) ( E x g )} -k- p~ (r)Ey{ (Exf2)~/~(ExgZ) ~/2 }

E f g -+- p~ (r) { E y ( E x f)2} ~/2 {Er(Exg )2 }~/~ -k- p~ (r) (E f2)'/Z(Eg2) 1/2
E f g + (Pl (r) + p~ (r)) (EfZ)'/2 (Eg z) l/z,

which completes the proof .

§ 2 Rosenthal-type Inequalities

The following Rosenthal-type inequality fo r p--mixing random fields is the main tool

fo r studying the limit results in this paper .

Theorem 2.1. Suppose { X k ; k E Nu} is a p--mixing random field with E X k = 0 and I lxk l l ,
%c~ for some p ~ 2 and all k. T h e n there exists a positive constant Bp depending only on p

and p - ( . ) such that for any finite set S C N u,

E ~]Xk p ~ Bp( ~ElXk l~ + (~-~,EIX~I~)'/2). ( 2 . 1 )
k E S k E S h E S

When d----- 1, the Rosenthal-type inequality remains ture for the maximal par t ia l s u m s ,

if some conditions on p ( . ) are added.

Theorem 2.2. Suppose d = 1, and {Xk;k EN} is a sequence of p -mixing random vari-
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ables with E X k = 0 with [[Xkllp<cx~ for some p ~ 2 and all k. Fo r any k ~ 0 , n ~ l , set S . ( k )

= ~y=lXk+,, . Assume that p - ( s )~c ( logs ) -1-~ fo r some c~>0 and 8 > 0 . T h e n there ex-

ists a positive constant Bp depending only on p and p - ( . ) such that for any k ~ O , n ~ l ,

E max [Sin(k)[P ~-~ B p ( ( n maxEX~+~)pn + n maxElX,+m[P). ( 2 . 2 )
l~<m~<n l~m~n l~m~n

Although we don ' t k o n w whe the r (2. 2) holds t rue o r not when d ) 2 , we establish

the following inequalities for the maximal par t ia l s u m s .

Theorem 2.3. Let { X , ; n E N a} be a centered p--mixing field. Set S . ( k ) = ~ 1.<<~< Xt+~.

T h e n for each p ~ 2 , there exists a positive constant c = c ( p , p - ) depending only o n p and

p - ( . ) such that fo r any k , n E N a,

E max t S , ( k ) I " ~ c { ( l n f maxElXk+, , l z )p/z +
l~m~n 1~m~n

In[ (log[nl) dp maxE[Xk+mlP}. ( 2 . 3 )
l<m~.

Futhermore , assume that p- ( s )~c ( logs ) -1 ~ for some c ~ 0 and ~ 0 . Then

E max [ S ~ ( k ) [ P ~ c { ( [ n ] maxE[Xk+,,[2)P/2+

[n [(log [n [ )(a-:)p maxE IXk+,, [P}. ( 2 . 4 )
l<~m<<.n

In o rde r to prove Theorem 2. 1, we need some laminas .

Lamina 2. 1. Let p , q ) l w i t h 1 / p + 1 / q = 1 . S u p p o s e X = f ( X ~ ; i E S ) a n d Y = g ( X , ; j E

T ) , where f , g E C ~ and S , T C Na with S ~ T = Q ~ . Then we have
2A2

E X Y -- EXEY ~ 6(p- ( S , T ) ) 7 gl[X[]p[ly[[q.

The following is the Marcinkiewicz-Zygmund-type inequality.

L e m m a 2.2. Suppose that { X k ; k E Na} is a centered p--mixing random field with I[Xk[[p

~cx~ for some p ~ l and all k. T h e n there exists a positive constant D p = D ( p , p ( - ) ) such

that

E ~ X ~ p ~ D ~ E ( ~ X ~ ) p/z for any S E- Nd. ( 2 . 5 )
yES dES

The p r o o f of the above two lemmas can be found in [-12~, we omit them here .

Proof o f Theorem 2. 1. Fo r any p ~ 2 , there exists kEN and 1~q<~2 such that p = 2 ~ q ,

so (2. 1) is equivalent to

~'~ C,,~{ ?~ ?-~' }. ( 2 . 6 )E x, < 2 E I x , I +( EIX, I
iE5 jES

From L e m m a 2.2, it follows that

E
jES jES

jES jES

By no t ing that {X;Z/ and {X[~t are p--mixing fields and by the induction method ,

the p r o o f o f (2. 6) is similar to t h a t of (6) in [11] with L e m m a 2.3 taking the place o f its

inequality (5).
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T o prove T h e o r e m 2.2, we need one more lemma.

Lemma 2. 4. Suppose d = 1, and {Xk~k E N } is a centered p -mix ing r a n d o m sequence

with 2 v / N p - ( 1 ) < l , w h e r e N ~ I . Set S . ( k ) = ~-~,2=lXk+~. Then for any k~0 and l ~ n

~ N , we have

E max I S ~ ( k ) Iz ~ 6n maxEX~+,,. ( 2 . 8 )
l ~ m ~ n l ~ m ~ n

Proof. Let p = p - (1). It is enough t o show that for any k~0 and l ~ n ~ N ,

E(0 V maxS~,(k)) z ~ (n -t- 2na/2p) maxEX~+m. ( 2 . 9 )

It is obvious that ( 2 . 9 ) holds for n = 1. Now we assume that ( 2 . 9 ) holds for n - - 1 , we

will prove that it holds also for n. Note that

maxS~,(k) = Xk -t- 0 V max (Sin(k) -- Xk),
l ~ m ~ n 2 ~ m ~ n

and we have

(0 V m a x S ~ ( k ) ) 2 ~ X ~ - + - 2Xk(0 V m a x ( S , , ( k ) -- Xk))-t- (0 V m a x ( S ~ ( k ) - - X k ) )z.
l ~ m ~ 2 ~ m ~ n 2 ~ , n ~ n

Hence by the hypothesis of induction, it follows that

E((O V m a x S m ( k ) ) ) z

EX~ -~- 2p(EX~)~/Z(E(O V max (Sin(k) -- X k ) ) z )1/2 ~- E(0 V max (S,,(k) -- X~)) z

EX~ + 2p(EX~)~/2(n -- 1 + 2(n -- 1)a/Zp)WZ(maxEX~+m)) wz +
2 ~ m ~ n

(n -- 1 q- 2(n -- 1)a/ap) maxEX~+m ~-~
2 ~ m ~ n

{n + 2 p ( ( ( n -- 1) + 2p(n -- 1)a/2) 1/z ~- (n -- 1)a/z)} maxEX~+m.

By noting that 2 p ( n - - 1 ) * / Z ~ l , it follows that

E ( ( 0 V m a x S = ( k ) ) z
l~m<-<_n

{n + 2p{(2(n -- 1)) :/z + (n -- 1)3/z} } maxEX~+m
l ~ m ~ n

{n + 2pn3/2} max EX~+=.
l ~ m ~ n

The lemma is thus proved.

P r o o f of Theorem 2. 2. First , we consider the special case that p = 2. The following

T h e o r e m is the result.

Theorem 2.4. Suppose d = 1, and {Xk ;k ~ N } is a centered p - - m i x i n g r a n d o m field with

p- ( s ) ~ c ( l o g s ) -~-~ for some c~0 and $ ~ 0 . Set S . ( k ) = E : = X ~ + ~ . Then t h e r e exists a

positive constant c = c ( p - ) such that for any k , n ~ N ,

E max ]Sin(k)]z ~ c n maxEX~+m. ( 2 . 1 0 )
l ~ m ~ n l~m~n

Proof. For the sake of convenience of statement, we assume that { X , X . ; n ~ l } is identi-

cally distributed and k = 0, otherwise, the following proof will be the same with max~<~<.

IIx~+~ll~ t a k i n g the place of IIXll, and & ( k ) t a k i n g the place of & , e t c . Let q > 3 such that

q/ (q-- 2 ) < l +& Define

r = (log(2n))q/(q-Z),p = TZ,r = [ n / p ] , X } ~) -= ( - - c ) ~/ (Xi /~ c ) ,
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w h e r e C = ? ' / 1 / sIIXII2/T,
k k

X(inl,. = X [ n) - - EX}"' ,X["s) = X, -- X~<), ,S*("') = z_ax{-~]((.,)_, ,S~.Z) = z_.a~7~ x'("z)--, •
i = 1 i = 1

T h e n

E maxl&-t 2 ~ 2E max IS}"1' {s 4- 2E maxlS~"z) ]2 ( 2 . 1 1 )
i~<n i ~ n i ~ n

From Theorem 2. 1, it follows that for any l ~ l < m ~ n ,
E[S~" n - S ~ "')]q~Dq{(m-l)q/zllX[lqz 4- (m -- l)]](-- c ) V (X A c)]]qq}.

Hence , by Corollary 3 of [-137,

E maxiS}"~) Iq ~ D~{n~/21lXl[~ 4- nlogq(Zn)ll( - c ) V (X A c)ll~} ~<

Dq {n~/z + nq/Zlogq( 2n ) /T~-2} IlXll~ = ZD~n~/S llX ll~.
It follows that

E max [S~"~) 12 ~< (E max IS}"n ]q)2/q ~ gnllXIl~. ( 2 . 1 2 )

Now, we consider S}"2< Let p l = ~ p / 2 ~ ,
2Jr (2i-- 1)r " i

z , , = ~,, --,~'"2',z,2 = E --,x""2', T , ( i ) = EY,, , r s ( i ) = E Y . .
j = l + ( g i - - 1 ) r j = l + 2 ( i - - 1 ) r j = l j = l

T h e n

max[S["Z) l ~ m a x t T , ( i ) l + m a x l T 2 ( i ) ] + max max IS}"2)-S~7_z~1)r[.
i ~ n i ~ P l i ~ p I i ~ p + 2 (i-- l ) r < j ~ i r

It follows that

E maxlS~ "2~12 ~ 3E m a x [ T l ( i ) Is + 3E m a x I T z ( i ) Is 4-
i ~ n i ~ P l i ~ p l

3E max max ]S~"2) -- S{7z-)1),1 z
i ~ p 4 - 2 ( i - - l ) r < j ~ i r

3E max ] T I ( i ) Is + 3E max I T s ( i ) I s 4- 3(p + 2) maxE max1c("s)o~+.-1), 1z
i ~ p 1 i ~ p 1 i ~ p + 2 j ~ r

3E m a x l T , ( i ) 1 2 + 3E m a x l T 2 ( i ) [ z + 3(p + 2) maxE(
i ~ p 1 i ~ p 1 i ~ p - F2

3E max [TI(i)[2 + 3E max [T2(i)12 +
i ~ P 1 i ~ P I

r + (i-- 1)r

6 ( p + 2 ) m a x { E ( E X}"2)+) z + E (
i < p + 2 j = l + ( i - - l ) r

By noting that
r + (i--1)r

( ~ ENd"Z)+) z = (rEX("Z)+)Z~(r2E[XII{IXI ~ c } ) 2 ~
j = l + ( i - - l ) r

n z
4 ( r T / ( n1/2IIXll2)EX2)2 = 4rZT2EXZ/n ~ 4 -~T2EXZ/n = 4 n E X Z / p ,

from Theorem 2. 1 it follows that
r + ( i - - 1 ) r

E( ~ ] ..,Y~"s'+)2<
j = l + ( i - - 1 ) r

r + (i-- 1)r r + (i-- l ) r

2{E( E ~--'rX'("s'+ -- ---sVX'<"s'+])z + ( E EX~"a'+)s} ~
j = l + ( i - - 1 ) r j = l + ( i - - l ) r

r + ( i - - 1 ) r

E
j = l + ( / - - 1 ) r

r + (i-- 1)r

E x y ) ' } = 11 + I2 + I..(z. 13)
j = l + ( i - - l ) r
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8nEX2/p + K r E X z. ( 2 . 1 4 )

Similarly,
r + (i--1)r

E( ~ X}"Z)-) 2 ~ 8nEXZ/p -4- K r E Xz. ( 2 . 1 5 )
j = l - F ( i 1)r

From ( 2 . 1 4 ) and ( 2 . 1 5 ) it follows t h a t

Ia ~ K n E X z. ( 2 . 1 6 )

Now, from the condition p - ( s ) ~ c ( l o g s ) -~-~ it follows that for n large e n o u g h ,

2p (r) ~ P l ~ C ( l o g n ) q/(q-z)(lOgn) -l-a % 1.

S o , from L e m m a 2.4 and Theorem 2.1, it follows that for no large enough and n ~ n o ,
I, ~ 6Pl maxEYyl ~ K p l r E Xz ~ K n E X2. ( 2 . 1 7 )

i ~ P 1

The above inequality holds also fo r n~no. Similarly,

Iz ~ K n E X z. ( 2 . 1 8 )

Put t ing ( 2 . 1 6 ) , ( 2 . 1 7 ) and (2. 18) into (2. 13) yields E max IS, ]Z~KnEX~. This com-
i~<n

pletes the proof.

Now, we prove (2. 2) by induction on p . When p = 2, (2. 2) follows from

Theorem 2.4 immediately.

When p ( > 2 ) is not a n integer , assume that ( 2 . 2 ) holds for [ p ] , that i s , there exists

KaY2 such that fo r every k ~ 0 , n ~ l ,

E max [S,,(k)I ~ ~ K ~ ( ( n maxEX~Z+~) [~]/e + n maxE[X,+m[ ~*~) ( 2 . 1 9 )
l ~ m ~ n l ~ m ~ n ] ~ m ~ n

and

E max [S~(k)12 ~ Kin maxEX,Z+~. ( 2 . 2 0 )
l~m~.~n l~m~-~n

We will show that ( 2 . 2 ) remains valid fo r p . W i t h o u t a loss of genera l i ty , we can as-

sume that k = 0 . Fo r the sake o f convenience of s t a t emen t , we assume t h a t { X , X k ; k ~ l }
z 2 p

is identically distributed. A l s o , we can assume that (p ( 1 ) ) 7 ^ 7 ~ 2 @p , where q - - p _ l .

2Az ]
Otherwise , there exists a positive integer J such that ( p - ( j ) ) 7 7 ~ 2 ~ . It is easy to see

that
J j

maxlS l< m a x .
l ~ m ~ n k=O l ~ . j ~ n / J i = 1

T h e n we can consider {Xis+k ; i ~ 1 } fo r each k separately, instead.

Now, let e ( j ) ' s be i. i . d . r . v . s with P ( s ( j ) = l ) = P ( e ( j ) = - - l ) = l / 2 , w h i c h are also
J

independent o f {Xk}. DefineYs= ~ X, a n d Z j = ~-]i=]. i = -.:...di=l.~(i)=l ~:() 1X,. T h e n Y j - k Z j = S i
J

and Y j - - Z j = ~,~=le0)X~. From the fact that l y - - z l P - - l y l P ~ - - z D p ( y ) , where D ~ ( y ) =
p ] y Ip-1 s g n y , it follows that IYj ]P~ ] Y j - - Z j ]Pq-Z~Dp(Yj)~ [ Y i - - Z s ]Pq-Z+Dp(Yj) + q-
Z i D p ( Y i ) - . So

E max ]Yj ]P ~_E maxlYj -- Zi]P q--
j<~n ) ~ n
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E(maxZ+ )(maxDp(Yi) +) + E ( m a x Z T )(maxD~(Ys)- ). ( 2 . 2 1 )

Fixed ¢ ( j ) ' s , the distance of the two sets { j ; s ( j ) = l } and { j ; s ( j ) = - - l } is one. B y L e m -

ma 2.1 it follows that

Ex (maxZ+ ) (maxDp (Yj) + ) ~ (Ex maxZ + ) (Ex maxDp (Y~) +) --
j%n j ~ . j ~ n j ~ n

6(p- (1)) ~ q (Ex maxZ+*)~/~(Ex maxD,(Yj)+q) ~/~
j ~ n j ~ n

p(Ex max lZjl~):/~(Ex max IYj IC~) ~~ +

2 2
6p(p (1))7^7(Exmax[Z~l" + ExmaxlY~]*) = "I~ + I~. ( 2 . 2 2 )

j ~ n j ~ n

Similarly,

E x ( m a x Z f ) ( m a x D p ( Y j ) ) ~ 11 + 12. ( 2 . 2 3 )

By the hypothesis of induction,
J

Ex max IZjl z = Ex max I ~ X j I { e ( i ) = - - 1 }l 2 ~ K l n E Xz,
j ~ n j ~ n ~= 1

J

Ex max IYj [E~l = Ex max] ~ X f f { e ( i ) = 1} IEp~ ~ K I { ( n E X 2 ) u'?/z 4- nE IXIE*?}.
j ~ n j ~ n i = 1

It follows that

I~ ~ K 2 {n p/2 I l X l l f + n "/~+<*-'/E*3~ I I X L IIXl[f;3' } . ( 2 . 2 4 )
On the o t h e r h a n d , by Theorem 2.1 it follows that

2E maxlYj -- Zj[ = ExG maxl ~ e ( i ) X ~ I P ~< 2ExGI s(i)X~l p =
j ~ n j ~ n i = 1 l'= 1

n

2gcEx I ~ ( i ) x ,I* <~ g~Kn*/~l[xllf + -IIXIIN>. ( 2 . 2 5 )
i = l

Put t ing ( 2 . 2 1 ) ~ ( 2 . 2 5 ) together yields
{ I / 2 + ( p - - 1 ) / [ p ~ }

E max INs l* ~g4{nP/ZllXllf + "llXll~ - - IlXll~llXllf;~ } +

2 2
12p(p- ( 1 ) ) 7 ^ 7 ( E max ]Zj ]P + g max [Yj 1'). ( 2 . 2 6 )

j ~ n j ~ n

Similarly,

I ~ IY.~ I'12p(p- (1))~AT(EmaxlZi + E m a x ).
j ~ n j ~ n

From ( 2 . 2 6 ) and ( 2 . 2 7 ) it follows that

E max I g j l ' + E max 12~1' ~<

2 A 2 { 1 / 2 ~ ( p 1)/Lp]} 1g , ( 1 -- 2 4 p ( p ( 1 ) ) 7 V)-l{n*/211X[l~ + nllXllN + n " IIXII2IIXIGj }.
By noting that

E max ISj Ip = E max Igj + Z~ [p ~< 2p-1 {E max IYi Ip + E max IZi ]P},
j ~ n j ~ n j ~ n j~-~n

it follows t h a t

( 2 . 2 7 )
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EmaxlSjlp ~K{np/~IIXiI~ +nl]XG + n~/~+¢P-~/EP~IIXII~IIXIIf~I}. ( 2 . 2 8 )

If 2 ~ p ~ 3 , then [ p ] = 2 . In this case (~. 2) follows from ( 2 . 2 8 ) immediately.

If p > 3 . From the Lyapunov inequality
Ep]- z

EIXI ~'~ ~ ( E X ~ ) ~ - ~ ( E I X I ' ) , ~,
it follows easily that ( for details see [ 1 4 ] )

{ 1 / 2 + ( p - - 1 ) / [ p ] }. IlXll=llXllf;? ~ .'/=llXll~ + .llXll~. ( 2 . 2 9 )

This proves ( 2 . 2 ) for p by ( 2 . 2 8 ) and (2. 29).

When p ~ 3 is a n integer , a long the same lines as in the above proof , with p - - 1 in-

stead of [ p ] , we can deduce that (2. 2) remains t rue for p . Now, the p r o o f of

Theorem 2.2 is complete.

P roof o f Theorem 2.3. If d = 1, from Theorem 2. 1 and Corollary 3 o f MariczE~3J, it fol-

lows that ( 2 . 3 ) holds. A l s o , from Theorem 2. 2 it follows that ( 2 . 4 ) holds fo r d = l if

p-(s)~(logs) -~-~. In the case of d ~ 2 , by using the method of [ 1 3 ] , one can prove (2.

3) and ( 2 . 4 ) by induction on d . Fo r details see [ 1 0 ] .

§ 3 C o m p l e t e C o n v e r g e n c e

Applying Thoerem 2.1 and Theorem 2. 3, one can obtain the following resul t s on the

complete convergence fo r p--mixing field, which is a kind o f convergence ra te with respect

to the strong law of large numbers c15].

Theorem 3. 1. Let a ~ l / 2 , p a ~ l , p ~ ] , and {X,X,;nENd} be a p--mixing field of iden-

tically distributed random variables with E X = 0 if a ~ l ,and

EIXIPlogd-I(IXI) ~ oo. ( 3 . 1 )

Then

V ~ > O , ~ l n l P ° - 2 P ( m a x r S ~ f > ~ [ n l ~ ) < oo. (3.2)
n l ~ j ~ n

The following theorem deals with the case of pa= 1.
T h e o r e m 3. 2. Let l ~ p ~ 2 , and {X,X,;nEN ~} be a p--mixing field of identically dis-

tributed random variables with E X = 0. Assume that

EIXIPlogpV(a-~)(IXI) ~ o o , for some f l ~ d ( p - - 1). ( 3 . 3 )

Then

V s > O, ~--] Inl ~P(max JS~I > e l n l ~/p) < ~ . ( 3 . 4 )
n l ~ j ~ n

The ideal condition fo r ( 3 . 4 ) is the condition ( 3 . 1 ) . If p ~ 2 - - 1 / d , then condition

( 3 . 3 ) just is ( 3 . 1 ) . When p~2--1/d, ( 3 . 4 ) also holds u n d e r condition (3. 1 ) , if some

conditions on the mixing coefficient are added.

Theorem 3.3. Let 1 ~ p ~ 2 , and {X,X,;nEN a} be a p--mixing field o f identically dis-

t r ibu ted random variables with E X = 0 and ( 3 . 1 ) . Assume t h a t
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p - (s) ~ c(logs) - l - e , for some c ~- 0,8 ~ 0, ( 3 . 5 )

then ( 3 . 4 ) holds.

An immediate consequence of Theorem 3. 2 and T h e o r e m 3. 3 is the following

Marcinkiewicz-Zygmund law of large numbers.

Corollary 3. 1. Let 1~p%2, and { X , X , ; n E Nd} be a p - - t a x i n g field of identically dis-

tributed r a n d o m variables with E X = 0 and ( 3 . 1 ) . A s s u m e that (3. 3) or (3. 5) holds,

then

limS,/[n[ 1/~ = 0 a.s. ( 3 . 6 )

§ 4 Almost Sure Summabil ity

Based on T h o e r e m 2.1, we present the following result on the almost sure summabili-

ty of partial s u m s , which is the another way t o describe the convergence rate in the s t r o n g

law of large numbers. (cf. [ 1 4 , 1 6 ] ) .

Theorem 4. 1. Let { X , , n E Nd} be a f - m i x i n g r a n d o m field with E X , = 0 and

s u p , E [X. 121og~( IX. I ) < oo for some D>d.
Then for any p > 0 and any { q ( I n ] ) ;nEN d} of positive numbers satisfying

I. I. I) < o0, (4. 1)

we have

2 maxlSilp/q(InI)<°° a.s. ( 4 . 2 )
l~-~i~nn

The proof of Theorems 3 . 1 , 3 . 3 and 4. 1 is similar t o that in [10] with some changes

o n l y , and so is omited here.
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