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CONVERGENCE RATES IN THE STRONG LAWS OF
ASYMPTOTICALLY NEGATIVELY ASSOCIATED
RANDOM FIELDS

Zhang Lixin Wang Xiuyun

Abstract. In this paper, a notion of negative side p-mixing (o~ -mixing) which can be regarded
as asymptotic negative association ts defined, and some Rosenthal type inequalities for p™-mix-
ing random fields are established. The complete convergence and almost sure summability on
the convergence rates with respect to the strong law of large numbers are also discussed for p~-
mixing random fields. The results obtained extend those for negatively associated sequences and

p* -mixing random fields.

§ 1 Introduction

Let d be a positive integer, N? be the d-dimensional lattice equipped with the coordi-
natewise partial order, <{. For any ACNY, set S,= "EAX,,, |A| = the cardinal number
of A. For any n€ N4, let (n)={mEN?,m<n},S,=Sw,|n|=|®)|=nn;...n;and ||n|
denote the Euclidean norm. Occasionally, n,%, etc. will also denote positive integers, the
reader should not be confused from their context. A d-dimensional discrete field of real
random variables {X,;%2€ N?} will be called “centered” if EX,=0. For a random variable
X, define | X||,=(E|X|*)"?. For two nonempty disjoint sets S,7CN?, we define dist (S,
T) to be min{||;—4||;;E€S,k€T}. Let 6(S) be the s-field generated by {X,;2€ S}, and
define o(T") similarly. Let & be a class of functions which are coordinatewise increasing.
It is easy to see that for any #<c, the functions 8V (x A¢) and x—58V (x Ac) are in %.

A field {X,;2€ N?} is called negatively associated (NA) if for every pair of disjoint
subsets S,T of N?,

Cov{f(X:;i € $),g(X;3;€ TH} <0,
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whenever f,g € €. {X,;EE N} is called p* -mixing if
p" (s) = sup{p(S,T);S,T € N*,dist(S,T) = s} = 0(s > 00),
where
p(S,T) = sup{|E(f — Ef) (g — Eg)/(If — Efl.llg — Egll) |5
S € L, (6(8)),g € L,(a(T))}.

In the case of d=1, many limit results for NA sequences were obtained recently (cf.
[1~5] ete). But, it seems that their methods can not be used to the cases of d2>2. By the
way, many weak limit results for p*-mixing fields were obtained in the passed several
years. (cf.[6~9] etc. ). Laterly, [10,11] studied the almost sure convergence p* -mixing
fields. The purpose of this paper is to put this two kinds of dependence together and study
the almost sure convergence for this two kinds of dependent fields simultaneously. In this
section, we define a concept of p”-mixing and state some basic properties of it. In § 2, we
establish some Rosenthal-type inequalities for block sums of o™ -mixing fields, which is the
main tool in this paper. In § 3, we obtain the results on the complete convergence and the
Marcinkiewicz-Zygmund law of large numbers. In § 4, we study the almost sure summa-
bility of partial sums. The results obtained extend those for NA sequences and include
some of those for p*-mixing fields.

Definition. A field {X,;#E€ N} is called p~ -mixing if
o~ () =sup{p” (S§,T);S, T € N, dist(S,T) = s} >0 (s—>o00),
where

Cov{f(X;;i € 8),g(X;57€ T}
Var{f(X;;i € S)} « Var{g(X,;7 € T)}

Let z7=0V x and x~=—(0Az). It is easy to see that if {X,;2E N} is p~-mixing,
then (X, ;EE€N?} and {X; ;£ EN*} both are also p~-mixing with the mixing coefficients

;f,gé%.

e (S, T) =0V sup

not greater than p~ (s).

It is obvious that p~ (s)<Cp* (s). It is easy to see that {X,;%2€ N} is negatively associ-
ated if and only if o7 (s)=0 for s==1. So p -mixing is weaker than p*-mixing and can be
regarded as the asymptotically negative association or negative side p”-mixing. The fol-
lowing gives an example of a p~-mixing sequence which is neither NA nor p*-mixing.
Example 1. Let {§,;n2>1},{7,;22>1} and {r,;n=>1} be three independent sequences of i.
i.d. standard normal random variables. Let

77m’ lf n = 22m——1

‘ ., fn=2m—1 )
Xn: [ Yn: /S lfnzzzm

— & n=2m .
T,, otherwise,

and Z,=X?4Y,. Then {X,;n=1} and {Y,;n==1} are two independent sequences of NA i-
dentically distributed normal variables. Also, {X,;n==1} is a 2-dependent sequence, so
{X.;nz=1} is a p"-mixing sequence with p" (2) =0. From Property P3 below it follows
that {Z,;n=>1} is o~ -mixing with p~ (2)=0. But,{Z,;n>>1} is neither NA nor p"-mixing,
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since
Cov{Zym1+Zsm} = Cov{Xs,_1, X%} = E&, — (E§,)2=2>0
and

Cov{Zypm-1,Zm} .
Var{Zg-1}Var{Zz}

The following two properties of o~ -mixing are obvious from the definitions.

- -:1))——}40 as dist (27"71,2%") = 27! > oo

Property P1. A subset of a p”-mixing field {X,;2€ N?} with mixing coefficients p~ (s) is
also p~-mixing with mixing coefficients not greater than p~ (s).
Property P2. Increasing functions defined on disjoint subsets of a p”-mixing field {X,;#
€ N?} with mixing coefficients p~ (5) are also p~ -mixing with mixing coefficients not
greater than o7 (s).
Property P3. Suppose that {X;;2EN?} and {Y;; £ €N’} are two independent o~ -mixing
fields with mixing coefficients p;” (s) and p; (s) ,respectively. Then {(X,,Y,);2#€ N} is al-
so a p_ -mixing field with mixing coefficients not greater than p; (s)+p; (s).
Proof. It is enough to show that
E{(f(X.,Y.sn € A)g(X,,Y.sn € B)} <
E{f(X,,Y,;n € A)}E{g(X,,Y,,n € B)} +
oy ) + pr GIES(X,,Y,5n € AYHEG (X,,Y.m € B},
where f,g €% and r=dist(A,B). Let f1(Y,;nE€ A)=Exf and g,(Y,;nE€ A) =Exg,where
Ex is the expectation taken over {X,;n=>1} only, i.e. Ex(«)=E(+|Y,;n=1), and Ey is
defined similarly. Then £, and g, are also in ¥. From the Fubini theorem, it follows that
Efg =Ey{Exfg} < Ey{(Exf)(Exg)} + pr (MEy {(ExfH)*(Exg"'?} <
Efg + o7 W {Ey(Ex DV HEL(Exg)® ) + pr (MOESHVE(EZH? K
Efg + (pr () + p; /) (ESFHVE(EgH'2,

which completes the proof.

§ 2 Rosenthal-type Inequalities

The following Rosenthal-type inequality for p~-mixing random fields is the main tool
for studying the limit results in this paper.
Theorem 2.1. Suppose {X;;kEN?} is a p~-mixing random field with EX;==0 and || X, /|,
<Coo for some p==2 and all 2. Then there exists a positive constant B, depending only on p

and p~ (*) such that for any finite set SCN7,
E| X" <B,(XEIX!+ [ SEIX.|2)"). 2. 1)
kES RES

tes
When d=1, the Rosenthal-type inequality remains ture for the maximal partial sums,

if some conditions on p~ (+) are added.

Theorem 2. 2. Suppose d=1, and {X;;2E N} is a sequence of p~-mixing random vari-
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ables with EX,=0 with [|X,|[,<Coo for some p==2 and all 2. For any £220,n>>1, set S,(k)
= E:=1Xk+" . Assume that g7 (s)<Cc(logs) 717 for some ¢>>0 and §>>0. Then there ex-

ists a positive constant B, depending only on p and p~ (+) such that for any £20,n221,
E max |S.(B) | < B,((n maxEX}, )% + n maxE| X, ). 2.2)

1<m<n 1<m<n 1<m<n

Although we don’t konw whether (2. 2) holds true or not when d>>2, we establish
the following inequalities for the maximal partial sums.
Theorem 2.3. Let {X,;nE N} be a centered p~-mixing field. Set S,(&)= >,
Then for each p==2, there exists a positive constant c=c(p,p~ ) depending only on p and
p~ (+) such that for any £,nE€ N,
E max [S,. (&) |* <c{(|n] maxE[XH [2)#72

1<K<m<n 1I<m<n

n|log|n[)* maxE|X.;,|*}. 2.3

lgmanlH""'

Futhermore, assume that p~ (s)<lc(logs) '* for some ¢>>0 and 6>0. Then
E max |S,.(&)|? <c{(|n] maxE|X,,+ [2)#72 -

1<m<{n 1<m<n

|n| (og|n|)“ P? maxE]X,,+,,,| (2. 4)

<m<n

In order to prove Theorem 2.1, we need some lammas.
Lamma 2.1. Let p,g>>1 with 1/p4+1/g=1. Suppose X=f(X;;:€S) and Y=g(X,;j€
T), where f,g€% and S, TCN? with SNT=(J. Then we have

EXY — EXEY < 6(p~ (S, T)*" %X, 171,
The following is the Marcinkiewicz-Zygmund-type inequality.
Lemma 2.2. Suppose that {X,;£EN?} is a centered p~ -mixing random field with | X,|l,
(oo for some p>1 and all £. Then there exists a positive constant D,=D(p,p” (+)) such
that

*<DE(X2)™ forany S € N (2.5
i€s jes
The proof of the above two lemmas can be found in [127], we omit them here.

Proof of Theorem 2.1. For any p=>2, there exists 2€N and 1<{g<{2 such that p=2%¢,

so (2. 1) is equivalent to

<Co {SEIX 1N+ [ SEIX 1)) 2.6
jes jes
From Lemma 2. 2, it follows that
k—1

E‘EXJ 2kq<D2",,E( ZXJZ)Z q<

jes i€s
b1 2y A1 k-,
27D (B X))+ E( x50 2.7
jES j€S '
By noting that {X;?} and {X;?} are p~-mixing fields and by the induction method,

the proof of (2. 6) is similar to that of (6) in [11] with Lemma 2. 3 taking the place of its
inequality (5).
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To prove Theorem 2. 2, we need one more lemma.
Lemma 2. 4. Suppose d=1, and {X;;£E N} is a centered p -mixing random sequence
with 2+/Np~(1)<<1, where N>1. Set S,(k)= D" _ X.\n. Then for any k>0 and 1<(n
<N, we have

E max [S, (k) |* < 6n maxEX?%,,. (2.8
1<m<n 1\m<n
Proof. Let p=p (1). It is enough to show that for any 2220 and 1<<a<{N,
E(O V maxS, (%)) < (n + 2n*%p) max EX{, .. (2.9
1<m<n 1<m<n

It is obvious that (2. 9) holds for n=1. Now we assume that (2. 9) holds for n—1, we
will prove that it holds also for n. Note that
max S, (&) = X, + 0V max (S,.(k) — Xu),

1<Km<n 2<m<in

and we have

0V maxS )P X; 42X, (0 V max (5,,(&) — X)) + (0 V max (5,8 — X))

Lm<n 2K<m<n 2Km<n

Hence by the hypothesis of induction, it follows that
E((0 V maxS, (k)))* <<

1<m<n

EX} + 20(EXD'*(E(0 V max (S,(k) — X))D" + E V max (5, — X))’ <<

2<m<n 2<m<n

EX? 4 20(EXH)2(n — 1 + 2(n — 1)) (max EX} )V +

2m<n

(n— 14+ 2(n— 1)"p) maxEX},, <

2<Im<in

{(n+ 200((n — 1) + 20(n — D¥HV? 4 (n — 1)¥®)} maxEXZ,,.

1<m<in

By noting that 20(n—1)¥*<1, it follows that
E((0 V max S, (£))* <

1<m<n

{n 4+ 20{2(n — INV* + (n — 1)¥?}} maxEXE, ., <

1sm<n

{n 4+ 2pn**} maxEXE,,.

1Sm<n

The lemma is thus proved.
Proof of Theorem 2. 2. First, we consider the special case that p =2. The following
Theorem is the result.

Theorem 2.4. Suppose d=1, and {X;;2#EN} is a centered p~-mixing random field with
o~ (s)<<c(logs) ™' for some ¢>0 and §>0. Set S,(%)= E;Zle+m . Then there exists a

positive constant c=c(p~) such that for any £,nEN,
E max |S, (&) 1* <cn maxEXZ,,. (2.10)

1<m<n 1<m<n
Proof. For the sake of convenience of statement, we assume that {X,X,;n=>>1} is identi-

cally distributed and £=0, otherwise, the following proof will be the same with max <<,
| X4inll; taking the place of || X||, and S.(£) taking the place of S;,etc. Let ¢>>3 such that
g/ (g—2)<C1+86. Define

T = (log(2n))¥ ™2, p =T r = [n/p], X" = (=) V (X; A o),
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where c=n"*|X|,/T,

%
XM = X™ —EX™, X0 = X, — X, 800 = ZXI'(M) S = EX;("”.
i=]

i=1
Then
E max|S; 12 < ZEInaXIS("”!z—\L-ZEnrxax!S("z’l2 (2.11)

i<n i<n i<n

From Theorem 2.1, it follows that for any 1<{U/<m<n,
E[STP — S " < D,{Gm — DY*|X|l§ + m — D[ (— ) V (X A i}
Hence, by Corollary 3 of [13],
E maxlS("“ [* << D {n"?| X2 + nlog? @) |[(— ) V (X A DI} <<

D, {n* 4 n"*log*(2n)/T*"*}| X |3 = 2D X |3.
It follows that

E max |S* |2 < (E max|S("“| e < Kn|| X2, 2.12)
Now, we consider S”. Let p,=[p/2],
2ir {(2i—Dr
Yo= > XM.Y,= >, X, T,()= ZY,I, T,G) = ZY,Z.
j=1+i—Dr j=1+2G-Dr

Then
max [ S | <max{I @) + max|T2(z)| + max max |S¢P — SEP,, .

i<n i<p 1 i<p 1 i<p+2 G—Dr<j<ir
It follows that
E max|S# |2 << 3Emax |7,(G)|? + 3E max |[T,(G) % +

i<n i<p, i<p,

3E max max |S{® —S8P,, 2
I<p+2 (= Dr<j<ir

3E maxIT )2+ 3E rnaxsz(z) 124+ 3(p + 2 maxE rnaxlS)H, e |2 <<

l\pl r\pl t\p J<r
r4+GE—1r s
3Emax|T (l)lz+3EmaX|T2(l)iz+3(p+2) maxE( 2 |X§n2)|)
<t <t P2 ¥ G-Dr
3E max|T1(z) [2 - SE maxsz(z) |2 +
3\?1 l\ 1
r+G—1)r 2 r+ (G—1r I
6(p + 22 max {E( > X"V 4+ E( > X)) =L+ L+ 1,021
ispt i=1¥G—1r j=1FG—Dr
By noting that
r+(i—1)r PR .
EX" )" = GEX?"y < G2EIX|I{|X| = c})? <
i=1+CG—Dr

4T/ VX || DEX?)? = 4T EX?/n < 4 ;TZEXZ/n = 4nEX?/p,

from Theorem 2.1 it follows that

r+(—Dr
+13\2
o8 xry
i=1+(¢—Dr

r+G—Dr r+GE—Dr
Z{E( Z [X§n2)+ _ EX§n2)+])z +( Z EX§"2)+)Z}<

J=1+G—1)r j=1+G—1Dr
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8nEX?/p + KrEX". (2.14)
Similarly,
74+ (i—Dr s
E( > X )" < 8EX*/p+ KrEX. (2.15)
j=1+G—Dr
From (2. 14) and (2. 15) it follows that
1, < KnEX?. (2.16)

Now, from the condition o~ (s)<{c(logs) "'~ it follows that for n large enough,

207 (1) A py << Clogn)¥ @ ® (logn) 1% < 1.
So, from Lemma 2. 4 and Theorem 2. 1, it follows that for n, large enough and nz=n,,
I, < 6p, maxEY? << Kp rEX?* << KnEXE, (2.17)

i<p
The above inequality holds also for n<{n,. Similarly,
I, << KnEX®, (2.18)

Putting (2. 16),(2.17) and (2. 18) into (2. 13) yields E max |S, |2<<{KnEX* This com-

<

pletes the proof.
Now, we prove (2. 2) by induction on p. When p = 2, (2. 2) follows from
Theorem 2. 4 immediately.
When »(>>2) is not an integer, assume that (2. 2) holds for [ p], that is, there exists
K,>22 such that for every 220,221,
E max |S,,(&) | < K,((n maxEX}, )2 4+ » maicElXHmIB’]) (2.19

1<mn 1<m<n 1<m<n

and

E max |S, (&) |* << K\n maxEX} . (2.20)

1<m<n 1<m<n

We will show that (2. 2) remains valid for p. Without a loss of generality, we can as-

sume that £=0. For the sake of convenience of statement, we assume that {X,X,;k=>1}

2,2
is identically distributed. Also, we can assume that (o~ (1))? "a <$ » where g= L.

p—1

1 .
<24P‘ It is easy to see

2,2
. . . _ 2,2
Otherwise, there exists a positive integer J such that (p~(J))? ¢

that

, ‘
max |S, | << Z max ‘ ZJ:X”MI.
i=1

1<m<n o ity
Then we can consider {X,;,4:3;:==1} for each k separately, instead.

Now, let €(j)’s be i.i.d. 1. v.s with P(e(;)=1)=P(e(j>=—1)=1/2,which are also
independent of {X,}. Define Y,= Zj X;,and Z;= Zj X.. ThenY,+Z;=S5;

i=1,e(i)=1 i=1,e()=~1
and Y, —Z,= Ejzle(i)Xi. From the fact that |y—z2|?—|y|?>=—2D,(y), where D,(y)=
plyl* Vsgny, it follows that |Y,|*<|Y,—Z;|"+Z,D, (Y D<I|Y,—Z;|"+Z}D, (Y )* +
Z;D,(Y;)". So
Em<ax|Y]\” <Em<ax|Y, — Z|* +

PSS =0
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E(maxZ*)(rnaxD (Y1) + E(maxZ; )(maxD XN, (2.21)

J<a J<n j<n

Fixed €(j)’s, the distance of the two sets {j;e(j)=1} and {],e(])—— } is one. By Lem-
ma 2.1 it follows that
Ex(maxZ+)(maxD (Y1) << (Ex maxZ*)(EX maxD,(Y) ") +

< jsn j<n i<n

6(p" (1) (Ey maxZ; )V (Ex maxD, (¥,) )" <

j€n i<n

p(Ex max\Z |2 )”Z(Exmax|Y |E/ﬂ)h 4

J<n J<n

6p(p~ (1))P Q(Exmax[Zi"—{—EXmax\Yl”)u I, + 1, (2.22)

j<n j<n

Similarly,
EX(maxZ Y(maxD, (YD) < I, + I,. (2.23)

jEn i<n

By the hypothesis of induction,

EXmale| —Exmax|ZXI e(t) =— 1} < KnEX?,

j<n

Ex max|Y [t = Ey max] EXI (@) = 1} K {(EXH)I2 4 4E | X |1},

i<n

It follows that
I <K X5+ 2P IX L X ) (2.24)
On the other hand, by Theorem 2.1 it follows that

Emax|Y, — Z,| = E;E, max] Ee(z)X |# << 2E4E. JZe(z)X |» =

i<n

2E.Eyx| Ee(z)x |? < Ky {n??| X |15 + n)| X |2} (2.25)

Putting (2. 21)~(2 25) together yields
E max |V, |* <K, (| X 1§ + nl| X} + =

j<n

(1/2+(p—13/[p}

A+

I

7 ( Emax]Z [* +Emax|Y 12, (2.26)

i<n j<n

2,
12p(0~ (1))?"

Similarly,
Emax|Z,|* <K {n"*|IXlf + n[ X} + = WXL X 6t +

j<n

12p(0~ (14 (E max|Z;|* + Emax|Y,|"). (2.27)

JE<n

From (2. 26) and (2. 27) it follows that
Emale | +Emax|Z |? <

j<n i<n

Ko — 24pCGom Q)F DT 2 1XNE + all XN + 2 X Xl
By noting that
Emax]S |P=Emax\Y + Z;|* << ZPIEmax|Y|”+Emax|Z|

<=z j<n jsn

it follows that
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Emax |5, < K{n*II X1} + =l X[} + n TR, X Nl (2.28)

j<n

If 2<<p<3, then [p]==2, In this case (2. 2) follows from (2. 28) immediately.
If p>3. From the Lyapunov inequality
E|X|® < (EXDFF E|X|)FT,
it follows easily that (for details see [14])
TN IX X N < 21X + X2 (2. 29
This proves (2. 2) for p by (2.28) and (2. 29).

When p>>3 is an integer, along the same lines as in the above proof, with p—1 in-

stead of [p], we can deduce that (2. 2) remains true for p. Now, the proof of
Theorem 2. 2 is complete.
Proof of Theorem 2.3. If d=1, from Theorem 2. 1 and Corollary 3 of Maricz"*, it fol-
lows that (2. 3) holds. Also, from Theorem 2. 2 it follows that (2. 4) holds for d=1 if
p~ (s)<{(logs) '"°. In the case of d>>2, by using the method of [13], one can prove (2.
3) and (2. 4) by induction on 4. For details see [10].

§3 Complete Convergence

Applying Thoerem 2. 1 and Theorem 2. 3, one can obtain the following results on the
complete convergence for p~ -mixing field, which is a kind of convergence rate with respect
to the strong law of large numbers['®:.

Theorem 3.1. Let a>1/2,pa>1,p=>1, and {X,X,;nEN?} be a p”-mixing field of iden-
tically distributed random variables with EX=0 if «<{1,and

E[X|?log" ' (|X|) < oo. 3.1
Then

Y e>0, Z|n|»ﬂ—2P(ga<x;S,|>e|n|"><oo. (3.2)
3 SISsn
The following theorem deals with the case of pa=1.

Theorem 3.2. Let 1<<p<{2, and {X,X,;nE N} be a p~ -mixing field of identically dis-
tributed random variables with EX=0. Assume that

E|X |*logh¥“ V(| X]|) << oo, forsome 8>d(p— 1). (3.3)
Then
VE>O,ZIn|"P(max]S,I>€]n|””)<00. (3. 4)
- 1<

The ideal condition for (3. 4) is the condition (3.1). If p<{2—1/d, then condition
(3.3) justis (3.1). When p==2—1/d, (3. 4) also holds under condition (3.1), if some
conditions on the mixing coefficient are added.

Theorem 3.3. Let 1<{p<{2, and {X,X,;nEN?} be a p~-mixing field of identically dis-
tributed random variables with EX=0 and (3.1). Assume that
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o~ (s) <cUogs) 1%, for some ¢ > 0,6 >0, (3.5)
then (3. 4) holds.
An immediate consequence of Theorem 3. 2 and Theorem 3. 3 is the following
Marcinkiewicz-Zygmund law of large numbers.
Corollary 3.1. Let 1<{p<<2, and {X,X,;nEN“} be a p~-mxing field of identically dis-
tributed random variables with EX =0 and (3. 1). Assume that (3. 3) or (3. 5) holds,

then
limS,/|n|Y* =0 a.s. (3. 6)

§ 4 Almost Sure Summability

Based on Thoerem 2. 1, we present the following result on the almost sure summabili-
ty of partial sums, which is the another way to describe the convergence rate in the strong
law of large numbers. (cf.[14,16]).

Theorem 4.1. Let {X,,nE N’} be a p~-mixing random field with EX,=0 and
sup,E| X, |Hog” (| X,] )< oo for some D>d.
Then for any p>>0 and any {g(|n|);nEN?} of positive numbers satisfying

Dilnl*2/q(|n]) < oo, (4.1)
we have

max [S;[?/q([n]|) < oo a.s. (4.2

1<iC

The proof of Theorems 3.1,3. 3 and 4. 1 is similar to that in [10] with some changes

only, and so is omited here.
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