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Invariant measures for the strong-facilitated exclusion

process

LEI Yu-huan SU Zhong-gen∗

Abstract. Consider a generalized model of the facilitated exclusion process, which is a one-

dimensional exclusion process with a dynamical constraint that prevents the particle at site x

from jumping to x+ 1 (or x− 1) if the sites x− 1, x− 2 (or x+ 1, x+ 2) are empty. It is non-

gradient and lacks invariant measures of product form. The purpose of this paper is to identify

the invariant measures and to show that they satisfy both exponential decay of correlations and

equivalence of ensembles. These properties will play a pivotal role in deriving the hydrodynamic

limit.

§1 Introduction

In the 1970s, Dobrushin and Spitzer initiated the idea of obtaining a mathematically precise

understanding of the emergence of macroscopic behavior in gases or fluids from the microscopic

interaction of a large number of identical particles with stochastic dynamics. This approach has

been proven to be extremely fruitful in both probability theory and statistical physics, and it

continues to garner attention today. One of the models introduced at the time is the exclusion

process. It is a lattice model with a maximum of one particle per site that jumps after an

exponential time. Despite the fact that the structure is simple, numerous results have been

obtained (for example, see the books [3, 5]).

In the study of the hydrodynamic limit, exclusion processes with dynamical constraints

have recently received a lot of attention. The models with hydrodynamic limits of a typical

non-linear diffusion equation of the following form are of interest to us.

∂tρ = ∂u

(
ρm−1∂uρ

)
. (1)

The equation (1) with a positive integer m arises in the models discussed in [2], whereas only

the case m = −1 appears in the literature for the equation with m negative, see [1, 4].
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The model discussed in [2] has the dynamical constraint that the particle at site x (resp.

x+1) is only allowed to jump to x+1 (resp. x) if the range {x−m+1, x−m+2 · · · , x−1, x+

2, x+3, · · · , x+m} has at least one m−1-polymer, it should be noted that these m−1-polymers

in the connected range {x −m + 1, x −m + 2, · · · , x +m − 1, x +m} may not be connected.

This dynamical constraint assures that these exclusion processes are gradient and have product

invariant measures. While the model discussed in [1] has the dynamical constraint that allows

the particle at site x to jump to x + 1 (resp. x − 1) only if the site x − 1 (resp. x + 1) is

occupied. The FEP is irreversible and gradient, but it lacks invariant measures of product

form, and therefore the particle distributions in two disjoint areas are not independent, which

need more delicate verifications in order to derive the hydrodynamic limit.

According to Lukyanov’s recent research [6, 7], the equation (1) with m negative (resp.

positive) arises in the liquids in porous media, such as sand, considered at low (resp. high)

saturation levels with liquid pathways at pore dimensions. In fact, different forces affect liquids

in porous media ranging from low to high saturation. At low saturation levels, liquids are

affected by capillary force and evolve as the equation (1) with m ≈ −1/2. As a result, there is

most likely an exclusion process with a specific dynamical constraint that has a hydrodynamic

limit of the type (1) with some negative integerm other than −1. We consider a one-dimensional

exclusion process with the dynamical constraint that prevents the particle at site x from jumping

to x + 1 (resp. x − 1) if the sites x − 1, x − 2 (resp. x + 1, x + 2) are empty. Because this

dynamical constraint can be viewed as a rather strong facilitated particle force, we refer to this

exclusion process as the strong-facilitated exclusion process (s-FEP) and expect s-FEP to have

a hydrodynamic limit of the type (1) with some negative integer m other than −1. This s-FEP

is non-gradient and lacks invariant measures of product form.

In the study of hydrodynamic limit, a commonly used method is to split the torus of finite N

sites into disjoint microscopic blocks, and to prove that for some observable (local function) on

these blocks, the expected value of space averages under the canonical measure (CM) converges

to the expected value of a certain function under the grand canonical measure (GCM) as N

goes to infinity. To this, we need the so-called equivalence of ensembles. Further, to apply the

Law of Large Number for the space averages, we need exponential decay of correlations. We

aim to derive the hydrodynamic limit for s-FEP. As a foundation, the exponential decay of

correlations and equivalence of ensembles should be verified. Hence in the present paper, we

identify s-FEP’s invariant measures and show the two properties mentioned before for them.

We begin by considering the canonical measures of the model with k particles in a torus of

finite sizeN , and then let k,N tend to infinity such that k/N tends to some ρ, from which we can

derive the grand canonical (invariant) measures using the ratio limit theorem. The exponential

decay of correlations holds by a recurrence relation. As for equivalence of ensembles, we note

that the canonical measures and grand canonical measures, which are limited to some range Bl

(l is the length of Bl, are determined by the permutations of the particles on the boundary. To

avoid boundary affection, we consider a local function with support away from the extremities

of Bl. Letting l goes to infinity, the concavity of the trinomial coefficients allows us to show

that the canonical measure concentrates on the configurations in which particles are evenly
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distributed on the two ranges separated by the local range, and thus equivalence of ensembles

is valid according to the ratio limit theorem.

§2 The model and results

We first consider the periodic one-dimensional s-FEP. Let TN := Z/NZ = {1, . . . , N} be the

discrete torus of size N . Denote by {0, 1}TN and η ∈ {0, 1}TN the state space and configuration

of s-FEP respectively. For any measurable function f : {0, 1}TN → R, and x ∈ TN , we denote by

τxf the function obtained by translation as follows: τxf(η) := f(τxη), where (τxη)(y) = η(x+y),

for y ∈ TN . Define the configuration η|S as the configuration η restricted on the set S ⊂ TN .

We denote by LN the infinitesimal generator ruling the evolution in time of s-FEP. It acts

on functions f : {0, 1}TN → R as

LNf(η) :=
∑
x∈TN

(
cx,x+1(η) + cx+1,x(η)

)(
f(ηx,x+1)− f(η)

)
, (2)

where the constraint and the exclusion rule are encoded in the rates cx,x+1, cx+1,x as

cx,x+1(η) =
(
η(x− 2) + η(x− 1)− η(x− 2)η(x− 1)

)
η(x)

(
1− η(x+ 1)

)
,

cx+1,x(η) =
(
η(x+ 3) + η(x+ 2)− η(x+ 3)η(x+ 2)

)
η(x+ 1)

(
1− η(x)

)
,

(3)

Figure 1. Allowed (resp. Forbidden) jumps are denoted by X (resp. X).

and ηx,y denotes the configuration obtained from η by exchanging the states of sites x, y,

namely ηx,y(x) = η(y), ηx,y(y) = η(x) and ηx,y(z) = η(z) if z ̸= x, y. Figure 1 above shows

the dynamical constraint. Note that the dynamics conserves the total number of particles∑
x∈TN

η(x).

The s-FEP is reducible under the state space {0, 1}TN since the dynamic is degenerate. We

therefore consider the ergodic component of {0, 1}TN defined below.

Definition 2.1 (Ergodic component). We denote by EN ⊂ {0, 1}TN the set of ergodic config-

urations on TN , namely

EN =
{
η ∈ {0, 1}TN : ϕ(η) ≤ 2 and

∑
x∈TN

η(x) >
1

3
N
}
, (4)

where ϕ(η) is the largest number of consecutive holes.
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Denote by ÊΛ the set of ergodic local configurations (which are actually restrictions of ergodic

configurations) on a (finite) connected set Λ ⊂ Z, namely

ÊΛ =
{
σ ∈ {0, 1}Λ : ϕ(σ) ≤ 2

}
. (5)

Let Hk
N be the hyperplane of configurations with k particles, with k ∈ {0, . . . , N}, namely

Hk
N :=

{
η ∈ {0, 1}TN :

∑
x∈TN

η(x) = k
}
.

For k > 1
3N , we also let Ωk

N = Hk
N ∩ EN be the set of ergodic configurations on TN which

contain exactly k particles.

Define the instantaneous current

W (η) = c0,1(η)− c1,0(η)

=
(
η(−2) + η(−1)− η(−2)η(−1)

)
η(0)(1− η(1))−

(
η(3) + η(2)− η(3)η(2)

)
η(1)

(6)

(1− η(0)). (7)

In particular,

LNη(x) = τx−1W (η)− τxW (η).

One can check that the s-FEP is non-gradient on EN , i.e. there is no local function h such that

the instantaneous current W can be written as

W (η) = h(η)− τ1h(η),

by considering the mirror-symmetric items η(3)η(1)η(0) and η(−2)η(0)η(1) in W (η).

Set Λl = {1, 2, · · · , l}. Considering the canonical (uniform) measure on Ωk
N and letting

k
N → ρ as N goes to infinity, we have the following result.

Proposition 2.1 (Invariant measure). For 1 > ρ > 1
3 , l ≥ 1, let

ρ̄ =
1

ρ
− 2, α(ρ) =

ρ̄+
√
4− 3ρ̄2

2(1− ρ̄)
, β(ρ) = (α(ρ) + 1 + α(ρ)−1)−1.

The translation invariant measure πρ of s-FEP on {0, 1}Z is

πρ

{
ξ|Λl

= σ
}
= 1{σ∈ÊΛl

}ρα(ρ)
l(

β(ρ)

α2(ρ)
)p
(β(ρ)
α(ρ)

)1−σ(1)−σ(l)
(1 + α(ρ))σ(2)(1−σ(1))+σ(l−1)(1−σ(l)) (8)

where σ ∈ {0, 1}Λl and p =
∑

x∈Λl
σ(x) ∈ {0, . . . , l} is the number of particles in σ.

Remark 2.1. Since α > 0 if ρ < 1, we have β ≤ 1
3 and αβ = α2

α2+α+1 < 1, then there exist

constants Cρ and 0 < a < 1 such that for any σ ∈ Λl, πρ(σ) ≤ Cρa
l.

Let πρ(f) be the expectation of function f under the measure πρ.

Theorem 2.2 (Exponential decay of correlations). For local functions f, g, denote by Sf , Sg

their supports respectively and let d = dist(Sf , Sg). Then for any ρ ∈ ( 13 , 1), there exist con-

stants C1, C2 depending on ρ such that

πρ(f)πρ(g)− πρ(fg) ≤ C1||f ||∞||g||∞e−C2d. (9)

Before stating the equivalence of ensembles, we should define Bk(x) = {x− k, ..., x+ k} (in

particular we simplify Bk = Bk(0)) and the projections of the measure πρ on a finite box Bl.
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Let the probability measure π̂l
ρ on ÊBl

be as

π̂l
ρ(σ) := πρ

(
ξ|Bl

= σ
)
= ρ
(β(ρ)
α(ρ)

)p+1−σ(−l)−σ(l)
α(ρ)l−p(1 + α(ρ))σ(−l+1)(1−σ(−l))+σ(l−1)(1−σ(l)) (10)

where p =
∑

x∈Bl
σ(x). Denote by ⌊·⌋, ⌈·⌉ the floor function and ceiling function on R respec-

tively. Then, for any integer j ∈ {⌈(2l + 1)/3⌉, ..., 2l + 1}, we denote by π̂l,j
ρ the measure π̂l

ρ

conditioned on having j particles. Namely, if we denote by Ω̂j
l the hyperplane

Ω̂j
l :=

{
σ ∈ ÊBl

:
∑
x∈Bl

σ(x) = j
}
,

then π̂l,j
ρ is the probability measure on Ω̂j

l such that

π̂l,j
ρ (σ) =

π̂l
ρ(σ)

π̂l
ρ(Ω̂

j
l )
, for any σ ∈ Ω̂j

l .

Finally, let k ∈ N be fixed and ρl = ρl(j) :=
j

2l+1 the density in Bl under π̂l,j
ρ . Furthermore,

we introduce El(δ) = {⌈(2l+ 1)(1 + δ)/3⌉, ..., ⌊(1− δ)(2l+ 1)⌋}, i.e. the set of possible particle

numbers j in Bl satisfying that the density ρl(j) is at a distance larger than δ to the critical

densities 1
3 and 1. If δ = 0, we shorten El(0) as El for simplicity. Then we can show that the

CM π̂l,j
ρ is locally close to the GCM πρl(j) with parameter equals to the empirical density ρl(j).

Theorem 2.3 (Equivalence of ensembles). For any local function f : {0, 1}Z → R, any ρ ∈
( 13 , 1), and any δ > 0, we have

lim
l→∞

max
j∈El

x∈B(1−δ)l

∣∣∣π̂l,j
ρ (τxf)− πρl(j)(f)

∣∣∣ = 0. (11)

The rest of the article is organized as follows. In the following section, we give an explicit

deduction of the invariant measures on {0, 1}Z. In Section 4 we will demonstrate exponential

decay of correlations and equivalence of ensembles. In Appendix A we will discuss some of the

properties of trinomial coefficients, which will be used throughout the article. In Appendix B

we will discuss a ratio limit theorem which will be used in the derivation of invariant measures

and the proof of equivalence of ensembles.

§3 Invariant measures

3.1 Canonical measures for s-FEP on TN

For k > 1
3N , let πk

N be the uniform measure on Ωk
N . πk

N is known as the invariant measure
for the exclusion process on TN with k particles. Also, it is translation invariant and satisfies
the detailed balance condition for s-FEP: for any x ∈ TN and η ∈ Ωk

N ,

πk
N (η)

(
η(x− 2) + η(x− 1)− η(x− 2)η(x− 1)

)
η(x)(1− η(x+ 1))

= πk
N (η)

(
η(x− 2) + η(x− 1)− η(x− 2)η(x− 1)

)
η(x)(1− η(x+ 1))

(
η(x+ 2) + η(x+ 3)− η(x+ 2)η(x+ 3)

)
= πk

N (ηx,x+1)
(
η(x− 2) + η(x− 1)− η(x− 2)η(x− 1)

)
ηx,x+1(x+ 1)(1− ηx,x+1(x))

×
(
η(x+ 2) + η(x+ 3)− η(x+ 2)η(x+ 3)

)
= πk

N (ηx,x+1)(1− ηx,x+1(x))ηx,x+1(x+ 1)
(
ηx,x+1(x+ 2) + ηx,x+1(x+ 3)− ηx,x+1(x+ 2)ηx,x+1(x+ 3)

)
,
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where we used the fact that the distances between neighboring particles are at most 2 on Ωk
N

in the first and last equalities. Before characterizing the marginals of πk
N , we should introduce

the trinomial coefficient.

Denote by
(
k
m

)
2
the trinomial coefficient of xm in the polynomial (1 + x+ 1

x )
k. It is easy to

see that for integer |m| ≤ k,(
k

m

)
2

=

∞∑
r=−∞

(
k

m+ r

)(
k −m− r

r

)
, (1)

where
(

k
m+r

)
is the binomial coefficient and by convention

(
a
b

)
= 0 if a < b or b < 0. From the

symmetry of x and 1
x , we have

(
k
m

)
2
=

(
k

−m

)
2
.

Lemma 3.1. There are exactly
(

k
m−k

)
2
choices of putting k − 1 particles into k − 1 +m sites

such that there are no consecutive 3 holes.

Proof. First, concatenate a new particle to the rightmost site and call it the k-th particle. Then

the number of ways is the same as the number of solutions of x1+· · ·+xk = m where xj denotes

the number of holes before the j-th particle and xj ≤ 2, which is equal to the coefficient of xm

in the polynomial (1 + x+ x2)k, i.e.
(

k
m−k

)
2
since (1 + x+ x2)k = xk( 1x + 1 + x)k.

Recall that Ωk
N is the set of ergodic configurations on TN which contain exactly k particles

and Λl = {1, 2, · · · , l}.

Lemma 3.2. Let k ∈ {1, . . . , N − 1} and m = N − k.

(i) We have the identity

|Ωk
N | = N

k

(
k

m− k

)
2

.

(ii) Furthermore, fix l ≤ N and a local ergodic configuration σ ∈ ÊΛl
. We define

p :=
∑

x∈Λl
σ(x) ∈ {1, . . . , l} its number of particles,

z := l − p its number of holes,
and, assume p ≤ k and z ≤ m. Then we have the following formula:
(1). σ = • · · · •: ∣∣∣{η ∈ Ωk

N : η|Λl
= σ

}∣∣∣ = ( k − p+ 1

m− z − (k − p+ 1)

)
2

.

(2). σ = • · · · • ◦ or ◦ • · · · •:∣∣∣{η ∈ Ωk
N : η|Λl

= σ
}∣∣∣ = ( k − p

m− z − (k − p)

)
2

+
( k − p

m− z − 1− (k − p)

)
2

.

(3). σ = ◦ • · · · • ◦: ∣∣∣{η ∈ Ωk
N : η|Λl

= σ
}∣∣∣ = ( k − p

m− z − (k − p)

)
2

+
( k − p− 1

m− z − (k − p)

)
2

.

(4). σ = ◦ • · · · ◦ ◦ or ◦ ◦ · · · • ◦:∣∣∣{η ∈ Ωk
N : η|Λl

= σ
}∣∣∣ = ( k − p− 1

m− z − (k − p− 1)

)
2

+
( k − p− 1

m− z − (k − p)

)
2

.

(5). σ = • · · · ◦ ◦ or ◦ ◦ · · · •: ∣∣∣{η ∈ Ωk
N : η|Λl

= σ
}∣∣∣ = ( k − p

m− z − (k − p)

)
2

.
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(6). σ = ◦ ◦ · · · ◦ ◦: ∣∣∣{η ∈ Ωk
N : η|Λl

= σ
}∣∣∣ = ( k − p− 1

m− z − (k − p− 1)

)
2

.

Proof. (i) Ωk
N consists of the three types of configurations, those with a particle at 1, those with

an isolated hole at 1, and those with two holes at {1, 2} or {1, N − 1}. The number of the first
type of configurations is equal to the number of choices to put k − 1 particles into k − 1 +m
sites where there are no consecutive 3 holes, which is

(
k

m−k

)
2
by Lemma 3.1. The second type

of configurations has an isolated hole at 1, thus the two particles adjacent to this isolated hole
are locked, which is

(
k−1
m−k

)
2
(the number of choices to put k−2 particles into k+m−3 sites) by

the same argument above. The number of the third type of configurations can be determined
as 2

(
k−1

m−k−1

)
2
by the same way. So by the identity (32),

|Ωk
N | =

( k

m− k

)
2
+
( k − 1

m− k

)
2
+ 2
( k − 1

m− k − 1

)
2
=

N

k

( k

m− k

)
2
.

Now turn to (ii). We will only compute the cardinality of the set in case (3) since others are

similar and simpler. Note that after fixing the configuration σ on Λl, it remains to put k − p

particles into k − p+m− z sites.
When σ(−1) = ◦ and σ(l + 1) = ◦ (it means the left and right adjacent site of σ is

empty), σ(−2) and σ(l+2) must have a particle, thus it remains to put k− p− 2 particles into
k− p+m− z− 4 sites. By the same argument, when σ(−1) = • and σ(l+1) = ◦(or σ(−1) = ◦
and σ(l + 1) = •), it remains to put k − p − 2 particles into k − p + m − z − 3 sites; when
σ(−1) = • and σ(l+1) = •, it remains to put k− p− 2 particles into k−p+m− z− 2 sites. So∣∣∣{η ∈ Ωk

N : η|Λl
= σ

}∣∣∣ = ( k − p− 1

m− z − 2− (k − p− 1)

)
2

+ 2
( k − p− 1

m− z − 1− (k − p− 1)

)
2

+
( k − p− 1

m− z − (k − p− 1)

)
2

=
( k − 1

m− z − (k − p)

)
2

+
( k − p− 1

m− z − (k − p)

)
2

by Lemma 3.1 and the identity (32).

3.2 Gibbs measure for s-FEP on Z

Note that, by periodizing the configurations, we can regard the measures πk
N as measures on

{0, 1}Z. In that case, since the state space is compact, the sequence (πk
N )N is uniformly tight.

If k/N → ρ > 1
3 , using Lemma 3.2, one can check that there is a unique limit point. This limit

point is the measure πρ in (8).

Indeed, let {ξn} be i.i.d random variables with probability P s.t. P (ξ1 = −1) = P (ξ1 =

0) = P (ξ1 = 1) = 1
3 . We can compute the probability of the sum of these random variables

P
( k∑
i=1

ξi = m
)
=

(
k
m

)
2

3k
.

Then thanks to the ratio limit lemma below, one can easily deduce by (8) that

lim
N→∞

∣∣∣{η ∈ Ωk
N : η|Λl

= σ
}∣∣∣

|Ωk
N |

=1{σ∈ÊΛl
}ρ
(β(ρ)
α(ρ)

)p+1−σ(1)−σ(l)
α(ρ)l−p(1 + α(ρ))σ(2)(1−σ(1))+σ(l−1)(1−σ(l))

=πρ{η|Λl
= σ}.
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Lemma 3.3 (Ratio limit lemma). For p, z ∈ Z, ϱ ∈ (−1, 1), and any sequences of m, k such
that m/k → ϱ as k → ∞, ( k−p

m−z

)
2( k

m

)
2

=
P (
∑k−p

i=1 ξi = m− z)

3pP (
∑k

i=1 ξi = m)
→ b(ϱ)pa(ϱ)z ,

where a(ϱ) =
ϱ+

√
4−3ϱ2

2(1−ϱ) , b(ϱ) = (a(ϱ) + 1 + 1
a(ϱ) )

−1.

Proof. The proof will be given at Appendix B.

§4 Properties of πρ

In this section, we are going to prove exponential decay of correlations and equivalence of

ensembles for the GCM πρ.

4.1 Exponential decay of correlations

α(ρ) and β(ρ) will be shortened as α and β if no ambiguity arises. Let Pl := πρ

(
ξ(0) =

ξ(l) = 1
)
. We first show that the two-point correlations under the invariant measure πρ decay

exponentially.

Lemma 4.1. For any ρ ∈ ( 13 , 1), there exist two constants C = C(ρ) > 0 and q = q(ρ) > 0
such that

|Pl − ρ2| ≤ qe−Cl. (1)

Proof. Rewrite

πρ
(
ξ(0) = ξ(l) = 1

)
=πρ

(
ξ(0) = 1, ξ(l − 1) = 0, ξ(l) = 1

)
+ πρ

(
ξ(0) = 1, ξ(l − 1) = 1, ξ(l) = 1

)
=πρ

(
ξ(0) = 1, ξ(l − 2) = 0, ξ(l− 1) = 0, ξ(l) = 1

)
+ πρ

(
ξ(0) = 1, ξ(l− 2) = 1, ξ(l− 1) = 0, ξ(l) = 1

)
+ πρ

(
ξ(0) = 1, ξ(l − 2) = 0, ξ(l− 1) = 1, ξ(l) = 1

)
+ πρ

(
ξ(0) = 1, ξ(l− 2) = 1, ξ(l− 1) = 1, ξ(l) = 1

)
.

(2)

By the explicit formula (8) and some direct calculations, we have

πρ
(
ξ(0) = 1, ξ(l − 2) = 0, ξ(l− 1) = 0, ξ(l) = 1

)
+ πρ

(
ξ(0) = 1, ξ(l− 2) = 1, ξ(l − 1) = 0, ξ(l) = 1

)
= πρ

(
ξ(0) = 1, ξ(l − 2) = 0, ξ(l− 1) = 0

)
+

1

α+ 1
πρ
(
ξ(0) = 1, ξ(l − 2) = 1, ξ(l− 1) = 0

)
= πρ

(
ξ(0) = 1, ξ(l − 1) = 0

)
− πρ

(
ξ(0) = 1, ξ(l − 2) = 1, ξ(l− 1) = 0

)
+

1

α+ 1
πρ
(
ξ(0) = 1, ξ(l − 2) = 1, ξ(l− 1) = 0

)
= ρ− πρ

(
ξ(0) = 1, ξ(l− 1) = 1

)
+

α

α+ 1
πρ
(
ξ(0) = 1, ξ(l − 2) = 1, ξ(l− 1) = 0

)
.

= ρ− Pl−1 − απρ
(
ξ(0) = 1, ξ(l− 2) = 1, ξ(l − 1) = 0, ξ(l) = 1

)
= ρ− Pl−1 − αβPl−2. (3)

Similarly,

πρ
(
ξ(0) = 1, ξ(l − 2) = 0, ξ(l− 1) = 1, ξ(l) = 1

)
+ πρ

(
ξ(0) = 1, ξ(l− 2) = 1, ξ(l − 1) = 1, ξ(l) = 1

)
=

β

α
πρ
(
ξ(0) = 1, ξ(l − 2) = 0, ξ(l− 1) = 1

)
+

β

α
πρ
(
ξ(0) = 1, ξ(l− 2) = 1, ξ(l − 1) = 1

)
=

β

α
πρ
(
ξ(0) = 1, ξ(l − 1) = 1

)
=

β

α
Pl−1. (4)
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Combining (2), (3), and (4) together, we obtain the recurrence relation for Pl:

Pl = ρ− α− β

α
Pl−1 − αβPl−2. (5)

By subtracting ρ2 from both sides of the equation (5),

Pl − ρ2 = ρ− ρ2 − α− β

α
Pl−1 − αβPl−2

= −α− β

α
(Pl−1 − ρ2)− αβ(Pl−2 − ρ2).

The quadratic equation q2 + α−β
α q + αβ = 0 has 2 distinct complex roots

z1, z2 =
−α−β

α ±
√
(α−β

α )2 − 4αβ

2
.

Also,

0 < αβ =
α2

α2 + α+ 1
<

α2 + α

α2 + α+ 1
=

α− β

α
< 1,

then

|z1| = |z2| =

√
(α−β

α )2 + |(α−β
α )2 − 4αβ|
4

< 1.

By Eq. (14) of Miles [8], Pl − ρ2 = c1z
l
1 + c2z

l
2 where c1, c2 are some constants depend on ρ.

Then |Pl − ρ2| ≤ c1|z1|l + c2|z2|l, the desired result easily holds.

Note by the explicit formula (8)

πρ

(
ξ(0) = 1, ξ(1) = 0, ξ(l) = 1

)
= πρ

(
ξ(0) = 1, ξ(l) = 1

)
− πρ

(
ξ(0) = 1, ξ(1) = 1, ξ(l) = 1

)
= Pl −

β

α
πρ

(
ξ(1) = 1, ξ(l) = 1

)
= Pl −

β

α
Pl−1.

Using (1) and the identity (α+ 1 + 1
α )β = 1, we have the following corollary.

Corollary 4.2. There exist two constants C ′ = C ′(ρ) > 0 and q′ = q′(ρ) > 0 such that∣∣πρ

(
ξ(0) = 1, ξ(1) = 0, ξ(l) = 1

)
− ρ2β(1 + α)

∣∣ ≤ q′e−C′l,

and ∣∣πρ

(
ξ(0) = 1, ξ(1) = 0, ξ(l − 1) = 0, ξ(l) = 1

)
− ρ2β2(1 + α)2

∣∣ ≤ q
′
e−C

′
l.

We now use Lemma 4.1 and Corollary 4.2 to show that the correlations under πρ of two

boxes at distance l decay as e−Cl, which immediately yields Theorem 2.2.

Corollary 4.3. Fix k,m ≥ 1, and let A = A(k) := τ−kΛk and B = B(l,m) := τlΛm. For any

two configurations σ1, σ2 in {0, 1}A, {0, 1}B, for large l,x‘

πρ(ξ|A = σ1, ξ|B = σ2) = πρ(ξ|A = σ1)πρ(ξ|B = σ2)
(
1 +O(e−Cl)

)
, (6)

where the error O(e−Cl) depends on ρ, but can be bounded uniformly in k,m and σ1, σ2.

Proof. First, we consider two neighboring sets A1 = {a, a + 1, ..., b}, A2 = {b + 1, b + 2, ..., c}
where a < b − 2 < c − 4. For any given two configurations σ1, σ2 on these sets separately, we

can write, thanks to the explicit formula (8),

πρ(ξ|A1
= σ1, ξ|A2

= σ2) =
1{ϕ2(σ1)+ϕ1(σ2)≤2}(

β
α

)1−σ1(b)−σ2(b+1)
(1 + α)ϕ(σ1,σ2)

πρ(ξ|A1
= σ1)πρ(ξ|A2

= σ2) (7)
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where ϕ1(σ) (resp. ϕ2(σ)) is the number of consecutive holes between the leftmost (resp.
rightmost) particle and the left (resp. right) boundary, and ϕ(σ1, σ2) = σ1(b− 1)(1− σ1(b)) +
σ2(b+ 2)(1− σ2(b+ 1)). In particular, ϕ(σ1, σ2) = 2− |ϕ2(σ1)− 1| − |ϕ1(σ2)− 1|.

Without loss of generality, assume l > 4. Summing over all the possible configurations σ in
Λl, and using the identity (7) (since A,Λl and B are neighboring sets), we can write for any
σ1 ∈ {0, 1}A, σ2 ∈ {0, 1}B,

πρ(ξ|A = σ1, ξ|B = σ2)

=
∑

σ∈{0,1}Λl

πρ(ξ|A = σ1, ξ|Λl
= σ, ξ|B = σ2)

=
∑

σ∈{0,1}Λl

πρ(ξ|A = σ1)
1{ϕ2(σ1)+ϕ1({σ,σ2})≤2}

ρ
( β
α

)1−σ1(0)−σ(1)
(1 + α)ϕ(σ1,{σ,σ2})

πρ(ξ|Λl
= σ, ξ|B = σ2)

=
∑

σ∈{0,1}Λl

πρ(ξ|A = σ1)
1{ϕ2(σ1)+ϕ1(σ)≤2}

ρ
( β
α

)1−σ1(0)−σ(1)
(1 + α)ϕ(σ1,σ)

πρ(ξ|Λl
= σ)

×
1{ϕ2(σ)+ϕ1(σ2)≤2}

ρ
( β
α

)1−σ(l)−σ2(l+1)
(1 + α)ϕ(σ,σ2)

πρ(ξ|B = σ2)

= πρ(ξ|A = σ1)πρ(ξ|B = σ2)

×
∑

σ∈{0,1}Λl

1{ϕ2(σ1)+ϕ1(σ)≤2}1{ϕ2(σ)+ϕ1(σ2)≤2}

ρ2
( β
α

)2−σ1(0)−σ(1)−σ(l)−σ2(l+1)
(1 + α)ϕ(σ1,σ)+ϕ(σ,σ2)

πρ(ξ|Λl
= σ). (8)

Turn to the sum in (8). We will focus on the case ϕ2(σ1) = ϕ1(σ2) = 1, since other cases are

treated similarly. In this case, the sum in (8) can be written as∑
σ∈{0,1}Λl

1{ϕ1(σ)≤1}1{ϕ2(σ)≤1}

ρ2
(
β
α

)2−σ(1)−σ(l)
(1 + α)2+σ(2)(1−σ(1))+σ(l−1)(1−σ(l))

πρ(ξ|Λl
= σ).

To merge the items inside the sum above, we will construct a new configuration σ′ by con-

catenating {•◦} to the left boundary and a hole and {◦•} to the right boundary. Its length is

l′ = l + 4, and has particles p′ = p+ 2. Again by the explicit formula (8),

πρ(ξ|Λl′
= σ′)

=1{ϕ1(σ)≤1}1{ϕ2(σ)≤1}ρ
(β
α

)p′−1
αl′−p′

=1{ϕ1(σ)≤1}1{ϕ2(σ)≤1}ρ
(β
α

)p+1
αl−p+2

=1{ϕ1(σ)≤1}1{ϕ2(σ)≤1}πρ(ξ|Λl
= σ)

(β
α

)σ(1)+σ(l)
α2(1 + α)−σ(2)(1−σ(1))−σ(l−1)(1−σ(l)).

Substitute the above expression in (8), we obtain

πρ(ξ|A = σ1)πρ(ξ|B = σ2)
∑

σ′′∈{0,1}Λl′−4

1

ρ2β2(1 + α)2
πρ(ξ(0) = 1, ξ(1) = 0, ξΛl′−4

= σ′′, ξ(l′ − 1) = 0, ξ(l′) = 1)

=πρ(ξ|A = σ1)πρ(ξ|B = σ2)
πρ(ξ(0) = 1, ξ(1) = 0, ξ(l′ − 1) = 0, ξ(l′) = 1)

ρ2β2(1 + α)2
.

(9)

Therefore,

πρ(ξ|A = σ1, ξ|B = σ2) =
πρ(ξ(0) = 1, ξ(1) = 0, ξ(l′ − 1) = 0, ξ(l′) = 1)

ρ2β2(1 + α)2
= 1 +O(e−Cl),

the second equality holds by the Corollary 4.2. The proof is completed.
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4.2 Equivalence of ensembles

Recall that

El(δ) =
{
⌈(2l + 1)(1 + δ)/3⌉, ..., ⌊(1− δ)(2l + 1)⌋

}
.

We begin by stating a proposition.

Proposition 4.4. For any δ2 > 0, there exist some constant C1 := C1(k, δ2), and a sufficiently

small δ1, such that

lim sup
l→∞

max
j∈El\El(δ1)
x∈B(1−δ2)l−k

σ∈{0,1}Bk

∣∣∣π̂l,j
ρ (ζ|Bk(x) = σ)− πρl(j)(ξ|Bk

= σ)
∣∣∣ ≤ C1δ1. (10)

For any δ2, δ1, ε > 0,

lim sup
l→∞

max
j∈El(δ1)

x∈B(1−δ2)l−k

σ∈{0,1}Bk

∣∣∣π̂l,j
ρ (ζ|Bk(x) = σ)− πρl(j)(ξ|Bk

= σ)
∣∣∣ ≤ ε. (11)

Before proceeding, we complete the proof of Theorem 2.3.

Proof of Theorem 2.3. Fix ρ ∈ ( 13 , 1) and a local function f . There exists an integer k such
that f only depends on sites in Bk. Then, if we choose δ2 = δ/2, for any l > 2k/δ, we
have B(1−δ)l ⊂ B(1−δ2)l−k. Then for l large enough, we can use the triangle inequality and
Proposition 4.4 to write for any δ1 > 0, ε > 0,

max
j∈El

x∈B(1−δ)l

|π̂l,j
ρ (τxf)− πρl(j)

(f)
∣∣∣

≤22k+1||f ||∞ max
j∈El

x∈B(1−δ)l

σ∈{0,1}Bk

∣∣∣π̂l,j
ρ (ζ|Bk(x) = σ)− πρl(j)

(ξ|Bk
= σ)

∣∣∣
≤22k+1||f ||∞

(
max

j∈El(δ1)
x∈B(1−δ2)l−k

σ∈{0,1}Bk

∣∣∣π̂l,j
ρ (ζ|Bk(x) = σ)− πρl(j)

(ξ|Bk
= σ)

∣∣∣

+ max
j∈El\El(δ1)

x∈B(1−δ2)l−k

σ∈{0,1}Bk

∣∣∣π̂l,j
ρ (ζ|Bk(x) = σ)− πρl(j)

(ξ|Bk
= σ)

∣∣∣)

≤22k+1||f ||∞
(
(1 + ol(1))(ε+ δ1C1)

)
.

Since k is fixed, we let l → ∞, then ε → 0 and δ1 → 0. This proves Theorem 2.3.

Now we turn to the proof of Proposition 4.4. We start with the case where the fixed density

ρl(j) is close to the extreme values 1
3 or 1 (i.e. j ∈ El\El(δ1)).

Proof of Proposition 4.4 (10). We will only detail the case ρl(j) ≥ 1−δ1, since the case ρl(j) ≤
(1+ δ1)/3 is treated in the same way. Denote by 1k the constant configuration on Bk with one

particle at each site, and no empty site. To prove (10), it is sufficient to show that for some

constant C2 := C2(k, δ2), we have for any j ∈ El\El(δ1) satisfying ρl(j) ≥ 1− δ1,

πρl(j)

(
ξ|Bk

= 1k

)
≥ 1− C2δ, (12)
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and for any x ∈ B(1−δ2)l−k,

π̂l,j
ρ

(
ξ|Bk(x) = 1k

)
≥ 1− C2δ, (13)

and then let C1(k, δ2) := 2C2(k, δ2).
(12) holds noting δ1 sufficiently small, ρl(j) ≥ 1 − δ1, ρ̄l(j) = 1

ρl(j)
− 2, and the explicit

formula (10):

πρl(j)

(
ξ|Bk

= 1k

)
= ρl(j)

(β(ρl(j))
α(ρl(j))

)k−1

> (1− δ1)(
4(1− ρ̄l(j))

2

8− 6ρ̄l(j) + 2
√

4− 3ρ̄l(j)2
)k−1

> (1− δ1)(
4(2− δ1

1−δ1
)2

8− 6ρ̄l(j) + 2
√

4− 3ρ̄l(j)2
)k−1

> (1− δ1)(1− δ1)
2k−2 > 1−

1

2
δ1.

From now on, for ε1, ε2, ε3, ε4 ∈ {0, 1}, we denote by

π̂l,j
ρ,ε1,ε2,ε3,ε4(·) = π̂l,j

ρ

(
· |ζ(−l) = ε1, ζ(−l + 1) = ε2, ζ(l − 1) = ε3, ζ(l) = ε4

)
the measure π̂l,j

ρ conditioned to be in the boundary condition ε1, ε2, ε3, ε4. Then, to prove (13),

it is clearly sufficient to prove for any ε1, ε2, ε3, ε4 ∈ {0, 1}
π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = 1k) ≥ 1− C2δ1.

Furthermore, to prove the latter, it is sufficient to prove that for some constant C(k, δ2), for

any σ ̸= 1k ∈ {0, 1}Bk

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ)

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = 1k)

≤ C(k, δ2)δ1. (14)

Indeed, summing this bound above over σ ∈ {0, 1}Bk\{1k}, yields

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = 1k) ≥

1

1 + 2|Bk|C(k, δ2)δ1
≥ 1− C2(k, δ2)δ1,

as wanted. It remains to prove (14). First, define

l1 := l1(x, l, k) = l − k + x ≥ δ2l, l2 := l2(x, l, k) = l − k − x ≥ δ2l,

which are the respective sizes of the clusters to the left and right of Bk(x) in Bl. Denote

by n the number of particles in the cluster {−l, . . . ,−l + l1 − x} to the left of Bk(x) in Bl.

Since π̂l,j
ρ,ε1,ε2,ε3,ε4 is the uniform measure on the subspace of space Ω̂j

l with boundary condition

{ε1, ε2, ε3, ε4}, it follows for σ, σ′ ∈ ÊΛl

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ′)

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ)

=

∑j
n=1 an(σ

′)bn(σ
′)∑j

n=1 an(σ)bn(σ)
, (15)

where

an(σ) =an(σ, j, l1, ε1, ε2)

:=

(
nσ

lσ1 − 2nσ

)
2

+

(
nσ

lσ1 − 2nσ − 1

)
2

(1− ε2)ε1

+

(
nσ

lσ1 − 2nσ − 1

)
2

σ−k+1(1− σ−k) +

(
nσ

lσ1 − 2nσ − 2

)
2

ε1(1− ε2)σ−k+1(1− σ−k),
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bn(σ) =bn(σ, j, l2, ε3, ε4)

:=

(
jσ − nσ

lσ2 − 2(jσ − nσ)

)
2

+

(
jσ − nσ

lσ2 − 2(jσ − nσ)− 1

)
2

(1− ε3)ε4

+

(
jσ − nσ

lσ2 − 2(jσ − nσ)− 1

)
2

σk−1(1− σk) +

(
jσ − nσ

lσ2 − 2(jσ − nσ)− 2

)
2

ε4(1− ε3)σk−1(1− σk),

and

nσ = n− ε1 + σ−k − 1, jσ = j − p(σ)− ε1 − ε4 + σ−k + σk − 2,

lσ1 = l1 + σ−k + ε2 − 3, lσ2 = l2 + σk + ε3 − 3.

The quantity an(σ) is the number of ergodic configurations on the left cluster with n particles

and compatible with the left boundary of σ, whereas bn(σ) is the number of ergodic configu-

rations on the right cluster compatible with the right boundary of σ. Then an(σ)bn(σ) is the

number of ergodic configurations on Bl with j particles, such that the configuration in Bk(x) is

given by σ, and such that the number of particles in {−l, . . . ,−l+l1−1} (resp. {l−l2+1, . . . , l})
is n (resp. j − p(σ)− n).

Notice
(
a
b

)
= 0 if b /∈ {0, . . . , a}, applying (15) to σ and 1k yields

π̂l,j
ρ,ε1,ε2,ε3,ε4

(
ζ|Bk(x) = σ

)
π̂l,j
ρ,ε1,ε2,ε3,ε4

(
ζ|Bk(x) = 1k

) =

∑j
n=1 an(σ)bn(σ)∑j

n=1 an(1k)bn(1k)
. (16)

We shall prove that there exists a constant C := C(k, δ2) such that for any 1 ≤ n ≤ j and any

σ ̸= 1k,

an(σ)bn(σ) ≤ Cδ1an(1k)bn(1k). (17)

Note that by the identity (31), we can show that an(σ) ≤ an(1k). To prove the inequality (17),

we are enough to derive that

bn(σ) ≤ Cδ1bn(1k). (18)

Now we use the inequality (36) to bounded bn(σ)
bn(1k)

. It is enough to show that each trinomial

coefficient in bn(σ) is less than the respective term in bn(1k) multiplied Cδ1. Here we only deal

with the first trinomial coefficient in bn, the others can be derived similarly.

Note j ≥ (1− δ1)(2l + 1) and l2 ≥ δ2l ≥ δ2(2l + 1)/4, then

j − n ≥ (1− δ1)(2l + 1)− l1 = l2 + (2k + 1)− δ1(2l + 1) ≥ l2(1− 4δ1/δ2),

thus l2 − 2(j − n) is negative for δ1 sufficiently small.

Set ñ = j − n. If σ(−k) = 1, since k > p(σ), using the inequality (39), we have

bn(σ)

bn(1k)
=

(
ñ−p(σ)−ε4+1−1

l2−2(ñ−p(σ))+2ε4+ε3−1−1

)
2(

ñ−k−ε4+1−1
l2−2(ñ−k)+2ε4+ε3−1−1

)
2

≤
(( ñ−k−ε4+1

l2−2ñ+2k+2ε4+ε3−2−2

)
2(

ñ−k−ε4
l2−2ñ+2k+2ε4+ε3−2

)
2

)k−p(σ)

.

Since k, ε3, ε4 are fixed, we can choose a δ1 such that l2 − 2ñ+2k+2ε4 + ε3 − 2 is negative. So
by the inequality (36),

bn(σ)

bn(1k)
≤
( l2 − ñ+ k + ε4 + ε3 − 4

2ñ− l2 − 2k − 2ε4 − ε3 + 3

)k−p(σ)

≤
( 4δ1

δ2
l2 + k + ε4 + ε3 − 4

(1− 8δ1
δ2

)l2 − 2k − 2ε4 − ε3 + 3

)k−p(σ)
≤ C(k, δ2)δ1

for l large enough.



330 Appl. Math. J. Chinese Univ. Vol. 38, No. 3

If σ(−k) = 0, using the inequality (39) again, we have

bn(σ)

bn(1k)
=

(
ñ−p(σ)−ε4−1

l2−2(ñ−p(σ))+2ε4+ε3−1

)
2(

ñ−k−ε4+1−1
l2−2(ñ−k)+2ε4+ε3−1−1

)
2

≤
(( ñ−k−ε4

l2−2ñ+2k+2ε4+ε3−2−1

)
2(

ñ−k−ε4
l2−2ñ+2k+2ε4+ε3−2

)
2

)k−p(σ)

.

Thus by the inequality (35),

bn(σ)

bn(1k)
≤
( l2 − ñ+ k + ε4 + ε3 − 2

2ñ− l2 − 2k − 2ε4 − ε3 + 3

)k−p(σ)
≤
( 4δ1

δ2
l2 + k + ε4 + ε3 − 2

(1− 8δ1
δ2

)l2 − 2k − 2ε4 − ε3 + 3

)k−p(σ)
≤ C(k, δ2)δ1

for l large enough. The proof of (10) is concluded.

Now we proceed to the proof of (11) in the case j ∈ El(δ1).

Proof of Proposition 4.4 (11). First, for any l > l0 (l0 only depends on k), we claim for σ ∈ ÊBk

πρl

(
ξ|Bk(x) = σ

)
> 0 and π̂l,j

ρ,ε1,ε2,ε3,ε4

(
ζ|Bk(x) = σ

)
> 0. (19)

Indeed, the first statement holds since ρl is neither 1
3 nor 1, and the second statement holds

since ρl ∈ [ 13 (1 + δ1), 1− δ1]. Using (19), we have∣∣∣π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ)− πρl(ξ|Bk

= σ)
∣∣∣

≤
∣∣∣ 1

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ)

− 1

πρl(ξ|Bk
= σ)

∣∣∣π̂l,j
ρ,ε1,ε2,ε3,ε4

(
ζ|Bk(x) = σ

)
=
∣∣∣ ∑
σ′∈{0,1}Bk

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ′)

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ)

−
πρl(ξ|Bk

= σ′)

πρl(ξ|Bk
= σ)

∣∣∣π̂l,j
ρ,ε1,ε2,ε3,ε4

(
ζ|Bk(x) = σ

)
≤ 22k+1 max

σ′∈{0,1}Bk

∣∣∣ π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ′)

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ)

−
πρl(ξ|Bk

= σ′)

πρl(ξ|Bk
= σ)

∣∣∣π̂l,j
ρ,ε1,ε2,ε3,ε4

(
ζ|Bk(x) = σ

)
.

(20)

It is sufficient to prove that for any ε > 0, for any two configurations σ, σ′ ∈ {0, 1}Bk , there

exists a constant L := L(k, σ, σ′, δ1, δ2) such that for any x ∈ B(1−δ2)l−k and j ∈ El(δ1), if

l > L,

max
j∈El(δ1)

x∈B(1−δ2)l−k

∣∣∣ π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ′)

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ)

−
πρl(ξ|Bk

= σ′)

πρl(ξ|Bk
= σ)

∣∣∣ ≤ ε

π̂l,j
ρ,ε1,ε2,ε3,ε4

(
ζ|Bk(x) = σ

) . (21)

Define

F (ρ, σ) =
β(ρ)p(σ)+ε1+ε4+2

α(ρ)2p(σ)+2ε1+ε2+2ε4+ε3−2
(
β(ρ)

α(ρ)
)−σ−k−σk (1+α(ρ))(1−ε2)ε1+σ−k+1(1−σ−k)+(1−ε3)ε4+σk−1(1−σk).

(22)

Then

F (ρ, σ′)

F (ρ, σ)
= (

β(ρ)

α(ρ)2
)p(σ

′)−p(σ)
(β(ρ)
α(ρ)

)σ−k+σk−σ′
−k−σ′

k (1 + α(ρ))ν(σ
′)−ν(σ) =

πρl (ξ|Bk
= σ′)

πρl (ξ|Bk
= σ)

, (23)

where ν(σ) = σ(2)(1− σ(1))+ σ(l− 1)(1− σ(l)). Note that F (ρ, σ) is uniformly continuous for

ρ ∈ [a, b] ⊂ ( 13 , 1).

Set S(σ) =
∑j

n=1 an(σ)bn(σ) and S∗ =
∑j

n=1 a
∗
nb

∗
n, where

a∗n =

(
n

l1 − 2n

)
2

, b∗n =

(
(j − n)

l2 − 2(j − n)

)
2

.
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Thus it easily follows

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ′)

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ)

−
πρl

(ξ|Bk
= σ′)

πρl
(ξ|Bk

= σ)

=
S(σ′)

S(σ)
− F (ρl, σ

′)

F (ρl, σ)

=
F (ρl, σ)S

∗S(σ′)− F (ρl, σ
′)S∗S(σ)

F (ρl, σ)S∗S(σ)
(24)

By the triangle inequality,

|F (ρl, σ)S
∗S(σ′)−F (ρl, σ

′)S∗S(σ)| ≤ |(F (ρl, σ)S
∗ −S(σ))S(σ′)|+ |(F (ρl, σ

′)S∗ −S(σ′))S(σ)|.
Since j ∈ El(δ1), there exist constants c1F := cF (k, δ1) > 0, c2F := c2F (k, δ) > 0 such that

c1F < F (ρl, σ) < c2F . We claim that for any configuration σ ∈ {0, 1}Bk , and any positive δ1, δ2,

there exists a constant L := L(k, δ1, δ2) such that for l > L, for all j ∈ El(δ1), x ∈ B(1−δ2)l−k,

|S(σ)− F (ρl, σ)S
∗| ≤ S∗c1F ε/2. (25)

Once it holds, we have ∣∣∣S(σ′)

S(σ)
− F (ρl, σ

′)

F (ρl, σ)

∣∣∣ ≤ S(σ′) + S(σ)

F (ρl, σ)S(σ)
c1F ε/2.

It follows for any j ∈ El(δ1)∣∣∣ π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ′)

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ)

−
πρl

(ξ|Bk
= σ′)

πρl
(ξ|Bk

= σ)

∣∣∣ ≤ c1F ε

2c1F

(
1 +

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ′)

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ)

)
≤ ε

π̂l,j
ρ,ε1,ε2,ε3,ε4(ζ|Bk(x) = σ)

,

which proves (21).

It remains to prove the claim (25). To this end, we need the following lemma.

Lemma 4.5. Let h = j/(l1 + l2), n0 = h ∗ l1. There exist L > 0,δ3 > 0 , for l > L,

max
j∈El(δ1)

x∈B(1−δ2)l−k

max
n∈Il(σ)

∣∣an(σ)bn(σ)
a∗nb

∗
n

− F (ρl, σ)
∣∣ ≤ c1F ε/4, (26)

where Il(σ) is the set of n’s in {0, ..., j} such that n ∈ (n0 − δ3l, n0 + δ3l). Moreover,

max
j∈El(δ1)

x∈B(1−δ2)l−k

∑
n/∈Il(σ)

(an(σ)bn(σ) + a∗nb
∗
n)

an0bn0

≤ c1F ε

(1 + F (ρl, σ))4
. (27)

Proof. Since j ∈ El(δ1) and l1 + l2 + k = 2l+ 1, j
l1+l2

∈ [ 13 (1 + δ1), 1− 1
2δ1] for l large enough.

Then by Corollary B.2, for ε > 0, for each ρ ∈ [ 13 (1 + δ1), 1− 1
2δ1], there exist Lρ, δρ > 0 such

that for l > Lρ, for each j, n satisfying |n− ρl1| < δρl1, |j − n− ρl2| ≤ δρl2,∣∣an(σ)bn(σ)
a∗nb

∗
n

− F (ρ, σ)
∣∣ ≤ ε

2
.

By the uniform continuity of F in the range [ 13 (1+ δ1), 1− 1
2δ1], we can find a δ3 > 0 such that

for ρ1, ρ2 ∈ [ 13 (1 + δ1), 1− 1
2δ1] satisfying |ρ1 − ρ2| < δ3,

|F (ρ1, σ)− F (ρ2, σ)| ≤
ε

2
. (28)
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Let the open interval sets {(ρ−min(δρ, δ3)/2, ρ+min(δρ, δ3)/2)} cover [ 13 (1+ δ1), 1− 1
2δ1]. By

the Finite Covering Theorem, there exist L′, δ4 > 0, for l > L′, j ∈ El(δ1), for each n where

|n−n0| < δ4 min{l1, l2} , there exists a ρ ∈ [ 13 (1+ δ1), 1− 1
2δ1] satisfying |ρ−ρl| ≤ δ3 such that∣∣an(σ)bn(σ)

a∗nb
∗
n

− F (ρ, σ)
∣∣ ≤ ε

2
. (29)

Thus ∣∣an(σ)bn(σ)
a∗nb

∗
n

− F (ρl, σ)
∣∣ ≤ ∣∣an(σ)bn(σ)

a∗nb
∗
n

− F (ρ, σ)
∣∣+ ∣∣F (ρ, σ)− F (ρl, σ)

∣∣ ≤ ε.

(26) holds by choosing a suitable ε.

As for (27), we only handle the case n ≤ n0 since the case n ≥ n0 is treated similarly. Define

f(ρ) = β(ρ)
α2(ρ) , g(ρ) =

j−ρl1
l1+l2

. Again by Corollary B.2, set ε′ = 1
2 |1 −

f(h− δ3
2 )

f(g(h− δ3
2 ))

|, one can check

that there exist L, δ′ > 0 such that for l > L, |n− (n0 − δ3
2 (l1 + l2))| ≤ δ′ min{l1, l2},∣∣ anbn

an+1bn+1
−

f(h− δ3
2 )

f(g(h− δ3
2 ))

∣∣ ≤ ε′.

It is easy to see that f(ρ), 1/f(g(ρ)) are monotone increasing and h = g(h). So f(h)/f(g(h)) =

f(h)/f(h) = 1 and f(ρ)/f(g(ρ)) < 1 for ρ < h. Then

anbn
an+1bn+1

≤
1 +

f(h− δ3
2 )

f(g(h− δ3
2 ))

2
< 1.

Since anbnan+2bn+2

(an+1bn+1)2
< 1, there exists an L > 0 such that for l > L,

a
n0− δ3

2 −
√
l
b
n0− δ3

2 −
√
l

a
n0− δ3

2
b
n0− δ3

2

≤ (
1 +

f(h− δ3
2 )

f(g(h− δ3
2 ))

2
)
√
l ≤ ε.

Therefore, ∑
n≤n0−δ3l

anbn ≤ 1

1−
1+

f(h− δ3
2

)

f(g(h− δ3
2

))

2

a
n0− δ3

2 −
√
l
b
n0− δ3

2 −
√
l

≤ a
n0− δ3

2
b
n0− δ3

2
ε ≤ an0bn0ε,

and (27) holds by choosing a suitable ε.

Finally, turn back to the proof of (25). By the triangle inequality,

|S(σ)− F (ρl, σ)S
∗| =

∣∣ j∑
n=1

(
an(σ)bn(σ)− F (ρl, σ)a

∗
nb

∗
n

)∣∣
≤

∑
n∈Il(σ)

∣∣an(σ)bn(σ)

a∗
nb∗n

− F (ρl, σ)
∣∣a∗

nb
∗
n

+
∑

n/∈Il(σ)

(an(σ)bn(σ) + F (ρl, σ)a
∗
nb

∗
n). (30)

Using Lemma 4.5, (30) becomes

|S(σ)− F (ρl, σ)S
∗| ≤

∑
n∈Il(σ)

a∗
nb

∗
nc

1
F ε/4 + (1 + F (ρl, σ))

c1F ε

(1 + F (ρl, σ))4
a∗
n0

b∗n0
≤ S∗c1F ε/2,
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which proves (25).
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Appendix A Properties of trinomial coefficients

Proposition A.1. (i) ( k
m

)
2
=
( k − 1

m+ 1

)
2
+
(k − 1

m

)
2
+
( k − 1

m− 1

)
2
. (31)

(ii)
k +m

k

( k
m

)
2
=
(k − 1

m

)
2
+ 2
( k − 1

m− 1

)
2
. (32)

(iii)
m

k

( k
m

)
2
=
( k − 1

m− 1

)
2
−
( k − 1

m+ 1

)
2
. (33)

(iv)
k −m

k

( k
m

)
2
=
(k − 1

m

)
2
+ 2
( k − 1

m+ 1

)
2
. (34)

(v) For m ≤ 0, ( k
m−1

)
2( k

m

)
2

≤
k +m

−m+ 1
, (35)

( k
m

)
2(k−1

m+2

)
2

≤
k +m+ 1

−m− 1
. (36)

For m ≥ 0, (k−1
m+2

)
2( k

m

)
2

≤
k −m− 1

k +m+ 1
. (37)

(vi) For |m| ≤ k − 1, ( k
m−1

)
2( k

m

)
2

≤
( k
m

)
2( k

m+1

)
2

. (38)

(vii) For |m| ≤ k − 3, (k−1
m+2

)
2( k

m

)
2

≤
( k
m

)
2( k+1

m−2

)
2

. (39)

Proof. (i) It is easy to derive the identity (31) from the equation (1 + x+ 1
x )

k−1(1 + x+ 1
x ) =

(1 + x+ 1
x )

k and the definition of trinomial coefficient.
(ii) Identity (32) is satisfied by the expansion formula (1),

(k − 1

m

)
2
+ 2
( k − 1

m− 1

)
2
=

∞∑
r=−∞

( k − 1

m+ r

)(k −m− r − 1

r

)
+

∞∑
r=−∞

( k − 1

m+ r − 1

)(k −m− r

r

)

=
∞∑

r=−∞

(
k −m− 2r

k

( k

m+ r

)(k −m− r

r

)
+

2(m+ r)

k

( k

m+ r

)(k −m− r

r

))

=
k +m

k

( k
m

)
2
.

(iii) and (iv) (33) can be deduced from the identities (31) and (32), and (34) can be derived

by the identity (32) and
(
k
m

)
2
=

(
k

−m

)
2
.

(v) Suppose m ≤ 0. One can easily prove the inequality (35) by knowing that
(

k
m−1

)
2
=
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(
k

−m+1

)
2
,
(

k
−m

)
2
=

(
k
m

)
2
, and

( k

−m+ 1

)
2
=

k∑
r=0

k!

(−m+ 1 + r)!r!(k +m− 1− 2r)!

=
k∑

r=0

k +m− 2r

−m+ r + 1
×

k!

(−m+ r)!r!(k +m− 2r)!

≤
k∑

r=0

k +m

−m+ 1
×

k!

(−m+ r)!r!(k +m− 2r)!

=
k +m

−m+ 1

( k

−m

)
2
.

As for the inequality (36), we will introduce the following identity.( k
m

)
2

=
( k − 1

m+ 1

)
2
+
(k − 1

m

)
2
+
( k − 1

m− 1

)
2

=
k +m+ 1

k

( k

m+ 1

)
2
− 2
(k − 1

m

)
+
(k − 1

m

)
2
+
( k − 1

m− 1

)
2

=
k +m+ 1

k

(( k − 1

m+ 2

)
2
+
( k − 1

m+ 1

)
2
+
(k − 1

m

)
2

)
−
(k − 1

m

)
2
+
( k − 1

m− 1

)
2

=
k +m+ 1

k

( k − 1

m+ 2

)
2
+

k +m+ 1

k

( k − 1

m+ 1

)
2
+

m+ 1

k

(k − 1

m

)
2
+
( k − 1

m− 1

)
2
, (40)

where we use the identity (32) to
(

k
m+1

)
2
for the second equality. Then, by subtracting

k+m+1
k

(
k
m

)
2
on both sides of (40) and using the identity (31) to decompose

(
k
m

)
2
, we have

−m− 1

k

( k
m

)
2
=
k +m+ 1

k

( k − 1

m+ 2

)
2
−
(k − 1

m

)
2
+

−m− 1

k

( k − 1

m− 1

)
2

≤
k +m+ 1

k

( k − 1

m+ 2

)
2

since
(
k−1
m

)
2
is greater than

(
k−1
m−1

)
2
when m ≤ 0. Thus (36) holds.

Turn to the inequality (37). For m ≥ 0, by subtracting m+1
k

(
k
m

)
2
on both sides of (40) and

using the identity (31) to decompose
(
k
m

)
2
, we have

k −m− 1

k

( k
m

)
2
=
k +m+ 1

k

( k − 1

m+ 2

)
2
+
( k − 1

m+ 1

)
2
+

k −m− 1

k

( k − 1

m− 1

)
2

≥
k +m+ 1

k

( k − 1

m+ 2

)
2
.

Thus (37) holds.

(vi): We shall use the induction argument below. The statement (38) is trivial for k = 1.

Assume the statement is valid for k ≥ 1. Then, for |m| ≤ k − 1, by the identity (31), one can

check that(
k+1
m−1

)
2(

k+1
m

)
2

=

(
k

m−2

)
2
+
(

k
m−1

)
2
+
(
k
m

)
2(

k
m−1

)
2
+
(
k
m

)
2
+
(

k
m+1

)
2

≤
(

k
m−1

)
2
+

(
k
m

)
2
+
(

k
m+1

)
2(

k
m

)
2
+
(

k
m+1

)
2
+
(

k
m+2

)
2

=

(
k+1
m

)
2(

k+1
m+1

)
2

.

Also, note
(
k+1
k+1

)
2
= 1,

(
k+1
k

)
2
= k + 1,

(
k+1
k−1

)
2
= k2+3k+2

2 , then
(k+1
k−1)2
(k+1

k )
2

≤ (k+1
k )

2

(k+1
k+1)2

. Thus we

have proved the statement is valid for k + 1.

(vii): We first use the identity (31) to decompose
(
k+1
m−2

)
2
and

(
k
m

)
2
, so the inequality (39)
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is equivalent to the following inequality(
k

m−3

)
2
+
(

k
m−2

)
2
+
(

k
m−1

)
2(

k
m

)
2

≤
(
k−1
m−1

)
2
+
(
k−1
m

)
2
+
(

k
m+1

)
2(

k−1
m+2

)
2

,

which can in turn be written as

3∑
i=1

{( k

m− i

)( k − 1

m+ 2

)
−
( k
m

)( k − 1

m+ 2− i

)}
≤ 0.

The term inside the bracket above can be further written as

1∑
j=−1

{( k − 1

m− i+ j

)( k − 1

m+ 2

)
−
(k − 1

m+ j

)( k − 1

m+ 2− i

)}
.

Each term inside the bracket above is negative by the inequality (38), thus the inequality (39)

holds.

Remark A.1 (Concavity). Actually, for each i, j > 0, the inequality(
k − i

m+ j

)
2

(
k + i

m− j

)
2

≤
(
k

m

)2

2

holds by the same method as we used in 38. But this inequality is not true for j = 0, i > 0.

Appendix B Ratio limit theorem for one-dimensional probability

Let µ denote a probability measure on the Borel subsets of R with characteristic function f

defined by

f(θ) =

∫
R
eixθµ(dx), θ ∈ R.

We assume that µ is normalized in the following sense. There exists a real number α such that

f(2πn) = e2πniα for integers n and |f(θ)| < 1 for other values of θ.

Let µ(n) denote the n-fold convolution of µ with itself. It is clear that µ(n) is supported by

Dn = {x ∈ R| x−nα is an integer}. Suppose µ satisfies Cramér’s condition: for some constant

c > 0 ∫
R
ec|x|µ(dx) < ∞.

Let g denote the moment generating function of µ, defined for all s ∈ R by

g(s) =

∫
R
esxµ(dx).

Under Cramér’s condition, g is continuously differentiable any number of times for |s| < c, and

in particular

g′(0) =

∫
R
xµ(dx) = m.

Let us say that µ is not one-sided if µ{x | θx > 0} > 0 for all non-zero θ ∈ R. It is exactly
in this case that there is an (necessarily unique) s0 ∈ R such that infs∈R g(s) = g(s0). Then we

have the following theorem:

Theorem B.1. [Stone [9],Theorem 5] Suppose µ is normalized and not one-sided, and let s0

be defined as above. Then for every integer n0 and ϵ > 0, there is a δ > 0 such that if n ≥ δ−1,
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x ∈ Dn, y ∈ Dn+n0 , |x− y| ≤ ϵ−1 and |x| ≤ δn, then∣∣∣µ(n+n0)(y)

µ(n)(x)
− (g(s0))

n0es0(x−y)
∣∣∣ ≤ ϵ.

Remark B.1. The original theorem considers a small area Īh around x and y. But we only

consider the one-dimensional lattice measure which means that Īh = {0}.

Let ν be normalized and not one-sided with the moment generating function f , then there

is an (necessarily unique) s′0 ∈ R such that infs∈R f(s) = f(s′0), and then we can immediately

have

Corollary B.2. For every integer n0, n
′
0, x0, y0 and ε > 0, there is a δ > 0 such that if

n > δ−1,x ∈ Dn, x+ x0 ∈ Dn+n0 , y ∈ D′
n, y + y0 ∈ D′

n+n′
0
and x, y ≤ δn, then∣∣∣µ(n+n0)(x+ x0)

µ(n)(x)

ν(n+n′
0)(y + y0)

ν(n)(y)
− (g(s0))

n0es0x0(f(s′0))
n′
0es

′
0y0

∣∣∣ ≤ ϵ.

Now we are ready to give the proof of Lemma 3.3.

Proof of Lemma 3.3. Recall that {ξn} are i.i.d random variables with probability P such that

P (ξ1 = −1) = P (ξ1 = 0) = P (ξ1 = 1) = 1
3 . Let {ζn} be the i.i.d random variables with

probability Q defined as Q(ζ1 = −1− ρ) = Q(ζ1 = −ρ) = Q(ζ1 = 1− ρ) = 1
3 , then

P (

k∑
i=1

ξi = m) = Q(

k∑
i=1

ζi = m− ρk).

Notice that Q is normalized with α = −ρ and not one-sided, and p, z are constants. For any

δ > 0, we can find k large enough such that m − ρk < δk since m
k → ρ as k goes to infinity.

Then there exists a s0 such that

lim
k→∞

P (
∑k−p

i=1 ξi = m− z)

3pP (
∑k

i=1 ξi = m)
= lim

k→∞

Q(
∑k−p

i=1 ζi = m− z − ρ(k − p))

3pP (
∑k

i=1 ζi = m− ρk)
=

1

3p
(g(s0))

−pes0(z+pρ)

by Corollary B.2. It remains to determine s0. Notice that g(s) = Eesζ1 , g′′(s) = Eζ21e
sζ1 > 0,

and infs∈R g(s) = g(s′0), we have g′(s0) = 0. So

Eζ1e
s0ζ1 =

1

3
((1− ρ)es0(1−ρ) − ρe−s0ρ − (1 + ρ)e−s0(1+ρ)) = 0.

The formula above can be simplified as

(1− ρ)e2s0 − ρes0 − (1 + ρ) = 0.

Thus es0 =
ρ+

√
4−3ρ2

2(1−ρ) since |ρ| < 1 and g(s0) = Ees0ζ1 = 1
3e

−ρs0(es0 + 1 + e−s0). Hence,

lim
k→∞

P (
∑k−p

i=1 ξi = m− z)

3pP (
∑k

i=1 ξi = m)
=

1

3p
(g(s0))

−pes0(z+p) =
es0z

(es0 + 1 + e−s0)p
.

The proof of Lemma 3.3 ends.
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erate rates, Ann Inst Henri Poincaré Probab Stat, 2009, 45(4): 887-909.

[3] C Kipnis, C Landim. Scaling limits of interacting particle systems, Grundlehren der Math-

ematischen Wissenschaften, Springer-Verlag, Berlin, 1999, 320.

[4] Y Lei, Z Su. Hydrodynamic limit for the d-facilitated exclusion process (preprint).

[5] T Liggett. Interacting particle systems. Classics in Mathematics, Springer-Verlag, Berlin,

2005.

[6] A Lukyanov, V Mitkin, T Pryer, P Sirimark, T Theofanous. Capillary transport in paper

porous materials at low saturation levels: normal, fast or superfast? Proc R Soc A, 2020,

476: 20200488.

[7] A Lukyanov, M Sushchikh, M Baines, T Theofanous. Superfast nonlinear diffusion: Cap-

illary transport in particulate porous media, Phys Rev Lett, 2012, 109: 214501.

[8] E Miles. Generalized Fibonacci numbers and associated matrices, Amer Math Monthly,

1960, 67: 745-752.

[9] C Stone. On local and ratio limit theorems, Proc Fifth Berkeley Sympos Math Statist and

Probability, Vol 2: Contributions to Probability Theory, Part 2, 1967(5.2B): 217-224.

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China.

Email: suzhonggen@zju.edu.cn


