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Complete moment convergence for ND random variables

under the sub-linear expectations

FENG Feng-xiang!? WANG Ding-cheng?* WU Qun-ying!

Abstract. In this article, we establish a general result on complete moment convergence for
arrays of rowwise negatively dependent( ND ) random variables under the sub-linear expecta-
tions. As applications, we can obtain a series of results on complete moment convergence for

ND random variables under the sub-linear expectations.

81 Introduction and notation

In the classical probability theory, the additivity of the probabilities and the expectations
is assumed. But in practice, such additivity assumption is not feasible in many areas of ap-
plications because the uncertainty phenomena can not be modeled using additive probabilities
or additive expectations. Non-additive probabilities and non-additive expectations are useful
tools for studying uncertainties in statistics, measures of risk, superhedging in finance and non-
linear stochastic calculus [7,9,12,14,15]. Peng [15,16]) introduced the general framework of the
sub-linear expectation in a general function space by relaxing the linear property of the classical
expectation to the sub-additivity and positive homogeneity (cf. Definition 1.1 below). Under
Peng’s sub-linear expectation framework, many limit theorems have been established recently,
including the central limit theorem and weak law of large numbers [16,17,18], strong law of
large numbers [3,10,4,22], the law of the iterated logarithm [5,24,22], the moment inequalities
for the maximum partial sums and the Kolomogov strong law of large numbers [25], and so
on. Investigating the limit theorems in sub-linear expectation space is of great significance
in the theory and application. Because sub-linear expectation and capacity are not additive,
the study of the limit theorems under sub-linear expectation becomes much more complex and

challenging.
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Throughout this paper, C' denotes a positive constant which may differ from one place to
another. Denote a1 = max{0,a}.

We use the framework and notations of [16]. Let (€, F) be a given measurable space and
let H be a linear space of real functions defined on (€, F) such that if Xy, -, X, € H then
o(X1,- -+, X,) € H for each ¢ € Cy 1;p(R™), where Cj 1;,(R™) denotes the linear space of (local
Lipschitz) functions ¢ satisfying

(@) —p(y)| < C(L+ [&|™ + |y[™)|z —y|, Yo,y e R,
for some C' > 0,m € N depending on ¢. H is considered as a space of "random variables”. If
X is an element of set H, then we denote X € H.

Definition 1.1 A sub-linear expectation E on # is a function E : # — R satisfying the
following properties: for all X,Y € H, we have
(a) Monotonicity: If X > Y then E[X] > E[Y];

(b) Constant preserving: E[c] = c;
(¢) Sub-additivity: E[X + Y] < E[X]+ E[Y] whenever E[X] + E[Y] is not of the form +oo — 0o
or —o0 + 00;
(d) Positive homogeneity: IE[)\X] = )\IAE[X], A>0.
Here R = [~00,+0c]. The triple (Q,’H,IAE) is called a sub-linear expectation space. Given a
sub-linear expectation I@, let us denote the conjugate expectation EofE by

E[X]:= -E[-X], VX € H.

From the definition, we can easily get that £[X] < E[X], E[X + ¢ = E[X] + ¢, E[X — Y] >
E[X] — E[Y] and |E[X] — E[Y]| < E[|X — Y|]. Further, if E[|X|] is finite, then £[X] and E[X]
are both finite.

Definition 1.2 [16]

(i)(Independence) In a sub-linear expectation space (€2, H, ]E), arandom vector Y = (Y1, Ya, -
- Y,), Y; € H is said to be independent to another random vector X = (X7, Xo, -, X,,), X; € H
under E if for each test function ¢ € Cl.Lip(R™xR™) we have IE[(p(X, Y) = IAE[]E[@(:E, Y)lle_xls
whenever @(x) := IEH@(:C,Y)H < oo for all  and I@H@(X)H < 0.

Definition 1.3 [24]

(i) (Negative dependence) In a sub-linear expectation space (Q,’H,IE), a random vector
Y =(1,Ya,--,Y,),Y; € H is said to be negatively dependent (ND) to another random vector
X = (X1,Xo, -, Xp),X; € H under | if for each pair of test functions ¢1 € Cj 1;p(R™)
and 2 € Cprip(R") we have ﬁ[(pl(X)g@(Y) < Iﬁ[gal(X)]f[*i[cpg(Y)], whenever either o1, ps
are coordinatewise nondecreasing or 1, 9 are coordinatewise non-increasing with ¢1(X) >
0, Elpa(Y)] > 0, Elle1(X)ia(Y)]] < 00, Ell@1(X)]] < 00, E[|ipa(Y)[] < o0,

(ii) (ND random variables) Let {X,,;n > 1} be a sequence of random variables in the sub-
linear expectation space (Q,"H,I@). X1, X5, - - are said to be negatively dependent if X;,; is
negatively dependent to (X7, Xs,- -+, X;) for each ¢ > 1.

It is obvious that, if {X,;n > 1} is a sequence of independent random variables and
fi(z), fa(z), - € Cprip(R) then {f,(X,,);n > 1} is also a sequence of independent random vari-
ables; if {X,,;n > 1} is a sequence of negatively dependent random variables and fi (z), fa(x), -
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- € C1.1ip(R) are non-decreasing (resp. non-increasing) functions, then {f,,(X,);n > 1} is also
a sequence of negatively dependent random variables.

Definition 1.4 An array of random variables {X,;;1 < i < k,, n > 1} in (Q,?—L,]E) is
called rowwise negatively dependent random variables if for every givenn > 1, { X,,;;1 < i < k, }
is a sequence of negatively dependent random variables in (Q,H,E), where and in the sequel
{kn, n > 1} is a sequence of positive integers and k,, — oo, when n — oo.

Next, we introduce the capacities corresponding to the sub-linear expectations. Let G C F.
A function V : G — [0, 1] is called a capacity if

Vig)=0,V(Q)=1, and V(A) <V(B) VAC B,A,B€g.
It is called to be sub-additive if V(AU B) < V(A) + V(B) for all A,B € G with AUB € G.

Let (Q,H, IE) be a sub-linear space, and & be the conjugate expectation of E. We denote a
pair (V,V) of capacities by

V(A) :=inf{E[¢] : T4 < &€ € H}, V(A) :=1—V(A°), VA € F,
where A€ is the complement set of A. It is obvious that V is sub-additive and
V(A) := E[14], V(A) :=E[L4], if I4 € H,
E[f] < V(4) <Elg], E[f] < V(A) <Elg). if f < Ta < g.f.g € K.
This implies Markov inequality: VX € H,
V(I X| > z) < E[|X[P)/2P, V&> 0,p>0
from I{|X| > 2} < |X|P/zP € H. By Lemma 4.1 in Zhang (2016a ), we have Holder inequality
inequality: VX,Y € H,p,q > 1, satisfying p~! + ¢~ =1,
E[IXY) < E[IxXP)» ElYI)7,
particularly, Jensen inequality:
EIX)" < EIXP)?, for0<r<s.
We define the Choquet integrals/expecations (Cy, Cy,) by
Cy(X):= /OO V(X > z)dz + /0 (V(X >x)—1)dz
0

— 00

with V being replaced by V and V, respectively. If lim._ I@[(|X| —¢)4+] =0, then I@HXH
< Cy(|X]) [24].

Complete convergence and complete moment convergence theorems are important limit
theorems in probability theory. Many of related results of complete convergence have been
obtained in the probability space. We refer the reader to [1,13,11,8,21], and so on. For the results
of complete moment convergence in the probability space, we refer the reader to [6,2,20,19,23],
and so on.

Wu et al. [23] established the following complete moment convergence theorem for END
random variables in classical probability space.

Theorem A Let ¢ > 1, {X,,;;1 < i < ky,n > 1} be an array of rowwise END random
variables and {c, } be a sequence of positive real numbers. Assume that the following conditions
hold:
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(a) 0% e S8 B X I(|Xi] > €) < 0o for any & > 0;
(b) for some § > 0, there exists 7 > 1 such that

o0 kn n
Z cn <Z EX2I(| X0 < 5)) < o0
n=1 =1

(c) Zfil B\ Xl I(| Xpi] > %) = 0, asn — oo.
— 6} < Q.
+

167
Then for all e > 0
kn
The main purpose of this article is to investigate more general complete moment convergence

Z (Xni — EXpiI(| X0i| <9))
i=1

5t

n=1

for arrays of rowwise ND random variables under the sub-linear expectations.

82 Main results

In this paper, we define g(x) in the following: For 0 < p < 1, let g(x) € Cj.1;p(R) such that
0 <g(x) <1lforall zand g(x) =1if |z| <y, g(x) =0if |z| > 1 and when = > 0, g(z) |. Then

I(je] < ) < gle) < I(J2| < 1), I(la] > 1) < 1 - g(x) < I(|2] > ). (2.1)

Theorem 2.1. Let {X,i;1 <i < kp,n > 1} be an array of rowwise ND random variables
n (Q,H,IE) and {c,} be a sequence of positive real numbers, f : RT — RT be an increasing
function with f(0) =0 and n > 1 be a constant. There exits some constant § > 0 and p is the
same as in (2.1). Assume that the following conditions hold:

(a) 302 cn ngl E [f (801Xl (1 =g (524)))]

< Snlien Yo O [ (801Xl (1 - g (%24)))] < 00, for any e > 0;

(0) Sty en (S B [X20 (2)]) " < o0

(¢) i E [\Xm| (1 -9 (%))} — 0, asn — oo;

(d)let h : RT — RT be the inverse function for f(t), which is h(f(t)) = t,t > 0 and s(t) =
MaX,s<z<h(t)/u ﬁ Suppose that the constants 1, § and the function f : RT — R™ satisfy the

condition

/oo B (1)s(t) dt < oo
£(9)

(e tpa) )= e

i=1

Then for alle >0
Z CnCV
n=1

Let f(t) =t?, t > 0,q > 0 in Theorem 2.1, we can obtain the following interesting result:

Corollary 2.1. Let ¢ > 0, {X,i;1 < i < ky,n > 1} be an array of rowwise ND random
variables in (Q, H, ]E) and {c, } be a sequence of positive real numbers. Assume that the following
conditions hold:

(@) o2y en Sty B [1Xil? (1 - g (£24))]

< e o Oy [ Xt (1— g (224))] < 00 for any € > 0;
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(b) for some § > 0, there exists n > max(1,q) such that

oo kn X n
S (352 i (2)]) <
n=1 i=1

() o B [\Xm'| (1 -9 (%))} — 0, asn — oco.
Then for alle >0

S [ ool ()

Remark 2.1 We can obtain the corresponding result of Theorem A when f(¢) =t (¢ > 0)

in our Theorem 2.1 under the sub-linear expectations. We establish a more general complete

moment convergence theorem for arrays of rowwise ND random variables under the sub-linear
expectations.
Remark 2.2 Letting f(¢) be some special functions, we can obtain a series of results on

complete moment convergence for ND random variables.

83  Proofs of main results

In order to prove our results, we need the following lemmas.
Lemma 3.1. Let {X,,;;1 < i < ky,n > 1} be an array of rowwise negatively dependent random
variables in (Q, 1, E) with E[X,;] <0, for 1 <i < kn,n > 1. Let B, = Zf;l ]E[an] Then for
any giwen n and for all x > 0,y > 0

k'n/
x Ty
E . < . - — — — .
V(i—1 o >x> B <123)’§an2| >y> +exp{y yln <1+ B’;I>}

Proof  Similar to the proof of Theorem 3.1 of [24], we can have

k ,
-z r x (B Ty
V (;Zl Xoni >x> < (1;111%)]; | X ni| > y) +exp{y " <my +1) In <1—|— ;L)}

Hence we have

kn
r Ty
A\ Xpi>x | < max X'>y>+exp{—ln<1+ ,)}
(2 " ) <1Siékn ! y oy B,

Lemma 3.2. Let {X,;;1 < i < kp,n > 1} be an array of rowwise ND random variables in
(Q,’H,IAE) and {c,} be a sequence of positive real numbers. Suppose that for every e > 0 and
some § > 0:

(i) Sony en 2050 V(1 Xni| > €) < 00;

(ii) there exists j > 1 such that

Then
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Proof  Denote S’;L = 2?21 (Xm- -E [Xmg (XS'” )]) Note that

kn kn
V@;>@§V<$QN3UHKM>M®>+V<$ﬁwaﬂ(KMSu®>

i=1 i=1

< iV(lel > pé) +V (i (Xm'g <X5n) = [X’”'g <X6n)]> ] 6)

i= i=1

1
Hence, by condition (i), it is sufficient to prove that

() el o

For any a > 0 and set

d= min{l,%} N = {n: k % (|Xm| > min {m,ﬂg}) > d}, and N = N/N;.

Note that =
> eV ( (Xmg <Xg”> B {Xmg <X;5m>]> > 5)
neN; =1
0o kn
< ,;v en < ;;cn ZZIV (|Xm| > min {ﬂg,ug}) < 0o

Hence, it remains to prove that ZTLENQ e,V Zf;l (Xm-g (Xg“') — IE[Xm-g (X(S")]> > 5) < 00.

By Lemma 3.1 we get

where B,, = Zf;l B [(Xm'g (Xém-) ) [Xnig (X(;"i)]>2].

If a/6 < 4, for n € Na, by the fact ’g (X*”') -9 (X")‘ < I (pg < [Xni| <0), we have,

0 a/6
B (5

max

1<i<k,
=~ an a an Xni
< . . —
~asish, E[X“g<a/6>”+13?3’finE['X’“' g( 5 ) 9<a/6)H

kn
<a/6+38> V(| Xni| > >
@ ; ( “6)

< a/6+5§2:V (|Xm| > min{é,u%}) <a/6+dd <a/3.
i=1
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Therefore,

o (552 8 oo ()] )

Xoig (X;N ) chkZV (1%l > 20) <

n=1 i=1

E ¢, V| max
1<i<k

ne Ny

o0
< E ¢,V | max
1<i<kn,

n=1

If a/6 > 0, we can also easily get Z'VLENQ c,V (maxlgigkn | X nig (

< 00.

Letting a = ?, we have

beoo{S} S e (14 5)
C

n€EN2 n€EN>
B\’ >
< exp {%} n;\] Cn (5) < ;anfl
> o X\ o X\
e (B ()]

We complete the proof of Lemma 3.2.

Proof. Proof of Theorem 2.1. First of all, from condition (a), we have

& St (e ()]

) k
= an'
< ZCHZCV {f (|Xm <1—g< E‘ )))} < oo for any ¢ > 0.
n=1 i=1

Next, by Markov’s inequality and condition (a/), we have that

S k oo k
n n ~ an
chZV(\Xm| >¢) < CZC”ZE [f (Xm| (1 -y ( 5 )))} < 00,
n=1  i=1 n=1  i=1
which implies that condition (i) of Lemma 3.2 holds.
For n > 1, denote S,, = Zfﬁl (Xm -E [Xmg (Xg”)]).
We can easily get that

S Gy [f ({Sn —c}4)] = Z . /OO V(S — ¢ > h(t)) dt
oo f(9)

=3 e V(S, > e+ ht dt+ch/ V(S > e+ h(t)) dt
0

ch (Sn > e) +ch/ V(S > h(t)) dt

=0 + .
By Lemma 3.2, we have that I < co. It is enough to show that I < co.

n=1

X)) | > a)
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For t > f(§), it is easy to get that
V(S > h(t) < ) V(| Xnil > ph(t))
1

>

3

k
= an = an
v Xni — | —E an N h(t )
! (Z( () &% (5°)]) > ())
which implies that

B<Y e [ V(X > uht)de

n=1 =17

S [ ) o)) ar) o

i=1

E

By Markov’s inequality and condition (a’), we have that

oo kn 00
<Y e /f U/ > 0
n=1 i=1

cofSal (oo ()]

For fixed n > 1,1 <4 <k, and ¢t > f(d), denote

Vi = h(t)I(Xpi > h(t)) + Xpil (| X i) < h(t)) — h(£)I(Xpni < —h(t)) and
Y, = h(t)I(Xp; > h(t)) — h(t) (X < —h(t)).

ni
By the definition of Y,,;, {Yy; — EY,:,1 <i < k,, n > 1} is an array of rowwise ND random

variables under the sub-linear expectations.

By the definition of Y;,;, C, inequality and (2.1), we have

Bl < B X0 (552 )| + HOVOX,01 > o)

Hence, for t > f(0), we have

((Ym- SR + Vil +

()

By g(z) J, x > 0, condition (c) and the fact ‘g (“,ffg) —g (Xg”')

# s (5 )

ROV ] > uh(t))> > h(t))

< I(pé < | Xni| < h(t)/0)
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we have .
1 NP ﬂXni = an
E —E
s o 2 [ (5 )] =2 [ ()]
1 UNPN ,Uan an
< — E || X -
) 2 o () o (55)|
k
n X
<6y El[Xul (-9 =+
< 2R [l (-0 (53))]
bn 160X,
1 = ni
0 AL )
=1
as n — oo.
Hence, for all n large enough,
k
L PN /J,an -~ an h(t)
> [E s (55 )] - [rr ()| < 5 2009
By Markov’s inequality and condition (c¢), we have

kn

1
D oo z; h(E)V(| Xpi| > ph(t))

kn kn

= VXnZ> h Xn7,> 0 3.6
g 2 V1 Xoil > b Zl\u (3.6)

k
" X,
1ZE[XM| <1—g('u(;z>)] — 0, as n — oo.
=1

Hence, for all n large enough

h(t)

Zh V([ Xoni| > ph(8)) < =5, £ F(9). (37)

Combining (3.4), , for n large enough, we have

o(E (35 )

kn
= (Z(Y’” ~BlYl) > h?) +V < Y] > hﬁ?)

Therefore

(e ey O

n=1 i=1

(5) i=1

(3.8)

x>
3

(%)), Markov’s inequality, (2.1) and
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. ’ .
condition (a ), we can obtain

oSSl (oo ()]

Hence to prove I < 0o, it is enough to show that I5 < co. Denote B,, = 21'21 IE(YM —IE[YM])2.
Applying Lemma 3.1 with = = h(t)/4 and y = h(t)/(4n), we have

5 h(t)
I5 < Czcn /(5) (12235 |Ynz - E[YnzH > 4,,7) dt

h2(t)
cN e, —pln(1 dt =1 + Is.
* ZCL/QQGXP{U nn( +16773n)} T

By Markov’s inequality and condition (c¢), we can get that for all n large enough,

ky, u5 kn 167 X s u
V(| Xpl>=—]<C> E||Xull1l- < m)ﬂ <1 3.11
Z (' | ) ; [ '( I\ (L+ )161 (311

Thus by the fact ‘g (“h)((g) -9 (%)‘ < I( 5 < [Xni| < h(t)/p) and (3.11), we have

(3.10)

. 1
il <
IE[Y]] s max o E[| Vi)

(B[ 1xuds (50 ) |+ 0060 > )

. s (55 3 (25) ()
" )
7 <16n;(m->>] +iV(IXml > pd)

OV(| Xnil > ph(t))

tglf(zi) 12igh, . h(t) )

+ tI>nf(6) 18i%k, h(t)

kn,
16 1 ~ Xni

) 167] t>f(6) h(t h(t)

kn
L 1 h(t )
= Ton O — (X
= Top T RO H ; ( Xnil > 5 )+§:V| ni| > p6)

k
1 - o
< — 1 1 Xni
< qoy Ui D VXl > {50
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1 1 1

= .
167 + 16n  8n
Therefore by the fact |Ym| < | X | and condition (a), we have

h
= CchiO\v {f <8n|Xm-| <1 -9 (8n?”i)>)} < 0.
n=1 =1

By C-inequality, we have

= n < Ui
Is = C’che/ < 16nB> dt C’ch/ t)B;! dt

Q)

C'ch L (ZE (Yo —E[Y, m])2> dt

n=1 7(9)

<C Z cn/ h=21(t) (Z IE[Y,?J) dt.
n—=1 f(8) i=1
By the definition of Y;,;, C, inequality and (2.1), we have
-~ -~ an
Bv2] < OB [ Xk (5 )| + vl > un)

0
< CE [Xiig <X§ ﬂ +CE {XQ (‘;fé’;) _y (X5> H + CRAOV(| Xi| > ph(2).

(3.12)

Hence

kn X K
<C cn/ ]/E\J{ang< m)]) dt
nzl 7(6) <Z-1 0

(3.13)

oS o (S (35) ()] o

o) 00 kn n
—|—C’ch/ (ZV(|XM-| > uh(t))) dt=Ty + Lo+ 1.
n=1 f) \i=1

By the definition of s(t) = max,s<o<n(t)/u ﬁw), we have s(t) > ( ) Then § < ( 9) s(t). For
t > f(9), we have

he) < (s < wonis g

_ y”‘lﬂﬁé)h—"(t)s(t) = Ch™"()s(0).

()

Iy = Cicn (k E [an.g ();”)Dn/fw R(1)s(t) dt < oco. (3.14)
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Note that

then we have

Iloﬁcicn <ZE[XM|

‘g (’“‘X"i) g (X)] < (b < | Xoi] < (0)/1), t> F(5)
n—1 f(5)

h(t) )
n
CORIEIK
By condition (c), for all n large enough, we have

3.2 [l (5) -5 (%) < 22 (= (53]

<S8 (1258

Hence by the fact 7 > 1, conditions (a') and (d), we get
110<C’ch/ ZE[|XM (”X’”) —g(X’”'>H dt
o) h(t) s
< C’ch/ h™(t)

n=1 f(9)

& m 50) =9 (5%) .
e f< (b (35 o ()] o

: CORICH K

< czcniﬁ [f <|Xm-| (1 —yg (i’;))ﬂ /f:) h=(t)s(t) dt < oo.

n=1 i=1
Finally, we will show that I;; < co. For ¢t > f(d), by the proof of (3.6), for n large enough,

<o% e [ s (S8 s (1w

we have that

kn
> V(IXnil > ph(1)) < 1.

i=1
Thus by the fact 7 > 1 and conditions (a'), we have
o0 kn ')
I < CchZ/ V(| Xni| > ph(t))) dt
n=1 i=1 f(8)
= o Xni
Szcn CV f |an| 1_9 < 0.
; o
n=1 i=1
O
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