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Time variant multi-objective linear fractional

interval-valued transportation problem

Dharmadas Mardanya Sankar Kumar Roy∗

Abstract. This paper studies a time-variant multi-objective linear fractional transportation

problem. In reality, transported goods should reach in destinations within a specific time. Con-

sidering the importance of time, a time-variant multi-objective linear fractional transportation

problem is formulated here. We take into account the parameters as cost, supply and demand are

interval valued that involved in the proposed model, so we treat the model as a multi-objective

linear fractional interval transportation problem. To solve the formulated model, we first con-

vert it into a deterministic form using a new transformation technique and then apply fuzzy

programming to solve it. The applicability of our proposed method is shown by considering two

numerical examples. At last, conclusions and future research directions regarding our study is

included.

§1 Introduction

Transportation experts encountered challenges at the beginning of the 21st century to meet

the growing difficulty of shipping in a competitive market scenario. Transportation specialist-

s then wanted to use the capacity restriction during transportation. They wanted to reduce

environmental pollution, to recover poor safety record, unreliability, and to utilize the wasted

energy. Transportation systems are generally complex systems involving a large number of

components and different objectives, each having different and often conflicting objectives.

Transportation Problem (TP) can be explained as a specific case of linear programming problem

and its model is used to decide how many units of items to be transferred from each origin to

various destinations, satisfying source availabilities, and destination demands, while minimizing

the total cost of transportation along with striking down the costs per unit item for the pur-

chasers. The transportation model was first investigated by Kantorovich [18], who has defined

an incomplete algorithm for achieving the solution of the TP. Hitchcock [15] considered the
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problem of minimizing the cost of distribution of products from different factories to a number

of customers. Liu [23] presented a method for solving the cost minimization TP with varying

demand and supply. A good number of researches for solving TP in different directions have

been developed by several researchers such as (cf., [1], [27], [30], [35]).

The fractional TP is another type of TP with the ratio of objective functions. It is concerned

with transporting goods from various sources to destinations along with keeping good rela-

tionships among some parameters. These parameters of TPs may occur in the form such as;

actual transportation cost/total standard transportation cost, shipping cost/preferred route,

total return/total investment, etc. The fractional programming problem, which is a problem of

optimizing one or several ratios of functions, has been widely discussed from both methodolog-

ical and practical perspectives (see, for example, the review of [42]). Swarup [44] introduced

linear fractional functional programming. Few studies had been discussed on fractional net-

work flows in the literature. Gupta et al. [10] investigated a paradox in linear fractional TPs

with mixed constraints. A sufficient condition for the existence of a paradox is established.

Lin [22] proposed iterative labelling algorithms to determine the type-II sensitivity ranges of

the fractional assignment problem. Tirkolaee et al. [49] studied multi-objective optimization

for the reliable pollution-routing problem with cross-dock selection using Pareto-based algo-

rithms. Xu et al. [48] developed a new algorithm to deal with the linear fractional minimal

cost flow problem on the network. Bharati [2] solved the trapezoidal intuitionistic fuzzy frac-

tional TP. Mahmoodirad et al. [25] solved fuzzy linear fractional set covering problem by a

goal programming based solution approach. A solution proposal to the interval fractional TP

was proposed by Guzel et al. [14]. Schell [40] discussed the distribution of s products with

several properties, in: Proceedings of 2nd Symposium in Linear Programming. Garg et al. [8]

solved fractional two-stage transshipment problem under uncertainty and provided the appli-

cation based on the extension principle approach. Schaible [41] described whole bibliography

in fractional programming. Zimmermann [52] applied fuzzy programming and linear program-

ming to solve several objective functions. Ravi and Reddy [34] applied fuzzy linear fractional

goal programming to solve refinery operations planning. Bitran and Novaes [3] solved linear

programming with a fractional objective function. Chadha [4] introduced fractional program-

ming with absolute-value functions. Gupta and Arora [11] solved linear plus linear fractional

capacitated transportation problems with restricted flow. Jain and Saksena [16] solved time

minimizing TP with fractional bottleneck objective function. Chang [5] introduced polynomial

mixed 0-1 fractional programming problems. Wolf [46] depicted an approach for determining

the optimal solution of the linear fractional programming problem using parametric method.

Radhakrishnan and Anukokila [33] established the fuzzy fractional transportation problem with

compensatory approach. Wu [47] wrote a note on a global approach for general 0-1 fractional

programming. A comparison with different fractional TPs is given in Table 1. A good num-

ber of researchers have studied linear programming problem in different directions such as (cf.

[13], [17], [21], [51]).

The modern aggressive market scenario indicates that the single objective TP is not enough to



Dharmadas Mardanya, et al. Time variant multi-objective linear fractional... 113

Table 1. Comparison among different fractional TPs.

Article Type Parameters Approach Time
environment

Porchelvi and Single Interval With and without
Sheela [32] objective considering budgetary

constraints
Liu [24] Single Fuzzy Two-level mathematical

objective programming
Kocken et al. [19] Single Interval Taylor series approach

objective
Bharati [2] Single Fuzzy Charnes and Cooper

objective transformation
Radhakrishnan and Single Fuzzy Compensatory approach

Anukokila [33] objective
Guzel et al. [14] Single Interval Taylor series approach

objective

Proposed method Multi- Interval Taylor series approach X
objective

handle the real-life decision-making problem. To deal with practical situations on TP, we in-

troduce here the multi-objective concept on TP in which the objective functions are conflicting

to each other. Maity and Roy [27] solved multi-objective TP using utility function approach.

Vincent et al. [50] studied on an interactive approach for multi-objective TP with interval pa-

rameters. Maity and Roy [28] solved a multi-objective TP with non-linear cost and multi-choice

demand. Niroomand et al. [31] solved an intuitionistic fuzzy two stage supply chain network

design problem with multi-mode demand and multi-mode transportation. Recently, Roy et

al. [36] studied on multi-choice multi-objective TP using conic scalarization approach; and

Roy et al. [39] introduced a new approach for solving the intuitionistic fuzzy multi-objective

transportation problem. Gupta et al. [12] solved parameter estimation and optimization of

multi-objective capacitated stochastic transportation problem for Gamma distribution. Maity

et al. [29] analyzed multi-modal transportation problem and discussed its application to ar-

tificial intelligence. Goli et al. [9] developed accelerated cuckoo optimization algorithm for

capacitated vehicle routing problem in competitive conditions. The optimal solution of each

objective function is not always derivable in a solution of Multi-Objective Transportation Prob-

lem (MOTP) due to the conflicting nature of the objective functions and hence we find Pareto

optimal solution. Pareto optimality is one approach to obtain a better solution for MOTP,

and it is named after economist Vilfredo Pareto (1848-1923). Pareto marked that many eco-

nomic solutions helped some people while hurting others. “Pareto optimality” is a formally

defined concept applied to determine when an allocation is optimal. If an allocation is not a

Pareto optimal that means there is an alternative allocation and we can improve at least one

participant’s well-being without reducing any other participant’s well-being. If there exists an

alternative allocation that satisfies this condition, then the reallocation is called “Pareto im-

provement”. When no further Pareto improvements are possible, then the allocation is “Pareto

optimum”. In real-life, various distributions are applied to the minimization of the ratio of the

total cost to profit. The problem derived by such type of two linear functions gets its name as a
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linear fractional TP. The linear fractional TP is applied in different areas such as the financial

sector, inventory management, production planning, banking sector, and others. It is used for

modelling real-life problems with one or more objective functions such as debt/equity, prof-

it/cost, inventory/sales, actual cost/standard cost, output/employees, nurses/patient ratios,

etc. concerning some constraints. In many real-world situations, decisions are often made in

the presence of multiple, conflicting, non-commensurable objectives. Then, it gets its name as

a multi-objective linear fractional transportation problem (MLFTP). It deals with the distribu-

tion of goods at a time by considering the ratio of several objective functions. Multi-objective

form of linear fractional programming problem has been studied in numerous studies and some

of them are [[20], [43]]. Chakraborty and Gupta [7] developed a solution for multi-objective

linear fractional programming problems. The parameters associated with the MLFTP are not

deterministic or fixed value. Chang [6] developed a goal programming approach for fuzzy multi-

objective fractional programming problems. In [45], a fuzzy multi-objective linear fractional

programming problem is reduced to a single objective problem using the Taylor series and its

approximation solution is obtained. However, several research papers were available in the

literature to analyze fractional TP, but to the best of our knowledge, till now no one solved

fractional TP in time environment. In this paper, a new mathematical model is proposed for

solving fractional TP by incorporating time in the transporting system. The main contributions

of our proposed study are summarized as follows:

• Design MLFTP model when the parameters in the objective functions, and supply and

demand are interval numbers.

• We convert interval parameters like cost, supply and demand into crisp form using a new

transformation technique.

• We linearize the fractional TP using Taylor series expansion.

• Develop a solution procedure to solve the proposed model (i.e., Model 3).

• Two real-life examples are incorporated to test the applicability of the proposed model.

The residue of this paper can be depicted as follows: the mathematical model of the study is

presented in Section 2. Section 3 contains the solution procedure along with three subsections.

A reduction procedure from interval to real number is presented in Section 3.1. A linearization

technique for multi-objective fractional functions is presented in Section 3.2. An algorithm for

solving the proposed MLFITP is offered in Section 3.2. Two numerical examples are included

to justify our present study in Section 4, and sensitivity analysis is carried out in Section 4.1.

Finally, concluding remarks and outlook of the study are described in Section 5.

§2 Formulation of the problem

We employ the following notations and list of abbreviations throughout the paper to for-
mulate the mathematical formulation of MLFITP.
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Notations:
c1ij : unit transporting cost due to the travelled route from ith origin to jth destination,

l1ij : unit transporting cost due to preferring route from ith origin to jth destination,

c2ij : unit transporting damage cost due to the travelled route from ith origin to jth

destination,

l2ij : unit transporting damage cost due to preferring route from ith origin to jth

destination.

Abbreviations:
TP: Transportation Problem,

MOTP: Multi-Objective Transportation Problem,

MLFTP: Multi-objective Linear Fractional Transportation Problem,

MLFITP: Multi-objective Linear Fractional Interval-valued Transportation Problem.

Considering a fractional TP with m origins having si (i = 1, 2, . . . ,m) units of supply to be
transported among n destinations with dj (j = 1, 2, . . . , n) units of demand. Here we choose
two fractional objective functions, which are
• Units transporting cost c1ij due to the travelled route and unit transporting cost due to pre-

ferring route l1ij , for transporting the product from ith origin to jth destination.

• Unit transporting damage cost c2ij (lost of quality and quantity of transportation) due to the

travelled route and unit transporting damage cost due to preferring route l2ij , for transporting

the product from ith origin to jth destination.
The problem is to determine the transportation schedule of transporting the available quantity
of products, to satisfy the demand that minimizes the total transportation cost and damage
charges. Let xij be the number of units transported from ith origin to jth destination. Then,
the mathematical model for the MLFTP [6] which can be expressed as follows:
Model 1

minimize Z1 =

∑m
i=1

∑n
j=1 c

1
ijxij∑m

i=1

∑n
j=1 l

1
ijxij

minimize Z2 =

∑m
i=1

∑n
j=1 c

2
ijxij∑m

i=1

∑n
j=1 l

2
ijxij

subject to

n∑
j=1

xij ≤ si, (i = 1, 2, . . . ,m),

m∑
i=1

xij ≥ dj , (j = 1, 2, . . . ., n),

xij ≥ 0 ∀ i, j.

The first set of constraints stipulates that the sum of the shipments from a source does not
exceed its supply; the second set requires that the sum of the shipments to a destination must
satisfy its demand. The above problem implies that the total supply

∑m
i=1 si must be greater

than or equal to total demand
∑n

j=1 dj .

Due to real-life situations in the market ckij and lkij (k = 1, 2) are not always crisp numbers
so here we consider these as interval numbers, then the mathematical model reduces to the
following form (Model 2) as:
Model 2

minimize Zk =

∑m
i=1

∑n
j=1[c

kl
ij , c

ku
ij ]xij∑m

i=1

∑n
j=1[l

kl
ij , l

ku
ij ]xij

(k = 1, 2)
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subject to
n∑

j=1

xij ≤ [sli, s
u
i ], (i = 1, 2, . . . ,m), (1)

m∑
i=1

xij ≥ [dlj , d
u
j ], (j = 1, 2, . . . ., n), (2)

xij ≥ 0 ∀ i, j. (3)

In above model cost, supply and demand parameters all are interval numbers. The objective
function in Model 2 is of non-linear type, and non-linearity occurs due to the effect of extra
cost in the cost parameter in the TP. In this situation, the TP (see Model 2) is treated as TP
with non-linear cost. The single objective TP is not adequate to formulate all real-life TPs.
TPs with multiple objective functions are considered as MOTP. However, we deal with those
kinds of objective functions that are conflicting and non-commensurable with each other.
In TP, time of transportation, especially for transporting the goods considering the sustain-
able development of nature, it is an important factor. In most of the governments and private
industrial systems, the main aim for transporting goods is to reduce transportation cost and
to optimize benefits within a quicker time. However, in many situations, no one would like to
consider the optimal situation of controlling pollution during manufacturing as well as trans-
portation. Therefore, in a faster world, to keep our nature in the best condition, it is the time to
think not only of the benefit but also of the sustainability of nature during the system. As time
is an important factor, we construct another objective function to minimize the transportation
time as follows:

minimize T =

m∑
i=1

n∑
j=1

Tijχij

where χij =

0, if xij = 0 in X

1, if xij ̸= 0 in X.
(4)

Here, Tij is the time of transporting the goods from ith node to jth destination and X ∈ F ′;
where F ′, the set of all points satisfying constraints (1)-(4), is the feasible region of Model 2.
Hence, in our proposed model, we include multiple objective functions along with objective
function of time to be minimized and is defined as follows (see Model 3):
Model 3

minimize Zk =

∑m
i=1

∑n
j=1[c

kl
ij , c

ku
ij ]xij∑m

i=1

∑n
j=1[l

kl
ij , l

ku
ij ]xij

minimize T =

m∑
i=1

n∑
j=1

Tijχij

subject to the constraints (1)− (4).

Fractional transportation problem has been studied in different environments by several re-

searchers. But there is a gap of study of fractional transportation problem in time window. In

this paper we design Model 3 which includes multi-objective interval valued fractional trans-

portation problem in the time environment. Then we optimize the objective functions of frac-

tional transportation problem, and we are not directly minimized the transportation time from

the objective function of time. To minimize the transportation time in Model 3, here we apply

new solution methodology which mentions in the next section, and then Model 4 is obtained.

In Model 4 there is no time function whereas in Model 3 there is a time function.
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§3 Solution methodology

The mathematical model of MLFITP described in this paper (see Model 3) cannot be solved

directly due to presence of interval-valued parameters. Therefore, at first, we transfer the

problem into MLFITP with crisp penalties and thereafter we linearize the fractional objective

function by using first order Taylor series expansion. After that, fuzzy programming is imposed

to determine the optimal solution of the reduced MLFITP. Now, we define a function which

depends on time of which the value lies in the interval [0,1], and this issued is to reduce

the interval valued cost parameter to the real valued parameter. The interval valued supply

and demand parameters are also converted to real numbers by using parameters that do not

necessarily depend on time. This procedure is depicted in the first subsection of this section.

After that, an algorithm is presented to solve the proposed MLFITP in later subsection.

3.1 General transformation technique used to convert interval num-

ber into real number

The cost parameters involved in Model 3 are of the interval type, i.e., [cklij , c
ku
ij ] and [lklij , l

ku
ij ]

(k = 1, 2); this indicates that within the interval the cost parameters may take any value. Now

we construct two new parameters λckij , λlkij which depend on time. Let the minimum time range
period that assigns by DM is T0. If the delivery occurred within the minimum range period,
then the minimum costs cklij and lklij have to be paid. Due to delay of delivery the product, the

cost becomes c̃kij = cklij + λckij (ckuij − cklij ), l̃kij = lklij + λlkij (lkuij − lklij ) (k = 1, 2). Here, λckij and λlkij

are parameters for each k such that

λckij =

0, if Tij < T0

Tij−T0

Tij
, if Tij ≥ T0.

λlkij =

0, if Tij < T0

Tij−T0

Tij
, if Tij ≥ T0.

(5)

where Tij is the time of transportation from ith origin to jth destination, and then λckij and λlkij

are the increasing functions of time. Furthermore, all the objective functions in the considered

MLFITP are not the type to deliver goods at a scheduled time. It may also reduce the damaging

cost of delivering the goods. When goods are required on an urgent basis there is a lot of chance

to increase the rate of the damaging cost of the goods; consequently, DM expects a less damaging

cost as the requirement fulfils in hurry.

DM can also choose the function according to this choice, but it should be time-dependent as

per our consideration in this paper. Again, the supply s̄i(= [sli, s
u
i ]) and demand d̄j(= [dlj , d

u
j ])

parameters are also considered as interval numbers. The interval numbers reduce into real

numbers by the following way: s̄i = sli + λsi(sui − sli) and d̄j = dlj + λdj (duj − dlj). Here, λsi and

λdj are the parameters not necessarily related to time but may be linear or stochastic or fuzzy

depending upon the choice of DM.
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3.2 Linearization technique for multi-objective fractional functions

To apply the Taylor series approach, we need to specify an initial single point from the
feasible region of Model 3. At first, interval supply and demand quantities and interval objective
function coefficients of the numerator and denominator are converted into deterministic ones
using the technique mentioned in Section 3.1. Then the corresponding Model 3 reduces into
the form in Model 4 as follows:
Model 4

minimize Zk =

∑m
i=1

∑n
j=1

[
cklij + λclij (ckuij − cklij )

]
xij∑m

i=1

∑n
j=1

[
lklij + λ

llij (lkuij − lklij )
]
xij

(k = 1, 2)

subject to
n∑

j=1

xij ≤
[
sli + λsi (sui − sli)

]
, (i = 1, 2, . . . ,m), (6)

m∑
i=1

xij ≥
[
dlj + λdj (duj − dlj)

]
, (j = 1, 2, . . . ., n), (7)

xij ≥ 0, λsi , λdj ∈ [0, 1] ∀ i, j. (8)

The main purpose here is to specify an initial feasible point, not an optimal one. An initial basic
feasible solution of Model 4 can be determined by Northwest Corner Method which ignores the
objective function coefficients and compute a basic feasible solution of a TP, where the basic
variables are selected from the North West corner (i.e., top left corner). Let denote the initial

feasible solution as X(0) = (x(0), λsi
(0), λ

dj

(0)).

Thereafter, using the first order Taylor series about at the feasible point X(0), the objective
function of Model 4 can be constructed approximately as follows:

Zk ≈ Zk(X
(0)) +

m∑
i=1

n∑
j=1

∂Zk

∂xij

∣∣∣∣
X(0)

(
xij − x

(0)
ij

)
(9)

Hence the constant terms do not change the direction of minimization, these can be eliminated.
The first order partial derivatives with respect to the variables xij in the Taylor series expansion
is:

∂Zk

∂xij
=

∂Z1k
∂xij

Z2k − ∂Z2k
∂xij

Z1k

(Z2k)2
=

cijZ2k − lijZ1k

(Z2k)2

Now the denominator of the partial derivative (Z2k)
2 can be eliminated similarly to a constant

value. Thus, an equivalent form of Model 4 can be constructed as follows:
Model 5

minimize Zk ≈
m∑
i=1

n∑
j=1

(cijZ2k − lijZ1k)
∣∣
X(0)xij

subject to the constraints (6)− (8).

3.3 Fuzzy programming for solving time variant MLFITP

The steps for the solution of MLFITP using fuzzy programming are as follows:

Step 1: First, convert the objective functions of Model 4 and the constraints (1)-(4) into

crisp numbers using the procedure mentioned in Section 3.1.

Step 2: Find the basic feasible solution of Model 4 using the North West Corner method
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and then using the linearization technique presented in Section 3.2 for converting Model

4 into Model 5.

Step 3: Solve each of the objective function of the multi-objective TP in Model 5 as

single objective TP using each time only one objective function and ignoring other.

Step 4: We find the lower bound Lk and the upper bound Uk for the kth objective

function Zk (k = 1, 2), where Lk is the aspired level of achievement for the kth objective

function, Ui is the highest acceptable level of achievement for kth objective function and

dk = [Uk − Lk] is the degradation allowance for the kth objective function. When the

aspiration level and degradation allowance for each objective function are specified, a

fuzzy model is formed and then it is converted into a crisp model.

Step 5: From the results of Step 3, determine the corresponding value for every objective

function at each solution derived.
Step 6: From Step 4, we find the best Lk and the worst Uk values for each objective
function corresponding to the set of solutions. The initial fuzzy model can then be stated,
in terms of the aspiration level of each objective function, as follows:
Find xij , so as to satisfy Zk ≤ Lk, k = 1, 2 with given constraints (5)-(8). For the
multi-objective fractional TP, a membership function µk(x) corresponding to k

th objective
function is defined as:

µk(x) =


1, if Zk ≤ Lk,

1−
(Zk−Lk
Uk−Lk

)
, if Lk ≤ Zk ≤ Uk (k = 1, 2),

0, if Zk ≥ Uk.

(10)

From the results of Step 5, determine the corresponding value for every objective function
at each solution derived.
The equivalent linear programming problem for the minimization problem may then be
written as:

maximize λ

subject to λ ≤
(
Zk − Lk

Uk − Lk

)
(k = 1, 2),

the constraints (5)− (8),

0 ≤ λ ≤ 1.

Here λ = min{µk(x) : k = 1, 2}. This linear programming problem can further be simplified as follows:

maximize λ

subject to Zk + λ(Uk − Lk) ≤ Uk (k = 1, 2),

the constraints (5)− (8),

0 ≤ λ ≤ 1.

Step 7: From Step 5, we find the optimal allocation is X(∗) = (x(∗), λsi
(∗), λ

dj

(∗)), so we

calculate the fractional objective values of Model 4 i.e., Z1 and Z2 with the minimum

transportation time T by the following way:

minimize T =
m∑
i=1

n∑
j=1

Tijχij , where χij =

0, if xij = 0 in X(∗)

1, if xij ̸= 0 in X(∗).
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§4 Numerical example

We present here two examples for proving the effectiveness of the proposed methodologies.

The first example is selected based on the real-life problem and the second example is viewed

due to our preference to explain the applicability when there are more number of origins and

destinations.

4.1 Example 1

A mobile company delivers mobiles from three stores located in S1, S2 and S3, to dealers
in three places located in D1, D2 and D3. Here we consider two fractional objective functions,
which are
• Unit transporting cost c1ij due to the travelled route and unit transporting cost l1ij due to

preferring route rij , for transporting the product from ith origin to jth destination.
• Unit transporting damage cost c2ij (lost of quality and quantity of transportation) due to the

travelled route and unit transporting damage cost l2ij due to preferring route rij , for transporting

the product from ith origin to jth destination.
The transportation cost per unit of product from each source to the various destinations, c1ij and

unit transporting cost l1ij due to preferring route rij listed in cost matrices in equation (11); the

unit transportation damage cost of mobiles per unit of product c2ij and unit transporting damage

cost l2ij due to preferring route rij listed in cost matrices in equation (12). The transportation

time from ith origin to jth destination is listed in time matrix in equation (13). There is a
basic cost incurred by the supplier for the delivery of a minimum order when the total number
of mobiles purchased by the dealers from a source, otherwise extra charges have to be paid
according to the desired rule of the company in each case.
The capacities of the stores of origin Si’s are s1 = [40, 43], s2 = [35, 40], s3 = [52, 56], which
are maximum amounts, and the demands at destinations (Dj ’s) are d1 = [30, 32], d2 = [29, 36],
d3 = [33, 37]. The company wishes to find a compromise solution that minimizes the cost of
each objective at a time according to the supplied cost matrices. Since the proposed problem
is a minimization problem, the value of the objective functions is always minimized and the
minimum demand value will be taken for giving the optimized solution.

c1ij =

 [5,7] [5,9] [4,8]

[7,10] [6,9] [8,10]

[6,8] [6,9] [5,8]

 , l1ij =

[2,6] [3,7] [1,5]

[5,8] [1,4] [3,6]

[2,5] [2,6] [1,3]

 (11)

c2ij =

[1,4] [1,5] [1,3]

[2,5] [3,6] [4,6]

[1,5] [1,6] [2,4]

 , l2ij =

[0,3] [0,4] [0,2]

[1,3] [2,5] [2,5]

[1,4] [0,2] [0,3]

 (12)

Tij =

 8 9 7

10 12 11

7 8 6

 (13)

The construction of MLFITP mathematical model from the numerical example is given below:

minimize Z1(x) =
Z11(x)

Z12(x)
(14)

minimize Z2(x) =
Z21(x)

Z22(x)
(15)
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subject to x11 + x12 + x13 ≤ [40, 43], (16)

x21 + x22 + x23 ≤ [35, 40], (17)

x31 + x32 + x33 ≤ [52, 56], (18)

x11 + x21 + x31 ≥ [30, 32], (19)

x12 + x22 + x32 ≥ [29, 36], (20)

x13 + x23 + x33 ≥ [33, 37], (21)

xij ≥ 0, all are integers (i = 1, 2, 3).

Where the numerator and denominator of each of the objective function are as follows:

Z11(x) = [5, 7]x11 + [5, 9]x12 + [4, 8]x13 + [7, 10]x21 + [6, 9]x22 +

[8, 10]x23 + [6, 8]x31 + [6, 9]x32 + [5, 8]x33.

Z12(x) = [2, 6]x11 + [3, 7]x12 + [1, 5]x13 + [5, 8]x21 + [1, 4]x22 + [3, 6]x23 +

[2, 5]x31 + [2, 6]x32 + [1, 3]x33.

Z13(x) = [1, 4]x11 + [1, 5]x12 + [1, 3]x13 + [2, 5]x21 + [3, 6]x22 + [4, 6]x23 +

[1, 5]x31 + [1, 6]x32 + [2, 4]x33.

Z14(x) = [0, 3]x11 + [0, 4]x12 + [0, 2]x13 + [1, 3]x21 + [2, 5]x22 + [2, 5]x23 +

[1, 4]x31 + [0, 2]x32 + [0, 3]x33.

After converting the interval costs involved in the objective functions (14), (15) and the con-
straints (16)-(21) into the crisp numbers using the solution procedure mentioned in Section 3.1,
we form the following MLFITP.
Model 6

minimize Z1(x) =
Z11(x)

Z12(x)
(22)

minimize Z2(x) =
Z21(x)

Z22(x)
(23)

subject to x11 + x12 + x13 ≤ 40(1− λa1 ) + 43λa1 (24)

x21 + x22 + x23 ≤ 35(1− λa2 ) + 40λa2 (25)

x31 + x32 + x33 ≤ 52(1− λa3 ) + 56λa3 (26)

x11 + x21 + x31 ≥ 30(1− λb1 ) + 32λb1 (27)

x12 + x22 + x32 ≥ 29(1− λb2 ) + 36λb2 (28)

x13 + x23 + x33 ≥ 33(1− λb3 ) + 37λb3 (29)

0 ≤ λai ≤ 1, (i = 1, 2, 3), (30)

0 ≤ λbj ≤ 1, (i = 1, 2, 3), (31)

xij ≥ 0, all are integers (i = 1, 2, 3). (32)

The costs involved in the objective functions (22) and (23) are crisp numbers and Z11(x),
Z12(x), Z21(x) and Z22(x) are given by the following expressions.

Z11(x) =

(
7 −

T0

4

)
x11 +

(
9 −

4T0

9

)
x12 +

(
8 −

4T0

7

)
x13 +

(
10 −

3T0

7

)
x21 +

(
9 −

T0

4

)
x22

+

(
10 −

2T0

11

)
x23 +

(
8 −

2T0

7

)
x31 +

(
9 −

3T0

8

)
x32 +

(
8 −

T0

2

)
x33.
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Z12(x) =

(
6 −

T0

2

)
x11 +

(
7 −

4T0

9

)
x12 +

(
5 −

4T0

7

)
x13 +

(
8 −

3T0

10

)
x21 +

(
4 −

T0

4

)
x22

+

(
6 −

3T0

11

)
x23 +

(
5 −

3T0

7

)
x31 +

(
6 −

T0

2

)
x32 +

(
3 −

T0

3

)
x33.

Z21(x) =

(
4 −

3T0

8

)
x11 +

(
5 −

4T0

9

)
x12 +

(
3 −

2T0

7

)
x13 +

(
5 −

3T0

10

)
x21 +

(
6 −

T0

4

)
x22

+

(
6 −

2T0

11

)
x23 +

(
5 −

4T0

7

)
x31 +

(
6 −

5T0

8

)
x32 +

(
4 −

T0

3

)
x33.

Z22(x) =

(
3 −

3T0

8

)
x11 +

(
4 −

4T0

9

)
x12 +

(
2 −

2T0

7

)
x13 +

(
3 −

T0

5

)
x21 +

(
5 −

T0

4

)
x22

+

(
5 −

3T0

11

)
x23 +

(
4 −

3T0

7

)
x31 +

(
2 −

T0

4

)
x32 +

(
3 −

T0

2

)
x33.

The basic feasible solution set X(0) of Model 6 using Northwest Corner Method is given as

follows:

x(0) =

30 10 0

0 19 16

0 0 17

 , λsi
(0) =

(
0 0 0

)
, λ

dj

(0) =
(
0 0 0

)
.

For the point X(0), the values of numerator and the denominator of the fractional objectives

are calculated as Z11

∣∣
X(0) = 598.37, Z12

∣∣
X(0) = 267.65, Z21

∣∣
X(0) = 273.87, Z22

∣∣
X(0) = 156.15

and so Z1

∣∣
X(0) =

Z11

∣∣
X(0)

Z12

∣∣
X(0)

= 598.37
267.65 = 2.23, Z2

∣∣
X(0) =

Z21

∣∣
X(0)

Z22

∣∣
X(0)

= 273.87
156.15 = 1.75

Using the first order Taylor series about at the feasible point X(0), the objective functions of

Model 6 can be constructed approximately as follows:

Model 7

minimize Z1 ≈
m∑
i=1

n∑
j=1

(c1ijZ12 − l
1

ijZ11)
∣∣
X(0)xij

minimize Z2 ≈
m∑
i=1

n∑
j=1

(c2ijZ22 − l
2

ijZ21)
∣∣
X(0)xij

subject to the constraints (24)− (32).

Where c1ij , l
1

ij , c
2
ij and l

2

ij are the partial derivatives of Z12, Z11, Z21 and Z22 respectively with

respect to variable xij , i.e., c
1
ij =

∂Z12

∂xij
, l

1

ij =
∂Z11

∂xij
, c2ij =

∂Z21

∂xij
and l

2

ij =
∂Z22

∂xij
.

Now we solve Model 7 using the fuzzy programming procedure presented in subsection 3.3.

To solve the MLFITP (i.e., Model 7) we apply the steps from Step 1 to Step 7 mentioned in

subsection 3.3, we get L1 = 0, U1 = 229.22, L2 = 0, U2 = 762.41 and then construct the
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membership function. Finally the mathematical model is designed as follows:

maximize λ

subject to µ1(x) + λ(U1 − L1) ≤ U1,

µ2(x) + λ(U2 − L2) ≤ U2,

0 ≤ λ ≤ 1,

the constraints (24)− (32).

The Pareto optimal solution X(∗) of Model 6 using LINGO 14 iterative scheme is

x(∗) =

29 2 11

0 22 0

3 9 37

 , λsi
(∗) =

(
1 1 1

)
, λ

dj

(∗) =
(
0 0 0

)
.

Now we calculate Z11

∣∣
X(∗) = 737.37, Z12

∣∣
X(∗) = 329.82, Z21

∣∣
X(∗) = 347.68, Z22

∣∣
X(∗) = 198.23

and so Z1

∣∣
X(∗) =

Z11

∣∣
X(∗)

Z12

∣∣
X(∗)

= 737.37
329.82 = 2.23, Z2

∣∣
X(∗) =

Z21

∣∣
X(∗)

Z22

∣∣
X(∗)

= 347.68
198.23 = 1.75 and total time

T = 57 days.

Taking different schedule time for transportation by using the fuzzy programming, the obtained

solutions are presented in Table 2 with objective values and total transportation time.

Table 2. Pareto optimal solutions of the first example of time variant MLFITP.

Schedule time for Optimal solution Optimal value
transportation

T0 = 8 x11 = 15, x12 = 1, x13 = 4 Z1 = 1.87, Z2 = 1.91, T = 78

x21 = 10, x22 = 3, x23 = 12

x31 = 5, x32 = 25, x33 = 17.

T0 = 7 x11 = 1, x12 = 4, x13 = 10 Z1 = 2.21, Z2 = 2.1, T = 78

x21 = 16, x22 = 4, x23 = 16

x31 = 15, x32 = 23, x33 = 10.

T0 = 6 x11 = 17, x12 = 11, x13 = 8 Z1 = 2.23, Z2 = 1.72, T = 78

x21 = 1, x22 = 12, x23 = 24

x31 = 18, x32 = 11, x33 = 13.

T0 = 5 x11 = 5, x12 = 1, x13 = 24 Z1 = 2.23, Z2 = 1.75, T = 78

x21 = 3, x22 = 11, x23 = 8

x31 = 25, x32 = 19, x33 = 10.

T0 = 4 x11 = 29, x12 = 2, x13 = 11 Z1 = 2.23, Z2 = 1.75, T = 57

x21 = 0, x22 = 22, x23 = 0

x31 = 3, x32 = 9, x33 = 37.
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4.2 Example 2

Let us consider another example of time variant MLFITP with three supply points and four
destinations whose interval costs c1ij , l1ij , c2ij and l2ij and transportation time from different
supply points to different destinations are as follows:

c1ij =

 [6,8] [13,15] [12,19] [10,12]

[12,16] [11,13] [14,17] [9,12]

[15,17] [7,10] [6,10] [15,19]

 , l1ij =

 [5,6] [12,14] [11,14] [9,11]

[10,15] [9,12] [12,16] [8,14]

[13,17] [6,9] [5,12] [14,18]

 ,

c2ij =

 [3,4] [7,9] [6,8] [7,9]

[5,10] [5,11] [8,12] [5,8]

[4,6] [6,8] [7,9] [12,15]

 , l2ij =

[2,3] [6,8] [4,7] [5,6]

[6,9] [6,8] [7,9] [4,8]

[3,7] [5,7] [6,10] [11,14]

 ,

si =
(
[50,60] [70,75] [80,90]

)
, dj =

(
[30,35] [50,60] [42,48] [35,45]

)
.

Tij =

6 8 12 7

9 11 10 7

8 7 9 14

 . (33)

The basic feasible solution set X(0) of the given problem using Northwest Corner Method is
given as follows:

x(0) =

30 20 0 0

0 30 40 0

0 0 2 35

 , λ
si
(0)

=
(
0 0 0

)
, λ

dj
(0)

=
(
0 0 0 0

)
.

The Pareto optimal solution X(∗) of the above problem using LINGO 14 iterative scheme with
schedule transportation time 5 days is

x(∗) =

 5 3 0 33

22 50 0 1

4 21 61 3

 , λ
si
(∗) =

(
1 1 1

)
, λ

dj
(∗) =

(
0 0 0 0

)
.

Thereafter, we calculate Z11

∣∣
X(∗) = 2085.69, Z12

∣∣
X(∗) = 1936.85, Z21

∣∣
X(∗) = 1748.46, Z22

∣∣
X(∗) =

1399.26 and so Z1

∣∣
X(∗) =

Z11

∣∣
X(∗)

Z12

∣∣
X(∗)

= 2085.69
1936.85 = 1.07, Z2

∣∣
X(∗) =

Z21

∣∣
X(∗)

Z22

∣∣
X(∗)

= 1748.46
1399.26 = 1.24 and

total time T = 86 days.

Again choosing the different schedule times for transportation by using the fuzzy program-

ming approach the obtained solutions are presented in Table 3 with objective values and total

transportation time.

4.3 Sensitivity Analysis

We solve Examples 1 and 2 with the help of the presented algorithm; the solutions are
obtained for different schedule transportation times, and these are listed in Table 2 and Table
3 respectively. From Table 2 and Table 3, we see that the obtained solutions are satisfactory
based on the relative importance of the scheduled transportation time. Although we list fewer,
one can set schedule transportation time for their preferred transportation time to get better
optimal solution. We see that when scheduled transportation times are 4 days and 8 days
for the first and second examples respectively then we derive better compromise solutions and
the total times of transportation are 57 days and 78 days respectively. The time is calculated
through the procedure given in the algorithm, and we do not consider any objective function
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Table 3. Pareto optimal solutions of the second example of time variant MLFITP.

Schedule time for Optimal solution Optimal value
transportation

T0 = 8 x11 = 0, x12 = 41, x13 = 2, x14 = 1 Z1 = 1.07, Z2 = 1.24, T = 78

x21 = 45, x22 = 27, x23 = 0, x24 = 0

x31 = 1, x32 = 0, x33 = 43, x34 = 37.

T0 = 7 x11 = 3, x12 = 31, x13 = 0, x14 = 14 Z1 = 1.07, Z2 = 1.24, T = 96

x21 = 26, x22 = 42, x23 = 3, x34 = 1

x31 = 2, x32 = 4, x33 = 56, x34 = 28.

T0 = 6 x11 = 0, x12 = 29, x13 = 6, x14 = 12 Z1 = 1.07, Z2 = 1.24, T = 78

x21 = 40, x22 = 33, x23 = 0, x24 = 0

x31 = 1, x32 = 0, x33 = 39, x34 = 23.

T0 = 5 x11 = 5, x12 = 3, x13 = 0, x14 = 33 Z1 = 1.07, Z2 = 1.24, T = 86

x21 = 22, x22 = 50, x23 = 0, x24 = 1

x31 = 4, x32 = 21, x33 = 61, x34 = 3.

T0 = 4 x11 = 7, x12 = 0, x13 = 3, x14 = 18 Z1 = 1.08, Z2 = 1.24, T = 93

x21 = 22, x22 = 47, x23 = 3, x24 = 0

x31 = 4, x32 = 15, x33 = 36, x34 = 27.

corresponding to time. In the proposed model, the optimal solution minimizes total time with
satisfactory schedule transportation time. From Table 2 and Table 3, it is clear that when the
number of allocations is maximum i.e., transportation is done in maximum destination points,
then the total transportation time is more as routes are involved in transporting the goods.
Since there are many routes (between each origin and destination) and DM would like to prefer
the routes so that transportation is made as per their experience. So in the numerical examples,
we consider an extra charge in transportation cost and damage cost in our study. If a customer
wants to reduce the rate of damage of goods and if he/she wants to reduce transportation
cost then DM prefers such routes where the condition of the routes is good so that both the
conditions are satisfied. Since in different routes, transportation times are different which are
known by DM experience and listed in equation (13) for example 1 and in equation (33) for
example 2 so the total transportation time is dependent on the routes which are allocated after
solving the problem.
In this study, the most relevant considerations are how time is associated with the other objec-
tive functions and how to find the optimal compromise solution. Time in an MLFITP essentially
makes a distinction between transportation cost and damage cost for transportation. We in-
clude here how time plays a significant role in MLFITP. The time reduces the transportation
parameters in such a way that the reduced values serve as neutral on both the seller and buyer
sides. The suggested model in this paper removes the complexity of optimizing the objective
functions together with reducing the time.
To justify that the obtained solution of our proposed methodology is a better solution, let us
introduce a utility function in the following form as:

R(σ) = σ1
Z1 − Z1

Z1 − Z1

+ σ2
Z2 − Z2

Z2 − Z2

+ σ3
T − T

T − T
(34)

where Zk= maximum value of Zk for kth (k = 1, 2) objective function, T = maximum possible

value of T , Zk = minimum value of Zk for kth objective function, T = minimum transportation
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time, and σk (k = 1, 2) and σ3 are weights for the objective function Zk (k = 1, 2) and time T .

The value of the utility function R lies between 0 and 1. For Example 1, the different values of R

for different schedule transportation times are listed in Table 4. The bigger value of R proposes

a better compromise solution of the MLFTP. If we consider the objective values for Example

1 obtained by taking schedule transportation time T0 = 4 days with equal weights in equation

(34), then we get R(σ) = 0.63. This value suggests that the obtained solution is a better

compromise solution. Similarly if we consider the objective values for Example 2 obtained by

taking schedule transportation time T0 = 6 or 8 days with equal weights in equation (34), then

we get R(σ) = 0.66. This value indicates that the obtained solution is a better compromise

solution.

Table 4. Values of R(σ) for different schedule transportation time for Example 1.

Schedule transportation time Value of R(σ) Weights
T0 = 8 0.50 σ1 = σ2 = σ3 = 1

3

T0 = 7 0.01 σ1 = σ2 = σ3 = 1
3

T0 = 6 0.33 σ1 = σ2 = σ3 = 1
3

T0 = 5 0.30 σ1 = σ2 = σ3 = 1
3

T0 = 4 0.63 σ1 = σ2 = σ3 = 1
3

4.4 Importance and advantage of the study with the existing studies

We observe from the literature review that many researchers developed several methods for

solving fractional TP in different environments. However in literature there is a gap of study in

time environment for the fractional TP. In this study we remove this gap by introducing time in

the fractional TP. In the transportation system there is minimum transportation time to reach

the goods in proper destination to smoothly flow the business. However there is a delay of time

for transportation due to several problems. So depending on this fact, here we introduce new

parameters. Then we utilize these parameters as transportation costs in such a way that if the

delivery occurs within schedule transportation time then the businessman will pay minimum

costs which already fixed before delivery otherwise he/she pays less amount that depends on

delay of time. The main advantages of our proposed method are given as:

• In MLFITP, all the parameters and variables are interval numbers which accommodate

more information from real-life scenario.

• We transform the interval-valued cost parameters into crisp parameters with new trans-

formation technique.

• The Pareto-optimal solution generates that depends on schedule transportation time.
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§5 Conclusion and outlook

The time-variant multi-objective fractional transportation problem with the coefficients of

the objective functions and the supply and the demand parameters have been chosen as interval

type and then it has been solved. Initially, the time variant fractional transportation problem

has been linearized using the Taylor series expansion then the solution has been obtained by

fuzzy programming. We have considered two numerical examples to test the effectiveness of our

proposed methodology. The first and second examples have been solved using different sched-

ules of transportation times then we have compared the obtained solutions. In this work, we

have determined a Pareto optimal solution of MLFITP using fuzzy programming that minimizes

the total time without considering the objective function of time in the model of time-variant

MLFITP. Several researchers have developed several methods for solving fractional TP in dif-

ferent environments. However in literature there is a gap of study in time environment for the

fractional TP. This study has been removed this gap by introducing time in the fractional TP.

The research contributions of the proposed study are summarized below:

• It applies new transformation technique to convert interval costs into crisp numbers.

• It minimizes total transportation time without considering any objective function.

• Pareto-optimality is guaranteed, which depends on schedule transportation time.

A few research directions can be opened based on our proposed methodology. MLFITP should

be integrated in various regions of study, for example, economics and production planning. We

must emphasize that in association with this paper, there is a line of future research direc-

tions to include the two-phase fractional TP under the time window. Interested readers can

formulate a multi-objective two-stage fractional transportation model [37] and multi-objective

fixed-charge solid fractional transportation problem with product blending under intuitionistic

fuzzy environment [38] under the time window and tackle it by our methodology or some other

appropriate methodology. In addition to the above, the proposed study can be implemented

in several uncertain ([8], [25]) circumstances to accommodate real-life situations for selecting

optimal decisions considering the sustainable development of the atmosphere.
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