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Log-logistic parameters estimation using moving extremes

ranked set sampling design

HE Xiao-fang CHEN Wang-xue∗ YANG Rui

Abstract. In statistical parameter estimation problems, how well the parameters are estimated

largely depends on the sampling design used. In the current paper, a modification of ranked set

sampling (RSS) called moving extremes RSS (MERSS) is considered for the estimation of the

scale and shape parameters for the log-logistic distribution. Several traditional estimators and

ad hoc estimators will be studied under MERSS. The estimators under MERSS are compared

to the corresponding ones under SRS. The simulation results show that the estimators under

MERSS are significantly more efficient than the ones under SRS.

§1 Introduction

Cost effective sampling is a problem of major concern in some experiments especially when

the measurement of the characteristic of interest is costly or painful or time consuming. The

method of ranked set sampling (RSS) provides an effective way to achieve observational economy

in terms of precision achieved per unit of sampling. Initially the concept of RSS was introduced

by McIntyre (1952) as a process of increasing the precision of the sample mean as an estimator

of population mean. Ranking can be performed based on expert judgment, visual inspection or

any means that does not involve actually quantifying the observations. In RSS one first draws

n2 units at random from the population and partitions them into n sets of n units. The n units

in each set are ranked without making actual measurements. From the first set of n units the

unit ranked lowest is chosen for actual quantification. From the second set of n units the unit
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ranked second lowest is measured. The process is continued until the unit ranked largest is

measured from the n−th set of n units. If a larger sample size is required then the procedure

can be repeated k times.

Takahasi and Wakimoto (1968) established a very important statistical foundation for the

theory of RSS. Later estimation of parameters of various commonly used distributions has been

carried out using RSS (for details see Stokes (1995), Al-Saleh et al. (2003), Chen et al. (2004),

Al-Saleh et al. (2009), Abu-Dayyeh et al. (2013), Chen et al. (2017), Chen et al. (2018) and

Qian et al. (2019)). However, ranking accuracy affects the efficiency of the estimator. When

the set size is large, ranking error tends to occur. In order to reduce the error of ranking and

keep optimality inherited in the original RSS procedure, Al-Odat et al. (2001) introduced the

concept of varied set size RSS, which is coined here as moving extremes RSS (MERSS).

The procedure of MERSS is described as follows:

1. Select n simple random samples of sizes 1, 2, 3, · · · , n, respectively.
2. Order the elements of each set by visual inspection or by some other cheap method,

without actual measurement of the characteristic of interest.

3. Measure accurately the maximum ordered observation from the first set, then the second

set, . . . , the last set.

4. Step (3) is repeated on another n sets of size 1, 2, 3, · · · , n, respectively, however the

minimum ordered observations are measured instead of the maximum ordered observations.

5. If needed, this process can be replicated k times (cycles).

Clearly, only the two extreme values are used in MERSS, maximum or minimum of sets of

varied size, whereas the ranks of all the elements of each set are needed in RSS. Since it is not

difficult to identify maximum or minimum units, MERSS is a very useful modification of RSS.

It allows for an increase of set size without introducing too many ranking errors.

AL-Saleh et al. (2003a) studied maximum likelihood estimator (MLE) of location parameter

for normal distribution based on MERSS. AL-Saleh et al. (2003b) considered the MLE of the

mean of exponential distribution using MERSS and they showed that MLE of MERSS is always

performed better than simple random sampling (SRS) numerically. Abu-Dayyeh et al. (2009)

studied the modified MLE of the mean of the exponential distribution under MERSS. Al-

Hadhrami et al. (2012) studied the Bayes estimators of the population mean of the normal

distribution using MERSS and investigated its properties. For further introduction of MERSS

refer to Chen et al. (2013), Chen et al. (2016) and Chen et al. (2019).

A random variable X is said to have a log-logistic distribution with the scale parameter α

and the shape parameter β if its distribution function is given by

F (x) =
xβ

xβ + αβ
, (1)

where x > 0, α > 0 and β > 0. The probability density function (pdf) corresponding to the

distribution function in (1) is then given by

f(x) =
βαβxβ−1

(xβ + αβ)2
.

We write LLD(α, β) to denote the distribution as defined in (1). The applications of log-logistic
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distribution are well known in wealth or income (see Fisk (1961)), hydrology for modelling

stream flow rates and precipitation (see Shoukri et al. (1988)) and engineer of survival analysis

(see Ashkar et al. (2003)). For further details on the importance and applications of a log-

logistic distribution one may refer to Bennett (1983), Ahmad et al. (1988), Robson et al. (1999)

and Geskus (2001).

Parameter estimation problems for the log-logistic distribution have been discussed by many

authors. Among recent literature, Balakrishnan et al. (1987) studied the best linear unbiased

estimator (BLUE) of the scale parameter of a log-logistic distribution under SRS. Chen (2006)

discussed about the interval estimation for the shape parameter of the log-logistic distribution

under SRS. Lesitha et al. (2013) provided an unbiased estimator and BLUE of the scale

parameter of a log-logistic distribution under RSS. Further, inference on the parameters of

the log-logistic distribution has been studied by many authors using SRS including Tiku et al.

(1992), Gupta et al. (1999), Kus et al. (2006), Abbas et al. (2016) and He et al. (2020).

In this paper, we consider several traditional estimators and ad hoc estimators of the scale

and shape parameters α and β from LLD (α, β) based on MERSS. In Sect. 2, we study an

unbiased estimator or modified unbiased estimator and BLUE or modified BLUE of α and β

in case when one parameter is known and ad hoc estimators in case when both parameters are

unknown. In Sect. 3, we consider the MLEs of the parameters of this distribution. The relative

efficiencies of all estimators are simulated and the conclusions will be presented in Sect. 4.

§2 Several types of estimators

In this section, we deal with several types of estimators of α and β of the LLD (α, β) under

MERSS:

(i) An unbiased estimator and BLUE of α defined from LLD (α, β) in which β is known,

(ii) A modified unbiased estimator and modified BLUE of β when α is known and

(iii) Ad hoc estimators of α and β when α and β are both unknown.

2.1 Unbiased estimator and BLUE of α when β is known

Let {x1, x2, x3, · · · , x2n} be a simple random sample of size 2n from (1) in which β is known.

Then the pdf of xi

α is

f1 (x) =
βxβ−1

(1 + xβ)
2 .

Let

E(
xi

α
) = γ. (2)

Then we have

E

(
xi

γ

)
= α. (3)

Thus the BLUE of α under SRS is given by

α̂SRS, BLUE =
1

2n

2n∑
i=1

xi

γ
. (4)

Let {x11, x22, x33, · · · , xnn, y11, y12, y13, · · · , y1n} be a moving extremes ranked set sample
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of size 2n from (1) in which β is known. Then xii

α has the same density as the ith order statistic

of an SRS of size i from f1 (x)(see David(1981)), i.e. the pdf of xii

α is

f1
ii (x) =

iβxiβ−1

(1 + xβ)
i+1

.

Also y1i

α has the same density as the first order statistic of an SRS of size i from f1 (x)(see

David(1981)), i.e. the pdf of y1i

α is

f1
1i (x) =

iβxβ−1

(1 + xβ)
i+1

.

Let

E
(xii

α

)
= γii (5)

with

V ar
(xii

α

)
= σ2

ii (6)

and

E
(y1i

α

)
= γ1i (7)

with

V ar
(y1i

α

)
= σ2

1i. (8)

From (5)-(8), it can be seen that

E

(
xii

γii

)
= α (9)

with

V ar

(
xii

γii

)
=

α2σ2
ii

γ2
ii

(10)

and

E

(
y1i
γ1i

)
= α (11)

with

V ar

(
y1i
γ1i

)
=

α2σ2
1i

γ2
1i

. (12)

Thus an UE of α under MERSS is given by

α̂MERSS, UE =
1

2n

n∑
i=1

(
xii

γii
+

y1i
γ1i

)
. (13)

According to the lemma (see Casella et al., 2002, p.338), combine (9)-(11) with (12), we have

α̂MERSS, BLUE =
1

2

(
n∑

i=1

γ2
1iγ

2
ii

γ2
1iσ

2
ii + γ2

iiσ
2
1i

)−1 n∑
i=1

γ1iγii (xiiγ1i + y1iγii)

γ2
1iσ

2
ii + γ2

iiσ
2
1i

. (14)

2.2 Modified unbiased estimator and modified BLUE of β when α is known

Let {x1, x2, x3, · · · , x2n} be a simple random sample of size 2n from (1) in which α is known.

Then the pdf of βlnxi

α is

f2(x) =
ex

(1 + ex)2
.

Note that E
(
βlnxi

α

)
= 0. Hence we consider the estimators of β based on order statistics

βln
x(1)

α ≤ βln
x(2)

α · · · ≤ βln
x(2n)

α .

Let

E
(
βln

x(i)

α

)
= ξ(i), (15)
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then it can be seen that

E

(
ln

x(i)

α

ξ(i)

)
=

1

β
.

Thus the BLUE of 1
β under SRS is given by

1

2n

2n∑
i=1

ln
x(i)

α

ξ(i)
.

Then we suggest the following estimator of β

β̂SRS, MBLUE = 2n

(
2n∑
i=1

ln
x(i)

α

ξ(i)

)−1

, (16)

which will be called the modified unbiased estimator of β.

Let {x22, x33, x44, · · · , xn+1n+1, y12, y13, y14, · · · , y1n+1} be a moving extremes ranked set

sample of size 2n from LLD(α, β) with α is known. Then βlnxii

α has the same density as the

ith order statistic of an SRS of size i from f2(x), i.e. the pdf of βlnxii

α is

f2
ii (x) =

ieix

(1 + ex)
i+1

.

Also βlny1i

α has the same density as the first order statistic of an SRS of size i from f2(x), i.e.

the pdf of βlny1i

α is

f2
1i (x) =

iex

(1 + ex)
i+1

.

Let

E
(
βln

xii

α

)
= ξii (17)

with

V ar
(
βln

xii

α

)
= δ2ii (18)

and

E
(
βln

y1i
α

)
= ξ1i (19)

with

V ar
(
βln

y1i
α

)
= δ21i, (20)

Then we have

E

(
lnxii

α

ξii

)
=

1

β
(21)

with

V ar

(
lnxii

α

ξii

)
=

δ2ii
ξ2iiβ

2
(22)

and

E

(
lny1i

α

ξ1i

)
=

1

β
(23)

with

V ar

(
lny1i

α

ξ1i

)
=

δ21i
ξ21iβ

2
. (24)

Thus an unbiased estimator of 1
β under MERSS is given by

1

2n

n+1∑
i=2

(
lny1i

α

ξ1i
+

lnxii

α

ξii

)
.
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Then we suggest the following estimator of β

β̂MERSS, MUE = 2n

(
n+1∑
i=2

lny1i

α

ξ1i
+

lnxii

α

ξii

)−1

, (25)

which will be called the modified unbiased estimator of β. According to the lemma (see Casella

et al., 2002, p.338), combine(21)-(23) with (24), we can obtain the BLUE of
1

β
under MERSS

−1

2

n+1∑
i=2

(
ξiiln

y1i

α + ξ1iln
xii

α

)
ξ1iξii

ξ2
1i
δ2ii + ξ2

ii
δ21i

(
n+1∑
i=2

ξ2
1i
ξ2
ii

ξ2
1i
δ2ii + ξ2

ii
δ21i

)−1

.

Then we suggest the following estimator of β

β̂MERSS, MBLUE = −2
n+1∑
i=2

ξ2
1i
ξ2
ii

ξ2
1i
δ2ii + ξ2

ii
δ21i

[
n+1∑
i=2

(
ξiiln

y1i

α + ξ1iln
xii

α

)
ξ1iξii

ξ2
1i
δ2ii + ξ2

ii
δ21i

]−1

, (26)

which will be called the modified BLUE of β.

2.3 Ad hoc estimators of α and β

If Z = lnX, then the pdf of Z

f3 (z) =
e−((z−θ)/λ)

λ
[
1 + e−((z−θ)/λ)

]2 , (27)

where θ = lnα and λ = 1
β .

Let {z1, z2, z3, · · · , z2n} be a simple random sample of size 2n from (27) and

U(i) =
z(i) − θ

λ
,

where z(1) ≤ z(2) ≤ · · · ≤ z(2n). Denote ai = E
(
U(i)

)
and vij = cov

(
U(i), U(j)

)
. The most well

known estimators of location parameter θ and scale parameter λ using the order statistics, are

the BLUEs (Arnold et al., 1992 and Balakrishnan et al., 1992) which can be written as

θ̂SRS = −a
′
CW

and

λ̂SRS = l
′

2nCW,

where a =


a1
...

a2n

, l2n =


1
...

1

 , V = (vij)2n×2n , W =


z(1)
...

z(2n)

,

C =
V −1

(
l2na

′ − al
′

2n

)
V −1

d
and d =

(
l
′

2nV
−1l2n

)(
a

′
V −1a

)
−
(
l
′

2nV
−1a

)2
.

Then we suggest the following estimators of α and β

α̃SRS, MBLUE = e−a
′
CW (28)

and

β̃SRS, MBLUE =
1

l
′
2nCW

(29)

which will be called the modified BLUE of α and β, respectively.

Let {z11, z22, z33, · · · , znn, w11, w12, w13, · · · , w1n} be a moving extremes ranked set sample

of size 2n from (27). Denote its order statistics as z∗(1) ≤ z∗(2) ≤ ... ≤ z∗(2n). The following ad

hoc estimators of α and β are the same as the estimators under SRS, expect that the statistics
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under SRS are replaced with their counterparts under MERSS. Denote

U∗
(i) =

z∗(i) − θ

λ
,

a∗i = E
(
U∗
(i)

)
and v∗ij = cov

(
U∗
(i), U

∗
(j)

)
.

Then we can obtain ad hoc estimators of α and β

α̃MERSS, AHE = e−a∗′C∗W∗
(30)

and

β̃MERSS, AHE =
1

l
′
2nC

∗W ∗ , (31)

where a∗ =


a∗1
...

a∗2n

, V ∗ =
(
v∗ij
)
2n×2n

, W ∗ =


z∗(1)
...

z∗(2n)

, C∗ =
V ∗−1

(
l2na

∗′ − a∗l
′

2n

)
V ∗−1

d

and d∗ =
(
l
′

2nV
∗−1l2n

)(
a∗

′
V ∗−1a∗

)
−
(
l
′

2nV
∗−1a∗

)2
.

§3 MLEs

In this section, we consider MLEs of the parameters of LLD(α, β) under MERSS. Under

some regularity conditions, the asymptotic efficiency of the MLEs can be obtained from the

inverse of the Fisher information matrix.

The fisher information matrix for α and β under SRS

ISRS(α, β) =

(
I11 I12

I12 I22

)
=

(
2nβ2

3α2 0

0 2n(3+π2)
9β2

)
(32)

is given by Reath et al. (2018).

Let {x11, x22, x33, · · · , xnn, y11, y12, y13, · · · , y1n} be a moving extremes ranked set sample

of size 2n from LLD(α, β), then the pdfs of xii and y1i(i = 1, 2, ...,m) are respectively

fii (x) =
iβ
(
x
α

)iβ−1

α
[
1 +

(
xii

α

)β]i+1

and

f1i (x) =
iβ
(
x
α

)β−1

α
[
1 +

(
x
α

)β]i+1
.

In order to get the MLEs, we start with the likelihood function

LMERSS (α, β) =
n∏

i=1

fii (xii)f1i (y1i)

=
n∏

i=1

iβ
(
xii

α

)iβ−1

α
[
1 +

(
xii

α

)β]i+1

iβ
(
y1i

α

)β−1

α
[
1 +

(
y1i

α

)β]i+1
.
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The log-likelihood function is

lnLMERSS = C + 2nlnβ − 2nlnα+

n∑
i=1

(iβ − 1)ln
xii

α
+

n∑
i=1

(β − 1)ln
y1i
α

−
n∑

i=1

(i+ 1)ln

[
1 +

(xii

α

)β]
−

n∑
i=1

(i+ 1)ln

[
1 +

(y1i
α

)β]
,

where C is a constant. Then we have

∂lnLMERSS

∂α
= −β

α

[
n (n+ 3)

2
−

n∑
i=1

(i+ 1)
(
xii

α

)β
1 +

(
xii

α

)β −
n∑

i=1

(i+ 1)
(
y1i

α

)β
1 +

(
y1i

α

)β
]

(33)

and

∂lnLMERSS

∂β
=

2n

β
+

n∑
i=1

iln
xii

α
+

n∑
i=1

ln
y1i
α

−
n∑

i=1

(i+ 1)
(
xii

α

)β
lnxii

α

1 +
(
xii

α

)β −
n∑

i=1

(i+ 1)
(
y1i

α

)β
lny1i

α

1 +
(
y1i

α

)β .

(34)

The second-order derivative of α and β for the lnLMERSS are computed as

∂2lnLMERSS

∂α2
= − β

α2

[
n(n+ 3)

2
−

n∑
i=1

(i+ 1)(xii

α )β

1 + (xii

α )β
−

n∑
i=1

(i+ 1)(y1i

α )β

1 + (y1i

α )β

]

− β2

α2

[
n∑

i=1

(i+ 1)(xii

α )β(
1 + (xii

α )β
)2 +

n∑
i=1

(i+ 1)(y1i

α )β(
1 + (y1i

α )β
)2
]
,

(35)

∂2LMERSS

∂β2
= −2n

β2
−

n∑
i=1

(i+ 1)
(
xii

α

)β (
lnxii

α

)2[
1 +

(
xii

α

)β]2 −
n∑

i=1

(i+ 1)
(
y1i

α

)β (
lny1i

α

)2[
1 +

(
y1i

α

)β]2 (36)

and

∂2lnLMERSS

∂α∂β
= −n (n+ 3)

2α
+

1

α

n∑
i=1

(i+ 1)
(
xii

α

)β
1 +

(
xii

α

)β +
1

α

n∑
i=1

(i+ 1)
(
y1i

α

)β
1 +

(
y1i

α

)β
+

β

α

n∑
i=1

(i+ 1)
(
xii

α

)β
lnxii

α(
1 +

(
xii

α

)β)2 +
β

α

n∑
i=1

(i+ 1)
(
y1i

α

)β
lny1i

α(
1 +

(
y1i

α

)β)2
(37)

respectively. Thus we have

I∗11 = −E

(
∂2lnLMERSS

∂α2

)
=

n (n+ 3)β

2α2
− β2

α3

n∑
i=1

∫ ∞

0

i (i+ 1)
(
x
α

)iβ+β−1[
1 +

(
x
α

)β]i+2
dx− β2

α3

n∑
i=1

∫ ∞

0

i (i+ 1)
(
x
α

)2β−1[
1 +

(
x
α

)β]i+2
dx

+
β3

α3

n∑
i=1

∫ ∞

0

i (i+ 1)
(
x
α

)iβ+β−1[
1 +

(
x
α

)β]i+3
dx+

β3

α3

n∑
i=1

∫ ∞

0

i (i+ 1)
(
x
α

)2β−1[
1 +

(
x
α

)β]i+3
dx

=
n(n+ 3)β

2α2
− β

α2

n∑
i=1

∫ ∞

0

i(i+ 1)ti

(1 + t)
i+2

dt− β

α2

n∑
i=1

∫ ∞

0

i (i+ 1) t

(1 + t)
i+2

dt

+
β2

α2

n∑
i=1

∫ ∞

0

i (i+ 1) ti

(1 + t)
i+3

dt+
β2

α2

n∑
i=1

∫ ∞

0

i(i+ 1)t

(1 + t)
i+3

dt

(38)
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=
n(n+ 3)β

2α2
− n(n+ 1)β

2α2
− nβ

α2
+

2β2

α2

n∑
i=1

(1− 2

i+ 2
)

=
2β2

α2

n∑
i=1

(1− 2

i+ 2
),

(39)

I∗22 = E

2n

β2
+

n∑
i=1

(i+ 1)
(
xii

α

)β (
lnxii

α

)2[
1 +

(
xii

α

)β]2 +

n∑
i=1

(i+ 1)
(
y1i

α

)β (
lny1i

α

)2[
1 +

(
y1i

α

)β]2


=
2n

β2
+

1

β2
E

[
n∑

i=1

(i+ 1)hiiln
2hii

(1 + hii)
2 +

n∑
i=1

(i+ 1)s1iln
2s1i

(1 + s1i)
2

] (40)

and

I∗12 = −E

[
−n (n+ 3)

2α
+

1

α

n∑
i=1

(i+ 1)
(
xii

α

)β
1 +

(
xii

α

)β +
1

α

n∑
i=1

(i+ 1)
(
y1i

α

)β
1 +

(
y1i

α

)β
+
β

α

n∑
i=1

(i+ 1)
(
xii

α

)β
lnxii

α(
1 +

(
xii

α

)β)2 +
β
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=
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2 +

n∑
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(i+ 1) s1ilns1i

(1 + s1i)
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]
,

(41)

where s1i is 1th order statistics and hii is maximum order statistics of a moving extremes ranked

set sample from LLD(1, 1). Combining (38), (39) with (40), we have

IMERSS(α, β)=

(
I∗11 I∗12
I∗12 I∗22

)
(42)

§4 Numerical comparison

In this section, we will compare the relative efficiencies of the above estimators in Sect.2

and Sect.3.

The efficiency of α̂MERSS,UE with respect to (w.r.t.) α̂SRS, BLUE is

eff1 =
MSE (α̂SRS, BLUE)

MSE (α̂MERSS, UE)
, (43)

where MSE is an abbreviation of the mean square error. Similarly, denote α̂MERSS, MBLUE

w.r.t. α̂SRS, BLUE , β̂MERSS, MUE w.r.t. β̂SRS, MBLUE , β̂MERSS, MBLUE w.r.t. β̂SRS, MBLUE ,

α̃MERSS, AHE w.r.t. α̃SRS, MBLUE and β̃MERSS, AHE w.r.t. β̃SRS, MBLUE as eff2, eff3,

eff4, eff5 and eff6, respectively. It can be seen that eff i (i=3,4) are free of α.

The asymptotic efficiencies α̂MERSS, MLE w.r.t. α̂SRS, MLE , β̂MERSS, MLE w.r.t. β̂SRS, MLE
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and
(
α̂MERSS, MLE , β̂MERSS, MLE

)
w.r.t.

(
α̂SRS, MLE , β̂SRS, MLE

)
are respectively

aeff7 =
I∗11
I11

=
3

n

n∑
i=1

(
1− 2

i+ 2

)
, (44)

aeff8 =
I∗22
I22

=
9

2n (3 + π2)

[
2n+ E

(
n∑

i=1

(i+ 1)hiiln
2hii

(1 + hii)
2 +

n∑
i=1

(i+ 1)s1iln
2s1i

(1 + s1i)
2

)]
(45)

and

aeff9 =
|IMERSS(α, β)|
|ISRS(α, β)|

. (46)

It can be seen that aeff i (i=7, 8, 9) are free of α and β and aeff7 > 1 for n > 2.

From Tables 1-4, we conclude the following:

(1) eff1 > 1, which means α̂MERSS, UE is more efficient α̂SRS, BLUE .

(2) eff2 > 1, which means α̂MERSS, BLUE is more efficient α̂SRS, BLUE .

(3) Comparing eff1 with eff2, we conclude that α̂MERSS, BLUE is more efficient than

α̂MERSS, UE .

(4) eff3 > 1, which means β̂MERSS, MUE is more efficient β̂SRS, MBLUE .

(5) eff4 > 1, which means β̂MERSS, MBLUE is more efficient β̂SRS, MBLUE .

(6) Comparing eff3 with eff4, we conclude that β̂MERSS, MBLUE is more efficient than

β̂MERSS, MUE .

(7) eff5 > 1, which means α̃MERSS, AHE is more efficient α̃MERSS, MBLUE .

(8) eff6 > 1, which means β̃MERSS, AHE is more efficient β̃MERSS, MBLUE .

(9) In conclusion, the estimators of α and β under MERSS are more efficient than that of α

and β under SRS in Sect.2.

From Tables 5-7, we conclude the following:

(10) aeff i(i = 7, 8, 9) > 1 and they are increase as n increase.

(11) aeff7 > 1, which means the MLE of α under MERSS is more efficient than the MLE of

α under SRS.

(12) aeff8 > 1, which means the MLE of β under MERSS is more efficient than the MLE of

β under SRS.

(13) aeff9 > 1, which means the MLEs of α and β under MERSS is more efficient than the

MLE of α and β under SRS.

(14) In conclusion, the MLEs of α and β under MERSS are more efficient than that of α and

β under SRS in Sect.3.

(15) In conclusion, the MERSS is more efficient than SRS in estimating the scale and shape

parameters of the log-logistic distribution.
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Table 1. The efficiency of α̂MERSS, UE w.r.t. α̂SRS, BLUE

and α̂MERSS, BLUE w.r.t. α̂SRS, BLUE.

(α, β) n eff 1 eff 2

(1, 3) 6 1.71345 1.84017

7 1.75349 1.93052

8 1.65878 1.75611

(2, 3) 6 1.82032 1.84635

7 1.53121 1.63641

8 1.70422 1.74200

(3, 2) 6 4.08173 4.91487

7 2.66697 2.72753

8 1.71008 1.73732

Table 2. The efficiency of β̂MERSS, MUE w.r.t.β̂SRS, MBLUE

and β̂MERSS, MBLUE w.r.t.β̂SRS, MBLUE.

β n eff 3 eff 4

3 6 1.18180 2.91918

7 1.61235 3.65413

8 1.97523 3.91049

4 6 1.14583 2.78112

7 1.62455 3.25586

8 1.90814 3.66518

5 6 1.20770 2.83044

7 1.46545 3.18749

8 1.84847 3.56819

Table 3. The efficiency of α̃MERSS, AHE w.r.t. α̃SRS, MBLUE.

(α, β) n eff 5

(1, 3) 6 1.68089

7 1.73293

8 1.95351

(3, 2) 6 7.73763

7 8.79398

8 11.44288

(3, 3) 6 3.08259

7 2.56829

8 3.77084
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Table 4. The efficiency of β̃MERSS, AHE w.r.t. β̃SRS, MBLUE.

(α, β) n eff 6

(1, 3) 6 1.27842

7 1.68150

8 1.83427

(3, 2) 6 3.08428

7 3.64138

8 2.94402

(3, 3) 6 4.55372

7 2.90449

8 3.53873

Table 5. The asymptotic efficiency α̂MERSS, MLE w.r.t. α̂SRS, MLE.

n α2

β2 I11
α2

β2 I
∗
11 aeff 7

2 1.3333 1.6667 1.25000

3 2.0000 2.8667 1.43335

4 2.6667 4.2000 1.57498

5 3.3333 5.6286 1.68855

6 4.0000 7.1286 1.78215

7 4.6667 8.6841 1.86087

8 5.3333 10.2841 1.92828

9 6.0000 11.9205 1.98675

Table 6. The asymptotic efficiency β̂MERSS, MLE w.r.t. β̂SRS, MLE.

n β2I22 β2I∗22 aeff 8

2 5.7198 6.1550 1.07608

3 8.5797 10.1005 1.17725

4 11.4396 14.8545 1.29851

5 14.2996 20.3281 1.42187

6 17.1595 26.7176 1.55702

7 20.0194 33.8705 1.69183

8 22.8793 41.7207 1.82351

9 25.7392 50.5267 1.96302
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Table 7. The asymptotic efficiency
(
α̂MERSS, MLE, β̂MERSS, MLE

)
w.r.t.

(
α̂SRS, MLE, β̂SRS, MLE.

)
n α2 |ISRS(α, β)| α2 |IMERSS(α, β)| aeff 9

2 7.6264 10.2586 1.34514

3 17.1595 28.9966 1.68982

4 30.5057 62.1831 2.03841

5 47.6652 114.5466 2.40315

6 68.6378 190.3164 2.77276

7 93.4237 294.2395 3.14951

8 122.0229 429.8509 3.52271

9 154.4352 601.5848 3.89539
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