
Appl. Math. J. Chinese Univ.
2020, 35(3): 332-348

Structured condition numbers and statistical condition

estimation for the LDU factorization

Mahvish Samar∗ Aamir Farooq MU Chun-lai

Abstract. In this article, we consider the structured condition numbers for LDU, factorization

by using the modified matrix-vector approach and the differential calculus, which can be repre-

sented by sets of parameters. By setting the specific norms and weight parameters, we present

the expressions of the structured normwise, mixed, componentwise condition numbers and the

corresponding results for unstructured ones. In addition, we investigate the statistical estima-

tion of condition numbers of LDU factorization using the probabilistic spectral norm estimator

and the small-sample statistical condition estimation method, and devise three algorithms. Fi-

nally, we compare the structured condition numbers with the corresponding unstructured ones

in numerical experiments.

§1 Introduction

As a real n× n matrix A whose first n− 1 leading principal submarines are all nonsingular

there exists a unique unit lower triangular matrix L, unit upper triangular matrix U and

diagonal matrix D such that A ∈ Rn×n have the following unique LDU factorization

A = LDU, (1.1)

Since L, D and U in (1.1) are uniquely determined by A. where L is a unit lower triangular

and U is a unit upper triangular and D is diagonal matrix. The difference between LDU and

LU factorizations in upper triangular matrix U , i.e. U is unit upper triangular matrix in LDU

factorization.

The LDU factorization is one of the most important matrix factorizations and has many

applications, such as solving systems of linear equations, inverting matrices, and computing

determinants [1,2]. The componentwise perturbation bounds were first discussed by Galántai

[3]. Later, the acquired first-order bounds for LDU factorization were enhanced by Wenjun
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[4]. The obtained bounds [4] are optimal, which leads to the normwise condition numbers for

LDU factorization. The structured perturbation theory for the LDU factorization of diagonally

dominant matrices was presented by Dopico and Koev [5] and later it was extended by Dailey

et. al [6].

It is necessary to mention that the systematic theory for normwise condition number was

first given by Rice [7] and the terminologies of mixed and componentwise condition numbers

were first introduced by Gohberg and Koltracht [8]. The normwise condition numbers for LU ,

Cholesky, and QR factorizations can be found in [9-11]. As we know that the normwise con-

dition numbers may overestimate the illness of problem because they ignore the structure of

coefficient matrices with respect to sparsity or scaling. To tackle this drawback some researchers

have paid attention to the mixed and componentwise condition numbers for the above three

matrix factorizations; see [12, 13]. Considering the applications in structured algorithms of

matrix factorizations and structured problems involved with matrix factorizations [14], some

scholars investigated the structured condition numbers for the above three matrix factoriza-

tions; see [14-18] and the references therein.

In this paper, we continue the research of structured condition numbers for LDU factor-

ization. However, to our best knowledge, there is no work on structured condition numbers

of LDU factorization so far. Specifically, we will discuss the structured condition numbers for

LDU factorization, whose explicit expressions are given in Section 3. Meanwhile, in this section,

we also discuss how to recover the expressions of structured normwise, mixed and component-

wise condition numbers for LDU factorization and the corresponding results for unstructured

ones. Statistical condition estimation is also applied to this factorization which can be figured

effectively in Section 4. In addition, Section 2 provides some useful notation and preliminaries

and Section 5 presents some numerical examples to show the obtained results.

§2 Notations and preliminaries

Throughout this paper, we let Rm×n be the set of m × n real matrices and Rm×n
r be the

subset of Rm×n consisting of matrices with rank r. Accordingly, Rm denotes the vector space

of dimension m. For the matrix A = [α1, α2, · · · , αn] = (aij) ∈ Rn×n, we denote the vector of

the first i entries of αj by α
(i)
j and the vector of the last i entries of αj by α

[i]
j . With these, we

adopt the following operators defined in [19],

suvec(A) :=


α
[1]
2

α
[2]
3
...

α
[n−1]
n

 ∈ Rτ1 , slvec(A) :=


α
[n−1]
1

α
[n−2]
2
...

α
[1]
n−1

 ∈ Rτ1 ,
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dgvec(A) :=


α11

α22

...

αnn

 ∈ Rτ2 , vec(A) :=


α1

α2

...

αn

 ∈ Rn2

,

dg(A) :=


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann

 , ut(A) :=


a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...

0 0 · · · ann

 ,

where τ1 = n(n− 1)/2 and τ2 = n(n+ 1)/2 and slt(A) := A− ut(A), sut(A) := slt(A′)′.

Considering the structures of these operators, we have

suvec(A) = Msuvecvec(A), slvec(A) = Mslvecvec(A), dgvec(A) = Mdgvecvec(A) (2.1)

and

vec(dg(A)) = Mdgvec(A), vec(sut(A)) = Msutvec(A), vec(slt(A)) = Msltvec(A), (2.2)

where

Msuvec = [0τ1×n, diag (J2, J3 · · · , Jn)] ∈ Rτ1×n2

, Ji =
[
Ii−1, 0i−1×n−(i−1)

]
∈ R(i−1)×n,

Mslvec =
[
diag

(
J̃1, J̃2, · · · , J̃n−1

)
, 0τ1×n

]
∈ Rτ1×n2

, J̃i =
[
0(n−i)×i, In−i

]
∈ R(n−i)×n,

Mdgvec =
(
diag

(
Ĵ1, Ĵ2, · · · , Ĵn−1

)
, In×n

)
∈ Rτ2×n2

, Ĵi = [Ii, 0i×i] ∈ Ri×2i,

Mdg = diag (S1, S2, · · · , Sn−1, In×n) ∈ Rn2×n2

, Si = diag (Ii, 0i×i) ∈ Rn×n,

Msut = diag
(
0n×n, S̃2, S̃3, · · · , S̃n

)
∈ Rn2×n2

, S̃i = diag
(
Ii, 0(n−i)×(n−i)

)
∈ Rn×n,

Mslt = diag
(
Ŝ1, Ŝ2, · · · , Ŝn−1, 0n×n

)
∈ Rn2×n2

, Ŝi = diag(0i×i, In−i) ∈ Rn×n.

Here, Ir denotes the identity matrix of order r and 0s×t is the s× t zero matrix. It is easy to

verify that

MsuvecM
T
suvec = Iτ1 , MslvecM

T
slvec = Iτ1 , MdgvecM

T
dgvec = Iτ2 (2.3)

and

MT
suvecMsuvec = Msut, MT

slvecMslvec = Mslt, MT
dgvecMdgvec = Mdg. (2.4)

As a result,

vec(sut(A)) = MT
suvecsuvec(A),

vec(slt(A)) = MT
slvecslvec(A),

vec(dg(A)) = MT
dgvecdgvec(A). (2.5)

For the vectors α ∈ Rp and β = [b1, b2, · · · , bp]T ∈ Rp, following [20], we define the entry-wise

division between α and β by
α

β
= diag‡(β)α, (2.6)
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where diag‡(β) is diagonal with diagonal entries b‡1, b
‡
2, · · · , b‡p. Here, for a number c ∈ R, c‡ is

defined by

c‡ =

{
1
c , c ̸= 0,

1, c = 0 .

Using (2.6), we now define a new condition number.

Definition 2.1. Let F : Rp → Rq be a continuous mapping defined on an open set Dom(F ) ∈
Rp, the domain of definition of F . Then the condition number of F at x ∈ Dom(F ) is defined

by

κF (x) = lim
δ→0

sup
0<∥∆x

β ∥
µ
≤δ

∥∥∥F (x+∆x)−F (x)
ξ

∥∥∥
ν∥∥∥∆x

β

∥∥∥
µ

,

where ∥ · ∥µ and ∥ · ∥ν are the vector norms defined on Rp and Rq, respectively, and β ∈ Rp and

ξ ∈ Rq are parameters with a requirement that if some entry of β is zero, then the corresponding

entry of ∆x must be zero.

When the mapping F in Definition 2.1 is Fréchet differentiable, the following lemma gives

an easily computable form of the unified condition number κF (x).

Lemma 2.2. (see [18]) Assume that the mapping F in Definition 2.1 is Fréchet differentiable.

Then

κF (x) =
∥∥∥diag‡(ξ)DF (x)diag(β)

∥∥∥
µ,ν

, (2.7)

where DF (x) is the Fréchet derivative of F at x, diag(β) is a diagonal matrix with entries bi

on the diagonal, and ∥ · ∥µ,ν is the induced matrix norm by the vector norms ∥ · ∥µ and ∥ · ∥ν .

To obtain the Fréchet derivative, we need the well-known Kronecker product [21] which is

denoted by A⊗B with A ∈ Rm×n and B ∈ Rp×q. From [21], we have the following equalities

vec(AXB) = (BT ⊗A)vec(X), (2.8)

vec(AT ) = Πmnvec(A), (2.9)

Πpm(A⊗B) = (B ⊗A)Πqn, (2.10)

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (2.11)

where X ∈ Rn×p, Πst ∈ Rst×st is the vec-permutation matrix depending only on the dimensions

s and t, and the matrices C and D are of suitable orders. In addition, from [21], we also have

that if A and B are nonsingular, then A⊗B is also nonsingular and

(A⊗B)−1 = A−1 ⊗B−1. (2.12)

§3 Structured condition numbers for LDU factorization

In this section, we assume that the entries of the matrix A are the differentiable functions

of a set parameters Ω = [ω1, ω2, · · · , ωs]
T ∈ Rs and denote the matrix by A(Ω). For LDU
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factorization (1.1), we first define the following mapping

φL : Ω → slvec(L), φD : Ω → dgvec(D), φU : Ω → suvec(U).

In the following, we present the Fréchet derivatives of φL, φD and φU at Ω, from which we can

obtain the unified structured condition numbers for LDU factorization.

Theorem 3.1. Let the unique LDU factorization of A(Ω) ∈ Rn×n
n be as in (1.1). Then the

Fréchet derivatives of φL, φD and φU at Ω are given respectively by

DφL(Ω) = ML
∂A(Ω)

∂Ω
, DφD(Ω) = MD

∂A(Ω)

∂Ω
, DφU (Ω) = MU

∂A(Ω)

∂Ω
. (3.1)

where

ML = Mslvec(D
−T ⊗ L)Mslt(U

−T ⊗ L−1),

MD = Mdgvec(I
T ⊗ I)Mdg(U

−T ⊗ L−1),

MU = Msuvec(U
−T ⊗D)Msut(U

−T ⊗ L−1). (3.2)

Proof. Differentiating the equation (1.1) with respect to ωi (1 6 i 6 s) gives

∂A(Ω)

∂ωi
=

∂L

∂ωi
DU + L

∂D

∂ωi
U + LD

∂U

∂ωi
.

Premultiplying the above equation by L−1 and postmultiplying it by U−1, we have

L−1 ∂L

∂ωi
D +

∂D

∂ωi
+D

∂U

∂ωi
U−1 = L−1 ∂A(Ω)

∂ωi
U−1.

Note that the diagonal entries of ∂L
∂ωi

are zero, and so are the diagonal entries of L−1 ∂L
∂ωi

. Thus,

using the operators ‘slt’ ,‘sut’ and ‘dg’ defined in Section 2, we obtain

L−1 ∂L

∂ωi
D = slt

(
L−1 ∂A(Ω)

∂ωi
U−1

)
, (3.3)

∂D

∂ωi
= dg

(
L−1 ∂A(Ω)

∂ωi
U−1

)
, (3.4)

D
∂U

∂ωi
U−1 = sut

(
L−1 ∂A(Ω)

∂ωi
U−1

)
. (3.5)

Applying the operator ‘vec’ to (3.3), (3.4) and (3.5) and using (2.2) and (2.8) implies

(DT ⊗ L−1)vec

(
∂L

∂ωi

)
= Mslt(U

−T ⊗ L−1)vec

(
∂A(Ω)

∂ωi

)
, (3.6)

(IT ⊗ I)vec

(
∂D

∂ωi

)
= Mdg(U

−T ⊗ L−1)vec

(
∂A(Ω)

∂ωi

)
, (3.7)

(U−T ⊗D)vec

(
∂U

∂ωi

)
= Msut(U

−T ⊗ L−1)vec

(
∂A(Ω)

∂ωi

)
. (3.8)

Thus, multiplying (3.6), (3.7) and (3.8) from the left side by D−T ⊗ L, I
T ⊗ I and UT ⊗ D,
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respectively, and noting (2.11) and (2.12) leads to

vec

(
∂L

∂ωi

)
= (D−T ⊗ L)Mslt(U

−T ⊗ L−1)vec

(
∂A(Ω)

∂ωi

)
, (3.9)

vec

(
∂D

∂ωi

)
= (IT ⊗ I)Mdg(U

−T ⊗ L−1)vec

(
∂A(Ω)

∂ωi

)
, (3.10)

vec

(
∂U

∂ωi

)
= (UT ⊗D)Msut(U

−T ⊗ L−1)vec

(
∂A(Ω)

∂ωi

)
. (3.11)

Considering (2.5) and (2.3), we have

slvec

(
∂L

∂ωi

)
= Mslvec(D

−T ⊗ L)Mslt(U
−T ⊗ L−1)vec

(
∂A(Ω)

∂ωi

)
, (3.12)

dgvec

(
∂D

∂ωi

)
= Mdgvec(I

T ⊗ I)Mdg(U
−T ⊗ L−1)vec

(
∂A(Ω)

∂ωi

)
, (3.13)

suvec

(
∂U

∂ωi

)
= Msuvec(U

T ⊗D)Msut(U
−T ⊗ L−1)vec

(
∂A(Ω)

∂ωi

)
. (3.14)

Further, premultiplying (3.12), (3.13) and (3.14) by MT
slvec, M

T
dgvec and MT

suvec, respectively,

and using (2.5) and (2.4) yields

vec

(
∂L

∂ωi

)
= Mslt(D

−T ⊗ L)Mslt(U
−T ⊗ L−1)vec

(
∂A(Ω)

∂ωi

)
,

vec

(
∂D

∂ωi

)
= Mdg(I

T ⊗ I)Mdg(U
−T ⊗ L−1)vec

(
∂A(Ω)

∂ωi

)
,

vec

(
∂U

∂ωi

)
= Msut(U

T ⊗D)Msut(U
−T ⊗ L−1)vec

(
∂A(Ω)

∂ωi

)
.

From the structures of Mslt and Msut, we can verify that Mslt(D ⊗ L)Mslt = (D ⊗ L)Mslt

and Msut(U
T ⊗D)Msut = (UT ⊗D)Msut. Consequently, (3.9) is equivalent to (3.12), (3.10) is

equivalent to (3.13) and (3.11) is equivalent to (3.14).

Note that

slvec (∆L) = slvec (L(Ω +∆Ω)− L(Ω)) =
s∑

i=1

slvec

(
∂L

∂ωi

)
δωi + (h.o.t),

dgvec (∆D) = dgvec (D(Ω +∆Ω)−D(Ω)) =

s∑
i=1

dgvec

(
∂D

∂ωi

)
δωi + (h.o.t),

suvec (∆U) = suvec (U(Ω +∆Ω)− U(Ω)) =

s∑
i=1

suvec

(
∂U

∂ωi

)
δωi + (h.o.t),

where ∆Ω = [δω1, δω2, · · · , δωs]
T and (h.o.t) is the abbreviation of ‘higher order terms’. Then

slvec (∆L) = Mslvec(D
−T ⊗ L)Mslt(U

−T ⊗ L−1)

s∑
i=1

vec

(
∂A(Ω)

∂ωi

)
δωi + (h.o.t),

dgvec (∆D) = Mdgvec(I
T ⊗ I)Mdg(U

−T ⊗ L−1)
s∑

i=1

vec

(
∂A(Ω)

∂ωi

)
δωi + (h.o.t),

suvec (∆U) = Msuvec(U
T ⊗D)Msut(U

−T ⊗ L−1)
s∑

i=1

vec

(
∂A(Ω)

∂ωi

)
δωi + (h.o.t).
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Set
∂A(Ω)

∂Ω
=

[
vec

(
∂A(Ω)

∂ω1

)
, vec

(
∂A(Ω)

∂ω2

)
, · · · , vec

(
∂A(Ω)

∂ωs

)]
.

Thus,

slvec (∆L) = Mslvec(D
−T ⊗ L)Mslt(U

−T ⊗ L−1)
∂A(Ω)

∂Ω
∆Ω+ (h.o.t), (3.15)

dgvec (∆D) = Mdgvec(I
T ⊗ I)Mdg(U

−T ⊗ L−1)
∂A(Ω)

∂Ω
∆Ω+ (h.o.t), (3.16)

suvec (∆U) = Msuvec(U
T ⊗D)Msut(U

−T ⊗ L−1)
∂A(Ω)

∂Ω
∆Ω+ (h.o.t). (3.17)

From (3.15), (3.16) and (3.17) and the definitions of the mappings φL, φD and φU and the

Fréchet derivative, we have desired results. �
Now we present the unified structured condition numbers for LDU factorization.

Theorem 3.2. Under the same assumptions of Theorem 3.1, we have

κL(Ω) =

∥∥∥∥diag‡(ξ)ML
∂A(Ω)

∂Ω
diag(β)

∥∥∥∥
µ,ν

, (3.18)

κD(Ω) =

∥∥∥∥diag‡(ξ)MD
∂A(Ω)

∂Ω
diag(β)

∥∥∥∥
µ,ν

, (3.19)

κU (Ω) =

∥∥∥∥diag‡(ξ)MU
∂A(Ω)

∂Ω
diag(β)

∥∥∥∥
µ,ν

, (3.20)

where ξ and β are parameter vectors with suitable dimensions and β has a requirement like the

one in Definition 2.1.

Proof. The proof is straightforward by considering Lemma 2.2 and Theorem 3.1. �

Remark 3.3. When we set the parameters in Ω to be the entries of A, we can deduce the

unstructured unified condition numbers for LDU factorization:

κL(A) =
∥∥∥diag‡(ξ)MLdiag(β)

∥∥∥
µ,ν

, (3.21)

κD(A) =
∥∥∥diag‡(ξ)MDdiag(β)

∥∥∥
µ,ν

, (3.22)

κU (A) =
∥∥∥diag‡(ξ)MUdiag(β)

∥∥∥
µ,ν

, (3.23)

because, in this case, it is easy to check that ∂A(Ω)
∂Ω = In2 .

Remark 3.4. Setting µ = ν = 2, and β = [∥Ω∥2, · · · , ∥Ω∥2]T ∈ Rs with Ω ̸= 0 and

ξ = [∥slvec(L)∥2, · · · , ∥slvec(L)∥2]T = [∥L∥F , · · · , ∥L∥F ]T ∈ Rτ1 ,

ξ = [∥dgvec(D)∥2, · · · , ∥dgvec(D)∥2]T = [∥D∥F , · · · , ∥D∥F ]T ∈ Rτ2 ,

ξ = [∥suvec(U)∥2, · · · , ∥suvec(U)∥2]T = [∥U∥F , · · · , ∥U∥F ]T ∈ Rτ1 .
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We obtain the structured normwise condition number for the LDU factors L, D and U ;

κ2L(Ω) =

∥∥∥∥ML
∂A(Ω)

∂Ω

∥∥∥∥
2

∥Ω∥2
∥L∥F

,

κ2D(Ω) =

∥∥∥∥MD
∂A(Ω)

∂Ω

∥∥∥∥
2

∥Ω∥2
∥D∥F

,

κ2U (Ω) =

∥∥∥∥MU
∂A(Ω)

∂Ω

∥∥∥∥
2

∥Ω∥2
∥U∥F

.

Setting µ = ν = ∞, and β = Ω ̸= 0 and ξ = [∥slvec(L)∥∞, · · · , ∥slvec(L)∥∞]T ∈ Rτ1

(ξ = slvec(L)), ξ = [∥dgvec(D)∥∞, · · · , ∥dgvec(D)∥∞]T ∈ Rτ2 (ξ = dgvec(D)) and ξ =

[∥suvec(U)∥∞, · · · , ∥suvec(U)∥∞]T ∈ Rτ1 (ξ = suvec(U)), we obtain the structured mixed

(componentwise) condition number for the LDU factors L, D and U ;

κmL(Ω) =

∥∥∥|ML
∂A(Ω)
∂Ω ||Ω|

∥∥∥
∞

∥slvec(L)∥∞
, κcL(Ω) =

∥∥∥∥∥ |ML
∂A(Ω)
∂Ω ||Ω|

slvec(|L|)

∥∥∥∥∥
∞

,

κmD(Ω) =

∥∥∥|MD
∂A(Ω)
∂Ω ||Ω|

∥∥∥
∞

∥dgvec(D)∥∞
, κcD(Ω) =

∥∥∥∥∥ |MD
∂A(Ω)
∂Ω ||Ω|

dgvec(|D|)

∥∥∥∥∥
∞

,

κmU (Ω) =

∥∥∥|MU
∂A(Ω)
∂Ω ||Ω|

∥∥∥
∞

∥suvec(U)∥∞
, κcU (Ω) =

∥∥∥∥∥ |MU
∂A(Ω)
∂Ω ||Ω|

suvec(|U |)

∥∥∥∥∥
∞

.

Similarly we can obtain the unstructured condition numbers for LDU factorization by setting

specific parameters and norms in (3.21), (3.22), and (3.23), respectively. We have the following

unstructured normwise condition number for the LDU factors L, D and U ;

κ2L(A) =
∥ML∥2 ∥A∥F

∥L∥F
, κ2D(A) =

∥MD∥2 ∥A∥F
∥D∥F

, κ2U (A) =
∥MU∥2 ∥A∥F

∥U∥F
, (3.24)

and the unstructured mixed (componentwise) condition number for the LDU factors L, D and

U ;

κmL(A) =
∥|ML||vec(A)|∥∞

∥slvec(L)∥∞
, κcL(A) =

∥∥∥∥ |ML||vec(A)|
slvec(|L|)

∥∥∥∥
∞

,

κmD(A) =
∥|MD||vec(A)|∥∞
∥dgvec(D)∥∞

, κcD(A) =

∥∥∥∥ |MD||vec(A)|
dgvec(|D|)

∥∥∥∥
∞

,

κmU (A) =
∥|MU ||vec(A)|∥∞
∥suvec(U)∥∞

, κcU (A) =

∥∥∥∥ |MU ||vec(A)|
suvec(|U |)

∥∥∥∥
∞

. (3.25)

Corollary 3.5. Suppose all the assumptions of of Theorem 3.1 holds, and A(Ω) ∈ Rn×n
n be a

symmetric positive definite matrix, then A(Ω) has unique LDLT factorization, we have

κL(Ω) =

∥∥∥∥diag‡(ξ)Mslvec(D
−T ⊗ L)Mslt(L

−1 ⊗ L−1)
∂A(Ω)

∂Ω
diag(β)

∥∥∥∥
µ,ν

κD(Ω) =

∥∥∥∥diag‡(ξ)Mdgvec(I
T ⊗ I)Mdg(L

−1 ⊗ L−1)
∂A(Ω)

∂Ω
diag(β)

∥∥∥∥
µ,ν

,

where ξ and β are parameter vectors with suitable dimensions and β has a requirement like the

one in Definition 2.1.
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Proof. The proof is straightforward by considering Lemma 2.2 and Theorem 3.1. �

Remark 3.6. When we set the parameters in Ω to be the entries of A, we can deduce the

unstructured unified condition numbers for LDLT factorization:

κL(A) =
∥∥∥diag‡(ξ)Mslvec(D

−T ⊗ L)Mslt(L
−1 ⊗ L−1)diag(β)

∥∥∥
µ,ν

,

κD(A) =
∥∥∥diag‡(ξ)Mdgvec(I

T ⊗ I)Mdg(L
−1 ⊗ L−1)diag(β)

∥∥∥
µ,ν

,

because, in this case, it is easy to check that ∂A(Ω)
∂Ω = In2 .

§4 Statistical condition estimates

In this part, we focus on estimating the normwise, mixed and componentwise condition

numbers for LDU factorization.

4.1. Estimating normwise condition number

We use two algorithms to estimate the normwise condition number. The first one is from

[22] and has been applied to estimate the normwise condition number for matrix equations

[24,25], equality constrained linear least squares problem [26], and K-weighted pseudoinverse

L†
K [27]. The second one is based on the SSCE method [23] and has ever been used for some

least squares problems [26-28].

Algorithm 1 Probabilistic condition estimator

Input: ϵ, d (d is the dimension of Krylov space and usually determined by the algorithm itself)
and matrix ML, MD and MU in (3.2).
Output: Probabilistic spectral norm estimator of the normwise condition numbers (3.24):
κ2L(A), κ2D(A) and κ2U (A).

1. Choose a starting random vector v0 from U(St−1) with t = n2, the uniform distribution
over unit sphere St−1 in Rt.

2. Compute the guaranteed lower bound α1 and the probabilistic upper bound α2 of ∥ML∥2,
∥MD∥2 and ∥MU∥2 by the probabilistic spectral norm estimator [22].

3. Estimate the normwise condition numbers (3.24) by

κp2L(A) =
(α1 + α2)∥A∥F

2∥L∥F
, κp2D(A) =

(α1 + α2)∥A∥F
2∥D∥F

and κp2U (A) =
(α1 + α2)∥A∥F

2∥U∥F
.

4.2. Estimating mixed and componentwise condition numbers

To estimate the mixed and componentwise condition numbers, we need the following SSCE

method, which is from [23] and has been applied to many problems (see e.g., [25-27]).
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Algorithm 2 SSCE method for the normwise condition number

Input: Sample size k and matrix ML, MD and MU in (3.2).
Output: SSCE estimates of the normwise condition number of LDU factorization: κs2L(A),
κs2D(A) and κs2U (A)

1. Let t = n2. Generate q random vectors [z1, · · · , zk] → Z from U(St−1).

2. Orthonormalize these vectors using the QR factorization [Z,∼] = QR(Z).

3. For i = 1, · · · , k, compute κi2L(A), κi2D(A) and κi2U (A) by:

κi2L(A) =
MiL∥A∥F
∥L∥F

, κi2D(A) =
MiD∥A∥F
∥D∥F

and κi2U (A) =
MiU∥A∥F
∥U∥F

.

where

MiL = zTi Mslvec(D
−T ⊗ L)Mslt(U

−T ⊗ L−1)zi,

MiD = zTi Mdgvec(I
T ⊗ I)Mdg(U

−T ⊗ L−1)zi,

MiU = zTi Msuvec(U
−T ⊗D)Msut(U

−T ⊗ L−1)zi.

4. Approximate ωk and ωn by:

ωk ≈
√

2

π(k − 1
2 )

.

5. Estimate the normwise condition numbers (3.24) by:

κs2L(A) =
ωk

ωn

√√√√ k∑
i=1

κ2
i2L(A), κs2D(A) =

ωk

ωn

√√√√ k∑
i=1

κ2
i2D(A), κs2U (A) =

ωk

ωn

√√√√ k∑
i=1

κ2
i2U (A).
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Algorithm 3 SSCE method for the mixed and componentwise condition numbers

Input: Sample size k and matrix ML, MD and MU in (3.2).
Output: SSCE estimates of mixed and componentwise condition numbers of LDU factoriza-
tion: κmL(A), κcL(A), κmD(A), κcD(A), κmU (A) and κcU (A).

1. Let t = n2. Generate q random vectors [z1, · · · , zk] → Z from U(St−1).

2. Orthonormalize these vectors using the QR factorization [Z,∼] = QR(Z).

3. Compute uiL = MLzi, uiD = MDzi, uiU = MUzi , and estimate the mixed and compo-
nentwise condition numbers in (3.25) by

κsmL(A) =
∥κimL(A)∥∞
∥slvec(L)∥∞

, κscL(A) =

∥∥∥∥κimL(A)

slvec(L)

∥∥∥∥
∞

,

κsmD(A) =
∥κimD(A)∥∞
∥dgvec(D)∥∞

, κscD(A) =

∥∥∥∥ κimD(A)

dgvec(D)

∥∥∥∥
∞

,

κsmU (A) =
∥κimU (A)∥∞
∥suvec(U)∥∞

, κscU (A) =

∥∥∥∥ κimU (A)

suvec(U)

∥∥∥∥
∞

,

where

κimL(A) =
ωk

ωt

∣∣∣∣∣
k∑

i=1

|uiL|2
∣∣∣∣∣
1
2

, κimD(A) =
ωk

ωt

∣∣∣∣∣
k∑

i=1

|uiD|2
∣∣∣∣∣
1
2

, κimU (A) =
ωk

ωt

∣∣∣∣∣
k∑

i=1

|uiU |2
∣∣∣∣∣
1
2

,

and the power and square root operation are performed on each entry of ui, i = 1, · · · , k.



Mahvish Samar, et al. Structured condition numbers and statistical condition... 343

§5 Numerical experiments

In this section, we first, illustrate the reliability of Algorithms 1, 2, 3 and then compare the

structured condition numbers and the unstructured ones. All computations are carried out in

MATLAB 2016a.

Example 5.1. The matrices have the form A = D1BD2, where D1 = diag(1, d1, · · · , dm−1
1 ),

D2 = diag(1, d2, · · · , dm−1
2 ) and B is an n× n random matrix produced by MATLAB function

randn. The result for n = 10, d1, d2 = 1 and the same matrix B. For Algorithm 1, we choose

the parameters to be δ = 0.01 and ϵ = 0.001. For Algorithms 2 and 3, we set k = 2. We define

the ratios between exact condition numbers and the corresponding estimated ones as follows:

rp2L =
κp2L(A)

κ2L(A)
, rp2D =

κp2D(A)

κ2D(A)
, rp2U =

κp2U (A)

κ2U (A)
;

rs2L =
κs2L(A)

κ2L(A)
, rs2D =

κs2D(A)

κ2D(A)
, rs2U =

κs2U (A)

κ2U (A)
;

rmL =
κsmL(A)

κmL(A)
, rmD =

κsmD(A)

κmD(A)
, rmU =

κsmU (A)

κmU (A)
;

rcL =
κscL(A)

κcL(A)
, rcD =

κscD(A)

κcD(A)
, rcU =

κscU (A)

κcU (A)
.

The ratios are displayed in Figures 1 and 2. Among 2000 tests, the ratios in most cases are of

order 1, except a few exceptional cases. The average values of rp2L, rp2D, rp2U , rs2L, rs2D, rs2U ,

rmL, rmD, rmU , rcL, rcD and rcU are 1.0002, 1.0001, 1.0003, 1.0952, 1.8665, 1.1761, 1.5270,

1.7779, 1.3427, 1.2680, 1.5661 and 1.6355, respectively. We see that the Probabilistic condition

estimator and the small sample statistical method are quite effective for condition numbers

estimation.
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Figure 1: Efficiency of condition estimators of Algorithm 1 and 2.
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Figure 2: Efficiency of condition estimators of Algorithm 3.
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Example 5.2. Consider Toeplitz matrix, we will compare the structured normwise, mixed,

and componentwise condition numbers with the corresponding unstructured ones for LDU

factorization of linear structured unsymmetric Toeplitz matrix. In the numerical experiments,

we generate the test matrices, i.e., the Toeplitz matrices, by the Matlab function toeplitz(c, r)

with c = randn(m, 1) and r = randn(n, 1).

In the practical experiments for LDU factorization, we set c = randn(n, 1) and r =

randn(n, 1), and to make sure that the generated test matrix has the unique LDU factor-

ization, we will check its leading principal sub-matrices. In the specific experiments, we set

n = 10, 20, 30 and generate 2000 unsymmetric Toeplitz matrices. The numerical results on the

ratios defined by

σ2L =
κ2L(A)

κ2L(Ω)
, σ2D =

κ2D(A)

κ2D(Ω)
, σ2U =

κ2U (A)

κ2U (Ω)
;

σmL =
κmL(A)

κmL(Ω)
, σmD =

κmD(A)

κmD(Ω)
, σmU =

κmU (A)

κmU (Ω)
;

σcL =
κcL(A)

κcL(Ω)
, σcD =

κcD(A)

κcD(Ω)
, σcU =

κcU (A)

κcU (Ω)

are presented in Table 1, we find that the structured condition numbers are always smaller than

the unstructured ones, however, the former is not much smaller than the latter.

Table 1: Comparisons of structured condition numbers and unstructured ones for LDU factor-
izations of unsymmetric Toeplitz matrices.

n 10 20 30
mean max mean max mean max

σ2L 1.7610 2.6975 2.1584 3.3916 2.5600 4.4721
σ2D 1.7867 3.2464 2.2773 4.3897 2.6894 6.4786
σ2U 1.7618 2.7497 2.1661 3.3774 2.5538 4.4717
σmL 1.2253 2.5830 1.4203 2.8633 1.5644 3.0865
σmD 1.3787 3.3006 1.6223 3.1454 1.8017 4.1569
σmU 1.2276 2.2803 1.4219 2.9426 1.5655 3.0989
σcL 1.2945 2.9710 1.5478 3.5392 1.7362 4.0040
σcD 1.4188 3.3016 1.7376 3.7993 1.9896 6.4452
σcU 1.2972 3.2643 1.5901 3.2439 1.7423 3.6081

Example 5.3. Now, we investigate the comparisons of condition numbers of non-linear struc-

tured matrices. We first consider Vandermonde matrix. In numerical experiments, we set

c = randn(n, 1) and vij = c(j)i with i = 0, 1, · · · ,m − 1; j = 0, 1, · · · , n − 1 to generate the

m × n Vandermonde matrix V = (vij). In the specific experiments for LDU factorization, we

set m = n = 5, 8, 10. We generate 2000 nonsingular Vandermonde matrices, and report the

numerical results on the ratios in Table 2. These results show that, for Vandermonde matrices,

the structured condition numbers for LDU factorization can be much smaller than the corre-

sponding unstructured ones, which is very unlike the case for Toeplitz matrices. In a word, for

linear structured Toeplitz matrices, these are little differences between the structured condition

numbers and the corresponding unstructured ones for LDU factorization. Whereas, the results

for non-linear structured Vandermonde are very encouraging.
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Table 2: Comparisons of structured condition numbers and unstructured ones for LDU factor-
izations of Vandermonde matrices.

m,n 5, 5 8, 8 10, 10
mean max mean max mean max

σ2L 2.5870e+03 3.8770e+06 6.9073e+04 4.9048e+07 8.2419e+06 1.3959e+09
σ2D 2.1502e+01 1.3438e+03 2.6357e+03 1.8443e+06 6.9354e+04 7.3116e+06
σ2U 2.4597e+01 3.2133e+03 6.9219e+03 2.8603e+06 4.2975e+05 4.4017e+07
σmL 2.1021e+01 1.2118e+05 1.3092e+03 6.5363e+05 5.4926e+04 6.3929e+06
σmD 9.6708e+00 5.2805e+02 5.4654e+02 5.5244e+05 1.3198e+03 2.1332e+05
σmU 5.3874e+00 5.9792e+02 1.8341e+02 1.1070e+05 1.7871e+03 1.9244e+05
σcL 1.1218e+02 4.9423e+04 2.0462e+03 1.2126e+06 5.0450e+04 5.7688e+06
σcD 1.7428e+01 3.4426e+03 3.5746e+02 2.4314e+05 1.4742e+03 3.1332e+05
σcU 7.5854e+00 5.4458e+02 2.2005e+02 7.9495e+04 2.5060e+03 2.3320e+05
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