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Asymptotic inference for AR(1) panel data

SHEN Jian-fei PANG Tian-xiao

Abstract. A general asymptotic theory is given for the panel data AR(1) model with time

series independent in different cross sections. The theory covers the cases of stationary pro-

cess, local to unity process, unit root process, mildly integrated, mildly explosive and explosive

processes. It is assumed that the cross-sectional dimension and time-series dimension are re-

spectively N and T . The results in this paper illustrate that whichever the process is, with an

appropriate regularization, the least squares estimator of the autoregressive coefficient converges

in distribution to a normal distribution with rate at least O(N−1/3). Since the variance is the

key to characterize the normal distribution, it is important to discuss the variance of the least

squares estimator. We will show that when the autoregressive coefficient ρ satisfies |ρ| < 1, the

variance declines at the rate O((NT )−1), while the rate changes to O(N−1T−2) when ρ = 1 and

O(N−1ρ−2T+4) when |ρ| > 1. ρ = 1 is the critical point where the convergence rate changes

radically. The transition process is studied by assuming ρ depending on T and going to 1. An

interesting phenomenon discovered in this paper is that, in the explosive case, the least squares

estimator of the autoregressive coefficient has a standard normal limiting distribution in the

panel data case while it may not has a limiting distribution in the univariate time series case.

§1 Introduction

Dynamic models are useful in modeling time series data and have been well studied in the

past few decades. One of the dynamic models is the AR(1) model which is given by

yt = ρyt−1 + εt, t = 1, 2, ..., T. (1.1)

We assume that {εt, t ≥ 1} are independent and identically distributed (i.i.d.) random variables

with E[ε1] = 0 and E[ε21] = 1.

Although the model (1.1) is simple, it is very useful and important in time series and

econometrics literature since the model can be used to model some kinds of stationary or non-

stationary time series data. The parameter ρ is the main concern in the model (1.1) since
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whether the model is stationary is determined by the value of ρ. It is well-known that the

necessary and sufficient condition for the stationarity of yt in (1.1) is |ρ| < 1 when y0 is an

appropriate random variable. The least squares estimator (LSE) of ρ is given by

ρ̂ =

∑T
t=1 ytyt−1∑T
t=1 y

2
t−1

. (1.2)

For the stationary AR(1) model, Mann and Wald (1943) proved that, if y0 = OP (1), then√
T√

1− ρ2
(ρ̂− ρ)

d−→ N(0, 1).

When |ρ| > 1, model (1.1) is non-stationary and is called the explosive AR(1) model. For this

model, Anderson (1959) showed that if y0 = 0 and εt’s are independent and normal distributed

random variables, then

|ρ|T

ρ2 − 1
(ρ̂− ρ)

d−→ C,

where C is a standard Cauchy variate. However, for general εt’s, Anderson (1959) showed that

the limiting distribution of ρ̂ may not exist. The interesting case is ρ = 1, the corresponding

AR(1) model is called the unit root model in econometrics. For this model, the central limit

theorem is no longer applicable when exploring the limiting distribution of ρ̂. Instead, by

applying the functional central limit theorem, White (1958) and Rao (1978) showed that, if

y0 = oP (
√
T ), then

T (ρ̂− ρ)
d−→

1
2

[
W 2(1)− 1

]∫ 1

0
W 2(t)dt

,

where {W (t), 0 ≤ t ≤ 1} is a standard Wiener process. This limiting distribution is not

standard. Noting that P (W 2(1) ≤ 1) ≈ 0.684, the limiting distribution is not even symmetric.

In order to bridge the gaps of asymptotic theories between the stationary AR(1) model

and the unit root model, Chan and Wei (1987) and Phillips (1987) independently studied the

following model which is called nearly non-stationary AR(1) model:

yt = ρyt−1 + εt, y0 = oP (
√
T ), ρ = ρT = 1− c/T, t = 1, 2, ..., T, (1.3)

where c is a fixed constant. Of late, in order to bridge the gaps of asymptotic theories between

the unit root model and the explosive AR(1) model, Phillips and Magdalinos (2007) studied

the following AR(1) model:

yt = ρyt−1 + εt, y0 = oP (
√
kT ), ρ = ρT = 1− c/kT , t = 1, 2, ..., T, (1.4)

where c is a non-zero constant and kT is a sequence of positive constants increasing to ∞ such

that kT = o(T ). Model (1.4) with c > 0 and with c < 0 is called mildly integrated AR(1) model

and mildly explosive AR(1) model respectively according to Phillips and Magdalinos (2007).

In models (1.3) and (1.4), we denote ρ̂T to be the LSE of ρT , and also suppose that {εt, t ≥ 1}
are i.i.d. random variables with E[ε1] = 0 and E[ε21] = 1. It is worth noting that the limiting

distributions of ρ̂T are different from those in the stationary AR(1) model, unit root model and

explosive model. Specifically, Chan and Wei (1987) proved that when ρ = ρT = 1 − c/T with
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c ∈ R,

T (ρ̂T − ρT )
d−→ 2c

b

∫ 1

0
(1 + bt)−1W (t)dW (t)∫ 1

0
(1 + bt)−2W 2(t)dt

,

where b = e2c− 1 ( 2cb in the above limiting distribution is replaced by 1 if c = 0), while Phillips

and Magdalinos (2007) proved that when ρ = ρT = 1− c/kT with c > 0,√
TkT (ρ̂T − ρT )

d−→ N(0, 2c),

and when ρ = ρT = 1− c/kT with c < 0,

[kT ρ
T
T /(−2c)](ρ̂T − ρT )

d−→ C,

where, as before, C stands for a standard Cauchy variate.

It is clear that the limiting distribution of the LSE of ρ varies in AR(1) models under

different assumptions on ρ. Further, one can find that the limiting distribution is not standard

in nearly non-stationary AR(1) model which includes the unit root model as a special case.

This is harmful for making further statistical inferences, for example, confidence intervals of ρ.

However, with the panel data, the results may be extremely simple. A panel data set is the

one that follows a given sample of individuals over time, and thus provides multiple observations

on each individual in the sample. A panel data AR(1) model is formulated by

yit = ρyi,t−1 + εit, t = 1, 2, ..., T, i = 1, 2, ..., N, (1.5)

where {εit, i ≥ 1, t ≥ 1} are i.i.d. random variables with E[ε11] = 0 and E[ε211] = 1. The

dimension of individual, N , is usually called cross-sectional dimension. There is no common

effect on individuals in the model (1.5). Thus each individual generates an independent time

series and the central limit theorem may be applied to cross-sectional dimension. There are

many papers studying on dynamic panel data models with individual specific effects or/and

time specific effects in the literature, for example, see Moon and Phillips (2000), Hahn and

Moon (2006) and Lu and Su (2016). However, we focus on the most simple dynamic panel

data model in this paper. For model (1.5), Levin and Lin (1992) proved that, when ρ = 1

(unit root case), yi0 = 0 for all i ≥ 1 and an additional moment condition is fulfilled, that is,

E|ε11|2+λ < ∞ for some λ > 0, then it is true that
√
NT (ρ̂− ρ)

d−→ N(0, 2), N, T → ∞. (1.6)

Here and in what follows, N,T → ∞ means T → ∞ followed by N → ∞; see Phillips and

Moon (1999). Obviously, the limiting distribution of ρ̂ in panel data unit root model is simpler

than that in univariate time series unit root model. What is more important is the former is

standard while the latter is not. This comparison motivates us to study other panel data AR(1)

models.

Therefore, the aim of this paper is to study the limiting distribution of the LSE of ρ in

various panel data AR(1) models. We are interested in the following question: whether, like

the panel data unit root case, all the limiting distributions are normal in stationary, nearly

non-stationary, mildly integrated, mildly explosive and explosive panel data.

The rest of the paper is organized as follows. We will extend the conclusion (1.6) to general
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cases for ρ ∈ R in Section 2, and provide some applications in Section 3. Note that, in Section

3, all the limiting distributions have the form of normal distribution only with different rates

of convergence. When ρ = 1, our result coincides with that in Levin and Lin (1992), but the

moment condition E[|ε11|2+λ] < ∞ for some λ > 0 is replaced by a more weaker one, that is,

E[ε211] < ∞, in our paper.

§2 Asymptotics for the LSE of ρ

Consider the panel data AR(1) model:

yit = ρyi,t−1 + εit, t = 1, 2, ..., T, i = 1, 2, ..., N, (2.1)

where the innovations {εit, i ≥ 1, t ≥ 1} are i.i.d. random variables with E[ε11] = 0 and

E[ε211] = 1. In this model, the LSE of ρ is

ρ̂ =

∑N
i=1

∑T
t=1 yityi,t−1∑N

i=1

∑T
t=1 y

2
i,t−1

. (2.2)

It is true that

ρ̂− ρ =

∑N
i=1

∑T
t=1 yi,t−1εit∑N

i=1

∑T
t=1 y

2
i,t−1

. (2.3)

To obtain a non-degenerated limiting distribution for (2.3), we can apply the central limit

theorem to the numerator and the law of large numbers to the denominator, respectively.

Before doing so, we need to put the normalizing constants on
∑T

t=1 yi,t−1εit’s and
∑T

t=1 y
2
i,t−1’s

such that they become bounded in probability. The following is our main result in this section.

Theorem 2.1. In the model (2.1), we suppose the innovations {εit, i ≥ 1, t ≥ 1} are i.i.d.

random variables with E[ε11] = 0 and E[ε211] = 1. In addition, we assume there exist two

positive functions of T , Q(T) and P(T), such that

AT
i := P (T )

T∑
t=1

yi,t−1εit
d−→ Ai, T → ∞,

and

BT
i := Q(T )

T∑
t=1

y2i,t−1
d−→ Bi, T → ∞,

where Ai’s and Bi’s are random variables.

(1) If, as T → ∞, E[(AT
i )

r] → E[Ar
i ] for r = 1, 2 and E[BT

i ] → E[Bi] with 0 < E[A2
i ] < ∞

and 0 < E[Bi] < ∞ for all i ≥ 1, then we have
√
N

P (T )

Q(T )
(ρ̂− ρ)

d−→ N

(
0,

V ar(A1)

(E[B1])2

)
, N, T → ∞. (2.4)

(2) If the conditions in (1) are fulfilled, and in addition, as T → ∞, E[(BT
i )

2] → E[B2
i ] < ∞

and E[|AT
i |3] → E[|Ai|3] < ∞ for all i ≥ 1, then we have, as long as T is large enough,√

N P (T )
Q(T ) (ρ̂ − ρ) converges to a normal random variable in distribution with the rate at least

O(N− 1
3 ) as N → ∞.
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Remark 2.1. We assume the cross section dimension N and the time series dimension T are

independent in this paper. However, if N depends on T and is a monotonic function of T ,

one could extend the results in this paper via some limit theorems for triangular arrays (for

example, central limit theorem for triangular arrays in Levin and Lin (1992) and the law of

large numbers for triangular arrays in Sung (1999)).

Remark 2.2. In this paper, we assume that εit’s are independent across both i and t for ease

of exposition. However, the results in Section 2 and Section 3 below can possibly be generalized

when εit’s are weakly dependent over i or over t. For example, if εit =
∑∞

j=0 ϕijui,t−j with

uij’s being i.i.d random variables with zero mean and finite variance, and
∑∞

j=0 j|ϕij | < ∞
for all i ≥ 1, then our results in this paper can be generalized easily by BN decomposition for

linear processes. Moreover, If εit’s are weakly dependent over i for any fixed t ≥ 1 such that

{AT
i , i ≥ 1} are also weakly dependent, then our results in this paper can also be generalized.

Proof. (1) Apparently, {AT
i , i ≥ 1} are i.i.d. random variables with E[AT

i ] = 0. Moreover,

it follows from the conditions of moment convergence that there exists some T0 > 0 such that

when T > T0, 0 < E[(AT
i )

2] < ∞. Denote

ST
N =

1√
N

N∑
i=1

AT
i√

V ar(AT
1 )

. (2.5)

Note that E

[
AT

i√
V ar(AT

1 )

]
= 0 and V ar

(
AT

i√
V ar(AT

1 )

)
= 1. Hence, when T > T0, applying the

central limit theorem for i.i.d. random variables with zero mean and finite second moment leads

to

ST
N

d−→ N(0, 1), N → ∞, (2.6)

which, in view of the characteristic function arguments, further implies that

ST
N

d−→ N(0, 1), N, T → ∞. (2.7)

In addition, noting that {BT
i , i ≥ 1} are also i.i.d. random variables and there exists some

T1 > 0 such that E[BT
i ] < ∞ when T > T1 by the conditions of moment convergence, it follows

from the law of large numbers that when T > T1,

1

N

N∑
i=1

BT
i

P−→ E[BT
1 ], N → ∞. (2.8)

This easily yields

1

N

N∑
i=1

BT
i

P−→ E[B1], N, T → ∞. (2.9)

Combining (2.7) with (2.9) immediately leads to (2.4) by observing the following equality

√
N

P (T )

Q(T )
(ρ̂− ρ) =

√
N

∑N
i=1 A

T
i∑N

i=1 B
T
i

= ST
N

√
V ar(AT

1 )
1
N

∑N
i=1 B

T
i

.

(2) It follows from the conditions of moment convergence that there exists some T2 > 0 such

that, when T > T2, E[|AT
i |]3 < ∞ and (2.6) is still true. Denote

γT = E[|AT
i |3], σ2

T = E[(AT
i )

2].
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Then, according to the well-known Berry-Esseen bound for i.i.d. random variables with finite

third moment, the rate of convergence for (2.6), when T > T2, is characterized by the following

inequality:

sup
x∈R

|P (ST
N ≤ x)− Φ(x)| ≤ c0γT

σ3
T

√
N

, (2.10)

where c0 is some positive constant and Φ(x) is the distribution function of a standard normal

random variable. In addition, by virtue of the conditions of moment convergence again, there

esixts some T3 > 0 such that E[BT
i ] > 0 and E[(BT

i )
2] < ∞ when T > T3. Denote

RT
N =

1
N

∑N
i=1 B

T
i

E[BT
1 ]

.

Note that RT
N is a non-negative random variable and E[RT

N ] = 1. By applying Chebyshev’s

inequality, we have for any 0 < δ < 1
2 ,

P (|RT
N − 1| ≥ δ) ≤ V ar(RT

N )

δ2
=

1

Nδ2
V ar(BT

1 )

(E[BT
1 ])

2
. (2.11)

Next, we will explore the rate of convergence of ST
N/RT

N for T > max{T2, T3}.

First, when x ≥ 0, one has

sup
x≥0

∣∣∣∣P ( ST
N

RT
N

< x

)
− Φ(x)

∣∣∣∣
= sup

x≥0

∣∣∣∣P ( ST
N

RT
N

< x, |RT
N − 1| < δ

)
+ P

(
ST
N

RT
N

< x, |RT
N − 1| ≥ δ

)
− Φ(x)

∣∣∣∣
≤ sup

x≥0

∣∣P (ST
N < RT

Nx, |RT
N − 1| < δ

)
− Φ(x)

∣∣+ P
(
|RT

N − 1| ≥ δ
)

≤ sup
x≥0

max
{
P
(
ST
N < (1 + δ)x

)
− Φ(x),Φ(x)− P

(
ST
N < (1− δ)x, |RT

N − 1| < δ
)}

+P
(
|RT

N − 1| ≥ δ
)

≤ sup
x≥0

max
{
P
(
ST
N < (1 + δ)x

)
− Φ(x),Φ(x)− P

(
ST
N < (1− δ)x

)
+ P (|RT

N − 1| ≥ δ)
}

+P
(
|RT

N − 1| ≥ δ
)

≤ max
{
sup
x≥0

∣∣P (ST
N < (1 + δ)x

)
− Φ((1 + δ)x)

∣∣+ sup
x≥0

|Φ((1 + δ)x)− Φ(x)|

+P
(
|RT

N − 1| ≥ δ
)
, sup
x≥0

∣∣P (ST
N < (1− δ)x

)
− Φ((1− δ)x)

∣∣+ sup
x≥0

|Φ((1− δ)x)− Φ(x)|

+2P
(
|RT

N − 1| ≥ δ
)}

. (2.12)

Note that Φ(x) =
∫ x

−∞
1√
2π

e−
t2

2 dt satisfies the following smooth conditions:

sup
x≥0

|Φ((1 + δ)x)− Φ(x)| = sup
x≥0

∫ (1+δ)x

x

1√
2π

e−
t2

2 dt ≤ sup
x≥0

δ√
2π

xe−
x2

2 ≤ δ√
2πe

, (2.13)

and similarly,

sup
x≥0

|Φ(x)− Φ((1− δ)x)| ≤ 1

1− δ

δ√
2πe

<
2δ√
2πe

. (2.14)
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Substituting (2.10), (2.11), (2.13) and (2.14) into (2.12) and taking δ = N− 1
3 (N > 8), one has

sup
x≥0

∣∣∣∣P ( ST
N

RT
N

< x

)
− Φ(x)

∣∣∣∣ ≤ c0γ
3
T

σ3
T

√
N

+
2

Nδ2
V ar(BT

1 )

(E[BT
1 ])

2
+

2δ√
2πe

=: C1(T )N
− 1

2 + C2(T )N
− 1

3 , (2.15)

where C1(T ) =
c0γ

3
T

σ3
T

and C2(T ) =
2V ar(BT

1 )

(E[BT
1 ])2

+ 2√
2πe

. Note that both C1(T ) and C2(T ) are

bounded when T > max{T2, T3}.
By the same arguments, when x < 0, one has

sup
x<0

∣∣∣∣P ( ST
N

RT
N

< x

)
− Φ(x)

∣∣∣∣
≤ max

{
sup
x<0

∣∣P (ST
N < (1− δ)x

)
− Φ((1− δ)x)

∣∣+ sup
x<0

|Φ((1− δ)x)− Φ(x)|

+P
(
|RT

N − 1| ≥ δ
)
, sup
x<0

∣∣P (ST
N < (1 + δ)x

)
− Φ((1 + δ)x)

∣∣+ sup
x<0

|Φ((1 + δ)x)− Φ(x)|

+2P
(
|RT

N − 1| ≥ δ
)}

≤ C1(T )N
− 1

2 + C2(T )N
− 1

3 . (2.16)

Thus we can unify (2.15) and (2.16) as

sup
x∈R

∣∣∣∣P ( ST
N

RT
N

< x

)
− Φ(x)

∣∣∣∣ ≤ C1(T )N
− 1

2 + C2(T )N
− 1

3 , (2.17)

where both C1(T ) and C2(T ) are bounded when T > max{T2, T3}.
Noting that

√
N

P (T )

Q(T )
(ρ̂− ρ) =

ST
N

RT
N

·
√

V ar(AT
1 )

E[BT
1 ]

, (2.18)

it is true that
√
N P (T )

Q(T ) (ρ̂ − ρ) also converges to a standard normal random variable in distri-

bution with rate at least O(N− 1
3 ) as long as T is large enough. �

Remark 2.3. Generally, the requirements of 0 < E[A2
i ] < ∞, 0 < E[Bi] < ∞ and convergence

of moments are not strong. They can be fulfilled in most of models we will discuss below.

Theorem 2.1 illustrates that N determines the form of the limiting distribution while T

portrays the speed of convergence (with P (T ) and Q(T )). Considering the limiting distribution

is normal with zero mean, it can be totally depicted by its variance. So the rest of this paper

focuses on studying the variance of the limiting distribution in various cases.

§3 Applications

In this section, the limiting distribution of the LSE of ρ in model (2.1) will be introduced

one by one whenever ρ is a fixed constant or a constant depending on T .

The results in the following lemma are taken from Mann and Wald (1943) and Rao (1978),

respectively.

Lemma 3.1. In the model (1.1), we suppose that the innovations {εt, t ≥ 1} are i.i.d. random

variables with E[ε1] = 0 and E[ε21] = 1. Then,
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(1) When |ρ| < 1 and y0 = OP (1), one has√
1− ρ2

T

T∑
t=1

yt−1εt
d−→ N(0, 1), T → ∞,

1− ρ2

T

T∑
t=1

y2t−1
P−→ 1, T → ∞;

(2) When ρ = 1 and y0 = oP (
√
T ), one has(

1

T

T∑
t=1

yt−1εt,
1

T 2

T∑
t=1

y2t−1

)
d−→
(
1

2
(W (1)2 − 1),

∫ 1

0

W 2(t)dt

)
, T → ∞,

where {W (t), 0 ≤ t ≤ 1} is a standard Wiener process.

Note that the LSE of ρ in model (2.1) is (2.2). With Theorem 2.1 and Lemma 3.1, the

following results can be obtained.

Theorem 3.1. In the model (2.1), we suppose the innovations {εit, i ≥ 1, t ≥ 1} are i.i.d.

random variables with E[ε11] = 0 and E[ε211] = 1. Then,

(1) When |ρ| < 1 and yi0 = OP (1) for all i ≥ 1, one has√
NT√
1− ρ2

(ρ̂− ρ)
d−→ N(0, 1), N, T → ∞; (3.1)

(2) When ρ = 1 and yi0 = oP (
√
T ) for all i ≥ 1, one has

√
NT (ρ̂− ρ)

d−→ N(0, 2), N, T → ∞. (3.2)

Proof. It is easy to see that the values of yi0 do not affect the limiting distribution of ρ̂ as

long as the assumptions on yi0 in (1) and (2) are satisfied. Hence, without loss of generality,

we assume yi0 = 0 for all i ≥ 1. The proof of (1) is easy and thus omitted. (2) is true because

for any i ≥ 1,

E

[
1

T

T∑
t=1

yi,t−1εt

]
= 0, E

( 1

T

T∑
t=1

yi,t−1εt

)2
 =

1

T 2

T∑
t=1

(t− 1) → 1

2
, T → ∞,

E

[
1

T 2

T∑
t=1

y2t−1

]
=

1

T 2

T∑
t=1

(t− 1) → 1

2
, T → ∞,

E

[
1

2
(W (1)2 − 1)

]
= 0, V ar

(1
2
(W (1)2 − 1)

)
= E

[(
1

2
(W (1)2 − 1)

)2
]
=

1

4
× (3− 1) =

1

2

and

E
[ ∫ 1

0

W 2(t)dt
]
=

∫ 1

0

tdt =
1

2
.

�

Remark 3.1. The result (2) in Theorem 3.1 is indeed one of the main results in Levin and

Lin (1992), but the moment conditions in this paper are weaker than those in Levin and Lin

(1992).
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Remark 3.2. In Lemma 3.1, the case of |ρ| > 1 is excluded. Anderson (1959) proved that, if

y0 = 0 and {εt, t ≥ 1} are i.i.d. normal random variables with mean zeros and variance ones,

then

ρ−(T−2)
T∑

t=1

yt−1εt
d−→ ξη, T → ∞,

(ρ2 − 1)ρ−2(T−1)
T∑

t=1

y2t−1
d−→ ξ2, T → ∞,

ρT

ρ2 − 1
(ρ̂− ρ)

d−→ C, T → ∞,

where, ξ and η are independent and obey N(0, ρ2/(ρ2−1)), and C stands for a standard Cauchy

variate. In general case, ρ̂ − ρ may not has a limiting distribution. Consequently, the case of

|ρ| > 1 is also excluded in Theorem 3.1.

Next, we will study the case of |ρ| > 1 in panel data AR(1) model without the help of

Theorem 2.1.

Theorem 3.2. In the model (2.1) with |ρ| > 1, we suppose that yi0 = 0 for all i ≥ 1 and the

innovations {εit, i ≥ 1, t ≥ 0} are i.i.d. random variables with E[ε11] = 0 and E[ε211] = 1. Then
√
NρT−2(ρ̂− ρ)

d−→ N(0, 1), N, T → ∞. (3.3)

Proof. Denote β = 1/ρ, and

uiT = εi1 + βεi2 + · · ·+ βT−2εi,T−1, i ≥ 1

viT = εiT + βεi,T−1 · · ·+ βT−2εi2 + βT−1εi1, i ≥ 1.

Then, following the proofs of Theorem 2.1 and Theorem 2.2 in Anderson (1959), one has, as

N,T → ∞,

1

N

∣∣∣∣∣βT−2
N∑
i=1

T∑
t=1

yi,t−1εit −
N∑
i=1

uiT viT

∣∣∣∣∣ P−→ 0,

1

N

∣∣∣∣∣β2(T−2)
N∑
i=1

T∑
t=1

y2i,t−1 −
N∑
i=1

u2
iT

∣∣∣∣∣ P−→ 0.

As a result,

√
NρT−2(ρ̂− ρ) =

√
NρT−2

∑N
i=1

∑T
t=1 yi,t−1εit∑N

i=1

∑T
t=1 y

2
i,t−1

=
√
N

βT−2 1
N

∑N
i=1

∑T
t=1 yi,t−1εit

β2(T−2) 1
N

∑N
i=1

∑T
t=1 y

2
i,t−1

=

1√
N

∑N
i=1 uiT viT

1
N

∑N
i=1 u

2
iT

(1 + oP (1)). (3.4)

That is to say, we only need to derive the limiting distribution of
1√
N

∑N
i=1 uiT viT

1
N

∑N
i=1 u2

iT

in order to

derive the limiting distribution of
√
NρT−2(ρ̂− ρ).
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First, for any fixed T ≥ 2, it follows from the law of large numbers that

1

N

N∑
i=1

u2
iT

P−→ 1− β2(T−1)

1− β2
, N → ∞, (3.5)

which yields

1

N

N∑
i=1

u2
iT

P−→ 1

1− β2
, N, T → ∞. (3.6)

Second, denote

u∗
iT =

[T/2]∑
t=1

βt−1εit, v∗iT =
T∑

t=[T/2]+1

βT−tεit,

here the symbol [x] denote the largest integer not greater than x. Then, by the proof of Theorem

2.3 in Anderson (1959), we have for any i ≥ 1,

|uiT − u∗
iT |

P−→ 0 and |viT − v∗iT |
P−→ 0, T → ∞.

It follows that

1√
N

N∑
i=1

uiT viT =
1√
N

N∑
i=1

u∗
iT v

∗
iT (1 + oP (1)). (3.7)

Note that the sequences {u∗
iT , i ≥ 1} and {v∗iT , i ≥ 1} are independent for any fixed T ≥ 2.

Then, by virtue of the central limit theorem we have

1√
N

N∑
i=1

u∗
iT v

∗
iT

d−→ N(0,
(1− β2[T/2])(1− β2(T−[T/2]))

(1− β2)2
), N → ∞, (3.8)

which further implies that

1√
N

N∑
i=1

u∗
iT v

∗
iT

d−→ N(0,
1

(1− β2)2
), N, T → ∞ (3.9)

by characteristic function arguments. Now, combining (3.4), (3.6), (3.7) with (3.9) yields (3.3).

�

Remark 3.3. It is interesting to see that ρ̂ has a limiting distribution in panel data case while

it may not has a limiting distribution in univariate time series case.

Though in panel data, the form of limiting distribution is stable, noticing that the scale of

ρ̂ − ρ declines from O( 1√
NT

) when |ρ| < 1, to O( 1√
NT

) when ρ = 1 and to O( 1√
NρT−2

) when

|ρ| > 1, the rate of convergence changes radically at ρ = 1. Hence, it is necessary to discuss

the case when ρ is near 1. In the rest of the paper, we suppose that ρ depends on T , so it is

natural to use the notation ρ̂T to denote the LSE of ρ, that is, (2.2).

We first follow the proposal of Chan and Wei (1987) and Phillips (1987) to study the case

where ρ = ρT = 1− c
T with c a fixed constant. Consider the model

yit = ρT yi,t−1 + εit, ρT = 1− c

T
, t = 1, 2, ..., T, i = 1, 2, ..., N,

where yi0 = oP (
√
T ) for all i ≥ 1 and {εit, i ≥ 1, t ≥ 1} are i.i.d. random variables with

E[ε11] = 0 and E[ε211] = 1.

The following lemma is not explicitly formulated in Chan and Wei (1987), but can be easily
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obtained by the proofs in Chan and Wei (1987), technique of change of variable and Itó formula.

Thus, the details are omitted here.

Lemma 3.2. Let ρT = 1− c
T , where c ̸= 0 is a fixed constant. Suppose that yt comes from the

following reparameterized AR(1) model,

yt = ρT yt−1 + εt, t = 1, 2, ...T,

where y0 = oP (
√
T ) and {εt, t ≥ 1} are i.i.d. random variables with E[ε1] = 0 and E[ε21] = 1.

Then

T−1
T∑

t=1

yt−1εt
d−→ b

2c

∫ 1

0

(1 + bt)−1W (t)dW (t), T → ∞, (3.10)

T−2
T∑

t=1

y2t−1
d−→
(

b

2c

)2 ∫ 1

0

(1 + bt)−2W 2(t)dt, T → ∞, (3.11)

where b = e2c − 1 and {W (t), 0 ≤ t ≤ 1} is a standard Wiener process.

With the help of the above lemma and Theorem 2.1, we have the following result.

Theorem 3.3. Let ρ = ρT = 1 − c
T , where c ̸= 0 is a fixed constant. For t = 1, 2, ..., T and

i = 1, 2, ..., N , we suppose yit satisfies the following reparameterized AR(1) model,

yit = ρT yi,t−1 + εit, i = 1, 2, ..., N, t = 1, 2, ...T,

where yi0 = oP (
√
T ) for all i ≥ 1 and {εit, i ≥ 1, t ≥ 1} are i.i.d random variables with

E[ε11] = 0 and E[ε211] = 1. Then
√
NT (ρ̂T − ρT )

d−→ N(0,
4c2

2c− 1 + e−2c
), N, T → ∞. (3.12)

Proof. It follows from Theorem 2.1 and Lemma 3.2 that we only need to verify the corre-

sponding conditions of moment convergence and calculate the variance of the random variable

in the right hand side of (3.10) and the expectation of the random variable in the right hand

side of (3.11). To verify the conditions of moment convergence. As before, without loss of

generality, we assume yi0 = 0 for all i ≥ 1. It is true that for every i ≥ 1,

E

[
T−1

T∑
t=1

yi,t−1εit

]
= 0,

E

(T−1
T∑

t=1

yi,t−1εit

)2
 =

1

T 2

T∑
t=1

1− ρ
2(t−1)
T

1− ρ2T

=
1

T 2(1− ρ2T )

(
T − 1− ρ2TT

1− ρ2T

)
→ 2c− 1 + e−2c

4c2
, T → ∞,

E

[
T−2

T∑
t=1

y2i,t−1

]
= E

(T−1
T∑

t=1

yi,t−1εit

)2
→ 2c− 1 + e−2c

4c2
, T → ∞,
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E

[
b

2c

∫ 1

0

(1 + bt)−1W (t)dW (t)

]
= 0,

E

[(
b

2c

∫ 1

0

(1 + bt)−1W (t)dW (t)

)2
]

=
b2

4c2
E

[∫ 1

0

(
(1 + bt)−1W (t)

)2
dt

]
=

b2

4c2

∫ 1

0

t

(1 + bt)2
dt

=
1

4c2
[ln(1 + b)− b/(1 + b)]

=
2c− 1 + e−2c

4c2

according to Itó isometry theorem, and

E

[(
b

2c

)2 ∫ 1

0

(1 + bt)−2W 2(t)dt

]
= E

[(
b

2c

∫ 1

0

(1 + bt)−1W (t)dW (t)

)2
]

=
2c− 1 + e−2c

4c2
.

To calculate the variance of the random variable in the right hand side of (3.10) and the

expectation of the random variable in the right hand side of (3.11). Note that the latter has

just been done. For the former, it is easy to see that

V ar

(
b

2c

∫ 1

0

(1 + bt)−1W (t)dW (t)

)
= E

[(
b

2c

∫ 1

0

(1 + bt)−1W (t)dW (t)

)2
]

=
2c− 1 + e−2c

4c2
.

The proof is complete. �

Remark 3.4. It is easy to see that

lim
c→0

4c2

2c− 1 + e−2c
= 2.

Thus, the second part of Theorem 3.1 can be regarded as a complementary of Theorem 3.3.

Now we investigate the case where ρ = 1− c
kT

, where c ̸= 0 and kT is an increasing positive

function of T diverging to infinity such that kT = o(T ). First, we introduce a result about the

limiting distribution of ρ̂T in univariate time series AR(1) model which is taken from Phillips

and Magdalinos (2007).

Lemma 3.3. Let ρT = 1− c
kT

, where c ̸= 0 is a fixed constant and kT is an increasing positive

function of T diverging to infinity such that kT = o(T ). For t = 1, 2, ..., T , suppose yt satisfied

the following reparameterized AR(1) model,

yt = ρT yt−1 + εt, t = 1, 2, ...T,

where y0 = oP (
√
kT ) and {εt, t ≥ 1} are i.i.d. random variables with E[ε1] = 0 and E[ε21] = 1.

Then, for c > 0, one has

1√
TkT

T∑
t=1

yt−1εt
d−→ N(0,

1

2c
), T → ∞, (3.13)
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1

TkT

T∑
t=1

y2t−1
P−→ 1

2c
, T → ∞; (3.14)

and for c < 0, one has(
1

ρTT kT

T∑
t=1

yt−1εt,
−2c

(ρTT kT )
2

T∑
t=1

y2t−1

)
d−→ (XY, Y 2), T → ∞, (3.15)

where X and Y are two independent random variables obeying N(0, 1/(−2c)).

We now study the panel data case. By employing Theorem 2.1 and Lemma 3.3, we imme-

diately have the following result.

Theorem 3.4. Let ρT = 1− c
kT

, where c ̸= 0 is a fixed constant and kT is an increasing positive

function of T diverging to infinity such that kT = o(T ). For t = 1, 2, ..., T and i = 1, 2, .., N ,

suppose yit satisfies the following reparameterized AR(1) model,

yit = ρT yi,t−1 + εit, t = 1, 2, ..., T, i = 1, 2, ..., N,

where yi0 = oP (
√
kT ) for all i ≥ 1 and {εit, i ≥ 1, t ≥ 1} are i.i.d. random variables with

E[ε11] = 0 and E[ε211] = 1. Then, for c > 0 we have√
NTkT (ρ̂T − ρT )

d−→ N(0, 2c), N, T → ∞; (3.16)

and for c < 0 we have
√
NkT ρ

T
T (ρ̂T − ρT )

d−→ N(0, 4c2), N, T → ∞. (3.17)

Proof. The proofs of (3.16) and (3.17) are similar, so we only prove (3.17) here. To do so,

it follows from Theorem 2.1 and Lemma 3.3 that we only need to verify the corresponding

conditions of moment convergence and calculate the variance of XY and the expectation of Y 2

in the right hand side of (3.15). As before, without loss of generality, we assume yi0 = 0 for all

i ≥ 1. Noting that ρ−T
T = o(kT /T ) by Proposition A.1 in Phillips and Magdalinos (2007), it is

true that for every i ≥ 1,

E

[
1

ρTT kT

T∑
t=1

yi,t−1εit

]
= 0,

E

( 1

ρTT kT

T∑
t=1

yi,t−1εit

)2
 =

1

ρ2TT k2T

T∑
t=1

1− ρ
2(t−1)
T

1− ρ2T

=
1

ρ2TT k2T (1− ρ2T )

(
T − 1− ρ2TT

1− ρ2T

)
= o(1) +

1

k2T (1− ρ2T )
2

→ 1

4c2
, T → ∞,

E

[
−2c

(ρTT kT )
2

T∑
t=1

y2i,t−1

]
=

−2c

ρ2TT k2T

T∑
t=1

1− ρ
2(t−1)
T

1− ρ2T
= o(1) +

−2c

k2T (1− ρ2T )
2
→ − 1

2c
, T → ∞,

E [XY ] = 0, V ar(XY ) = E
[
(XY )2

]
=

1

4c2
, E[Y 2] = − 1

2c
.
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The proof is complete. �

§4 Simulations

In this section, we perform some experiments to see how well the finite-sample properties of

the LSE of the autoregressive coefficient ρ or ρT follow the asymptotic results in Section 3. We

generate the observations yit’s according to model (2.1). In the experiments, the cross-sectional

dimension is set at N = 300, the time-series dimension is also set at T = 300, and the number

of replications is set at 50, 000. In addition, all yi0’s are set at zero for simplicity. We take

ρ = 0.8 for the stationary case (corresponds to the result (3.1) in Theorem 3.1), take ρ = 1 for

unit root case (corresponds to the result (3.2) in Theorem 3.1), take ρ = 3 for the explosive

case (corresponds to the result (3.3) in Theorem 3.2), take ρT = 1− 1/T for the local to unity

case (corresponds to the result (3.12) in Theorem 3.3), take ρT = 1 − 1/T 0.8 for the mildly

integrated case (corresponds to the result (3.16) in Theorem 3.4), and take ρT = 1+1/T 0.8 for

the mildly explosive case (corresponds to the result (3.17) in Theorem 3.4).

Parts (a) and (b) of Figure 1 show the distributions of ρ̂ for Theorem 3.1, part (c) of Figure

1 shows the distribution of ρ̂ for Theorem 3.2, part (d) of Figure 1 shows the distribution of ρ̂T

for Theorem 3.3, and parts (e) and (f) of Figure 1 show the distributions of ρ̂T for Theorem

3.4. Obviously, Theorems 3.1-3.4 are all supported by Figure 1.

§5 Conclusions

In this article, we study the asymptotic properties of the least squares estimator of the

autoregressive coefficient ρ in the panel data AR(1) model. Unlike the univariate time series

case, we prove in this paper that the limiting distribution of the least squares estimator of ρ

is always normal for all ρ ∈ R, which is a standard distribution. Hence, this result is useful

for conducting further statistical inferences. As some applications, we apply our result to some

common used panel data AR(1) model, that is, stationary model, unit root model, explosive

model, local to unity model, mildly integrated model and mildly explosive model. Monte Carlo

simulations are then conducted to examine the finite-sample performance for the estimators.

Our theoretical findings are supported by the Monte Carlo simulations.
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(a) stationary case (b) unit root case

(c) explosive case (d) local to unity case

(e) mildly integrated case (f) mildly explosive case

Figure 1: The finite-sample distributions and the corresponding limiting distributions of ρ̂ or ρ̂T . The
solid lines represent the graphs when N = T = 300, and the dashed lines represent the graph when
N = T = ∞.
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