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A novel similarity measure between intuitionistic fuzzy
sets based on the mid points of transformed triangular
fuzzy numbers with applications to pattern recognition

and medical diagnosis

J Dhivyal” B Sridevi?

Abstract. Similarity measure is an essential tool to compare and determine the degree of
similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure
between intuitionistic fuzzy sets based on the mid points of transformed triangular fuzzy numbers
is proposed. The proposed similarity measure provides reasonable results not only for the sets
available in the literature but also gives very reasonable results, especially for fuzzy sets as well
as for most intuitionistic fuzzy sets. To provide supportive evidence, the proposed similarity
measure is tested on certain sets available in literature and is also applied to pattern recognition
and medical diagnosis problems. It is observed that the proposed similarity measure provides a

very intuitive quantification.

81 Introduction

Fuzzy sets (FSs) were introduced by Zadeh[24], as a generalization of crisp sets. Latter as
a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets (IFSs) was introduced by
Atanassov[1]. Intuitionistic fuzzy sets are characterized by two functions namely the degree of
membership and the degree of non-membership. IFSs have extensive applications to pattern
recognition [2, 4-10, 15, 20, 23], medical diagnosis [2, 4-10] and decision making [7, 14, 20]. In
particular the similarity measure of IFSs plays an important role in such fields.

Many similarity measures [2-5,8,12,14-18,20,23,25] have been presented in literature to deal
with similarity measure between fuzzy and IFSs. Chen and Randyanto[5] presented a similar-

ity measure between IFSs based on the medians of intervals, the Hausdorff distance, and the
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ratio of the uncertainty degrees of intuitionistic fuzzy values. Boran and Akay [2] presented a
biparametric similarity measure between IFSs. Chen and Chang [4] presented the similarity be-
tween IFSs based on transformation technique with applications to pattern recognition. Chen,
Cheng and Lan[8] presented the similarity measure between IFSs based on the centroid points
of the transformed fuzzy numbers and applied the measure to the pattern recognition prob-
lems. Hoang Nguyen[13] presented knowledge-based similarity/dissimilarity measure between
IFSs and apply the measure to the pattern recognition problem. The existing similarity mea-
sures [2-5,8,12,14-18,20,23,25] between IFSs adopts different concept with its own strengths and
weakness. For categorizing undemanding pairs of fuzzy numbers as either similar or dissimilar
all the measures work well. But in most demanding situations, most of the exisitng measures
fail to calculate the similarity measure correctly.

In this paper, we propose a new method to measure the degree of similarity between IFSs
based on the mid points of the transformed triangular fuzzy numbers and apply the proposed
similarity measure to deal with pattern recognition and medical diagnosis problems. The paper
is organized as follows. In Section 2, we briefly review the basic concepts of IFSs and properties
of similarity measures between IFSs. In Section 3, we briefly review the existing similarity
measures in literature. In Section 4, we analyse the drawback of the Sc¢, [8] similarity measure.
In Section 5, we propose a new similarity measure between IFSs and also proved its basic
properties. In Section 6, we study the performance of the proposed measure with the existing
similarity measures and use some examples to illustrate that the proposed similarity measure
between IFSs can overcome the drawbacks of the existing similarity measures. In Section 7,
the applications of the similarity measures in pattern recognition and medical diagnosis are

discussed. Finally, the conclusions are discussed in Section 8.

82 Preliminaries

This section briefly reviews some concepts of intuitionistic fuzzy sets [1] and basic properties

of similarity measures between IFSs.

Definition 2.1. [2/] Let A be a fuzzy set in the universe of discourse X = {x1,xa,....,xn}
defined as A = {< x;,pa(x;) > /xieX}, where the membership function pa : X — [0,1],
pa(zi)el0,1] and 1 <i <n.

Definition 2.2. [I/Let A be an intuitionistic fuzzy set in the universe of discourse X,
where X = {x1, 29, ..., xn}, A ={< x;, palz;),valx;) > /zieX}, pa: X = 0,1,vs : X —
[0,1], pa(x;)and va(z;) denote the degree of membership and the degree of non-membership of
element x; belonging to the intuitionistic fuzzy set A, respectively, pa(x;)e[0,1], va(z;)el0, 1],
0 < palx;)+valz;) <1 andl <i<mn. The degree of indeterminacy of element x; belonging
to the intuitionistic fuzzy set A is denoted by wa(x;) where ma(x;) = 1 — pa(z;) — va(z;),
ma(x;)el0,1] and 1 < i <mn.

Based on [11], the intuitionistic fuzzy value of element z; belonging to the intuitionistic fuzzy
set, A = {x;, pa(z;),va(z;) : z; € X} can be represented by (pa(x;),va(z;)),where 1 <i <n.
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Definition 2.3. [I/Let A and B be two IFSs in the universe of discourse X, where X =
{z1,29,....2n}. The IFS A is contained in the IFS B, denoted by A C B, if and only if
Va, € X,pa(z;) < pp(z;) and va(z;) > ve(x;), where 1 <i < n.

Definition 2.4. [13] IFS A is said to be most intuitionistic fuzzy set(MIFS) when pa(x;)=va(x;)
=0 for x;eX.

Definition 2.5. [12/Let A, B, C and D be IFSs defined in the universe of discourse X and let
S(A, B) denote the similarity measure between A and B. The following are the basic properties
to be satisfied by S(A, B):

(1) S(A, B) €0, 1].

(2) S(A,B) = S(B, A).

(8) S(A,B)=1 if and only if A=B.

(4) IfAC BCC, then S(A,C) < S(A,B) and S(A,C) < S(B,C).

The prime idea of defining an IFS as an extension of FS is to give equal importance to both
membership values and non-membership values. Accordingly the similarity measure defined for
the IFSs should also give equal priority for both membership values and the non-membership
values. Based on this a similarity measure should satisfy property (5).

(5) If | pa — B |>| e — pp | and | va —vp |>| ve — vp | then S(A, B) < S(C, D).

(6)If A, B" are two new IFS obtained by interchanging simultaneously both p and v of A and
B respectively, then for a similarity measure to be consistent S(A, B) = S(A",B").

83 [Existing similarity measures between IFSs

In this section, some of the existing measures that are relevant to the study of the pro-
posed similarity measure between IFSs are provided. Let X = {z1,zo,...,z,} be the uni-
verse of discourse. Let A and B be two IFSs in the universe of discourse X, where A =
{(xs, pal(x;),va(z;))/1 <i < n}and B = {(x;, pp(x;),ve(x;))/1 < i < n}. Let ma(x;) and
m(x;) be the degrees of indeterminacy or hesitation of element x; belonging to the TFSs A
and B respectively, where ma(x;) = 1 — pa(x;) — va(a;), mp(x;) = 1 — pp(z;) — ve(z;) and
1 <1< n.

Chen’s similarity measure S¢ [3]

> | pa(w) —va(w:) — (ps(x:) —ve(:)) |
So(A,B)=1-=4 o
Hong and Kim’s similarity measure Syx [14]

S ) = pn(es) |+ | vale) - va(e) |

SHK(A,B):I— i=l o
Li and Xu’s similarity measure Spx [18]
SLx(A,B)

ﬁ: | pa(z:) —va(zi) — (ps(zi) —ve(2i) | Xn: | pa(zi) — pe(@i) | + | (va(z:) — ve(z:)) |
=1 = in += In

Li similarity measure Spo [17]
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(na(zi) — pp(2:))* + (val(zi) — ve(z:))?
S1o(A,B) =1 -

Dengfeng and chuntain’s similarity measure Spc [12]

Z | Ya(zi) — ¥5(wi) |
Spc(A,B) =1— , where ¥4 (z;) =

I

pa(z) +1-— VA(l’i)‘

2
Mitchell’s similarity measure S [20]
> | pales) - ps(e)
Sm(A,B) = pu(A, B) ; P4, B) where p, (A, B) =1 -\ =2 - ,
> lva(z:) —ve(z:) P
pu(A,B) =1\ =L and 1 < p < oo.
n

Hung and Yang similarity measureSyy1, Spya, Suys [15]

Z max(| pa(zi) = pp(@i) ), | va(@:) —ve(zi) |)

Suy1(A,B)=1-— - ,
eSHY1(A,B)=1 _ —1 Sy1(A, B)
A,B) = AB)= ———— |
Suy2(A, B) T , Suys(A, B) 52— Suvi(A, B)
Ye’s similarity measure Sy [23]
Sy(AB) =LY HA(fEi)HB(iCi)+VA(fEi)VB(fEi)

n =\ pa(@i)? + va(e:)2y/ e (@) + ve(z:)?
Liang and Shi’s similarity measures Sps1, 5152, 5153 [16]

JZMNWWMMP Jiwmm+m<w
1 -7\ =L

Srsi1(A,B) = Srs2(A,B) = = - and
Srs3(A,B)=1-— Zn: wmqﬁm(xz))p ,where ¢, (z:) = | pra(x:) ; uB(zi) \’

¢ (i) = |1 —va(z:)—(1— VB(mz)) i  bsi(@:) = | mai(xs) ;mBl(wi) |’

mAl(;gi): ‘.U'A(xz)_; A( l) |7mA2(CUi): ‘ 1—Z/A(33i)2+m,4($i) |7

= | pa(wi) +1 = va(w:) |, ¢s2(xs),mp1(x;), mp2(x;) and mp(z;) are defined similarly.

~

ma(x;

1 () = | pa(@i) — pu(ei) |+ (1 —va(@)) = (1 —vp(zi)) |

I

2
o L pa@) = (A —va(@i) = (ps(i) + (1 - vs(=i) |
¢2(xi) 2
wa(zi) m(x;) wa(z:) mB(T)
= i‘n<z’ir>

)

2 2

Zhang and Yu’s similarity measure Szy [25]

Szyv(A,B) =1— Y W;(U; — I;) where W, € [0, 1] denotes the weight of element z; € X, > W, =1,
i=1

i=1

¢3(:) = max (

immmww%m:?%mew@WHmrwmHfmmewmm

I;
A= (ale).ma L — va@), B = (us(w0) ms, 1 — vo(a:)), "
m _ pa(@) +1—va(zi) and

2

C’%»-‘
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t— pualx; X
ﬂ 77’f/JfA(-'Ei)§t§mA7
ma — pa(z;)

pa(t) = %,Um;‘(mi) <t <1—va(z),

0 ,otherwise.
Chen and Randyanto’s similarity measure Scg [5]

S (M ([pa (@), 1 = val@s)], [ (@), 1 — va(x:)])

Scr(A,B)=|1-=L - x M,, where

S (M(ae), 1 - vae)], (s, 1 - vp(@)
M =1 -
o R e e in(ma (1), 75 () + 1
TA ZT; Alxi) —vpla; min(ma(x:), 7B(x;)) +
(rnaxm (20), 7 (20)) + )X<1 > )*(“rnaxw(xz-)m(xz-»ﬂ)
palxs) +1—va(xs)
! .

(1 —max(] pa(z:) — pp(w:) [, [ va(@:) —val@:) ), pale:) =
Boran Akay’s similarity measure Sp4 [2]

S54(4, B) = 1= {3 (gt (| s(a(@) = o (w0) = a(es) — va(ed) I +

| s(vaws) — vs (@) = (pa(ws) — ps (@) )}
Chen and Chang similarity measure Scc [4]

Scc(A,B) = Z[WZ x S(Ag;, Bz,;)],whereS(Aq,, By;,) = s — us,
1=1
ma(zi) + me(x:)

2

us = [fol | pa(Z) — ps(Z) | dZ] x [ML where the membership function

where rs = 1— | pa(z:) — ps(z:) | X[1 — ] and

1 ,z=pa(z) =1—-va(z),

1—va(x) —2 . e
1= ia(i) —va(ay - € al@), 1 —va(@)l

0 ,otherwise.

pa(Z) =

and z € Z = [0,1].
Chen, Cheng and Lan similarity measure Scor [8]
Sccr(A, B) = Z[W X S(Az;, Bz,)],

where S(Ami,l;;) _ [ 2(pale) — /JB(%‘)); (va(@i) —ve(2i)) | (1 _ ma(zi) ;WB(%)>
| 2(va(=zi) —vB(2i)) — (pa(zi) — ps(20)) | (WA(%‘) + 7TB($i)> .
3 2

233
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§4 Analyzing the drawbacks of the Chen, Cheng and Lan Sc¢y, [8]

similarity measure

Scer [8] has analysed that the similarity measure Sce [4] does not satisfy property (4) of
definition 2.5. Though Sccyr [8] overcomes this drawback, it fails to satisfy property (5) and
property (6) of definition 2.5, particularly when one of the set considered is MIFS.

For a similarity measure to be consistent, it should consider both the cardinality and the
differences that exists between pattern sets. This approximate quantification is very crucial,
when the similarity measure is to be applied to pattern matching in a ranking problem. Property
(5) and (6) states this condition. It is found that Sccy, [8] fails to satisfy this condition which
is illustrated in example 4.1 and example 4.2.

Example 4.1. Let A, B, C and D be four IFSs in the universe of discourse X = {x1}, where
A={<21,0.6,04 >}, B={<21,0,0>}, C={<121,0,0.87 >}, D ={<21,0.28,0.55 >}.

| pa(z1) — pp(z1) |= 0.6, | pe(z1) — pp(z1) [=0.28.

Therefore, | pa(z1) — pp(21) [>] pe(21) — pp(z1) |-

Also | va(z1) —vp(z1) |= 04, | ve(z1) —vp(z1) |= 0.32.

Therefore, | va(e1) — vp (1) 5] vo(e) — vp(a1) |

Let wy be the weight of element x1, where wy = 1.

1 2(0.6 — 0) — (0.4 — 0) | 041\ [2(04-0)—(0.6-0)] (0+1
S B =1 - (20800401 (|_0%1) _204=0-06-0)] (051

Scer(A, B) =wy x S(Aqa,, Bs,) = 0.8333.

S(Cey,Day) =1— 3 D)

~12(0.87 — 0.55) — (0 — 0.28) | (0.13 + 0.17)
3 2 '

| 2(0 — 0.28) — (0.87 — 0.55) | (1 013+ 0.17)

SCCL(C, D) =wi X S(Cxl,Dxl) :0.7047.

Sccr(A,B) > Sccor(C, D), which is contradictory to property (5) of definition 2.5.
As a consequence, when the similarity measure Sccr, [8] is applied in a ranking problem, it

would result in incorrect ordering of patterns. Table 2 discusses about this drawback in detail.

Example 4.2. Let A" and B" be the two IFSs obtained by interchanging the membership and
non-membership values of the IFSs A and B respectively.

Consider, A = {< 21,0.1,0 >}, B={< x1,0.2,0 >} then

A" ={<21,0,0.1 >}, B" = {< 21,0,0.2 >}.

Scc(A,B)= 0.9425, Scc (A", B") = 0.9575 = Scc(A, B) < Scc(A", B").

Scorn(A, B)= 0.9617, Sccr (A", B") = 0.9383 = Sccr(A,B) > Sccrn(A”, B).

which is contradictory to property (6) of definition 2.5.

Moreover, it is also found that Sccyr, [8] fails to discriminate the minute difference between
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very similar IFSs. This is illustrated in example 4.3.

Example 4.3. Consider A= {< 21,0,0 >}, B={<21,0.5,0.5 >}, C = {< 21,0.499,0.501 >}.
Here B and C are the two very similar IF'Ss.
So, intuitively Sccor (A, B) should be slightly different from Sccor (4, C).

In table 3, it is found that Sccr [8] fails to identify this minute difference and provides
Sccrn(A,B) = Sccr(A,C) = 0.8333, and the similarity value obtained is also unreasonable.

The values highlighted in the tables represent the incorrect results.

To overcome the drawbacks of Scc [4] and Scer [8], a new similarity measure between IFSs

is proposed.

85 A new similarity measure between Intuitionistic fuzzy sets

In this section, we propose a new similarity measure between IFSs A and B based on the mid
points of transformed triangular fuzzy numbers. Let A = {< z;, pa(z;), va(z;) > /1 <i < n}
be an IFS in the universe of discourse X, where X = {x1,2a,...,2,}. First, we propose the
transformation techniques between an intuitionistic fuzzy values < pa(x;),1 —va(z;) > and a
right-angled triangular fuzzy numbers A,,, where 1 < i < n. Let A;, = (pa(x;), pa(z;),1 —
va(z;)) be the transformed right-angled triangular fuzzy number in the universe of discourse
Z=[0,1], where 0 < pa(z;) <1 —wa(x;) <1.

The similarity degree S(A,,, B;,) between the intuitionistic fuzzy values (ua(z;), 1—va(x;))
and (up(x;),1 —vp(x;)) is calculated as follows:

(v Be) = 1= o) -vm(en) | (1= AELETRED) )y | (a2l mnle))
(0
pp(r) +1—vp(z;)
! |

where S(AI7,7B131) S [Oa 1]7 1/JA(331) = MA(:Ei) +; — VA(xi)v ’(/}B(:EZ) =

Ya(x;)and ¥p(z;) represents the mid points of the transformed triangular fuzzy numbers A,

and B,, respectively.

] ,ull‘fx‘.\.l wl,(:q] 1—v,(x) ap(x) wy(x) 1—vlx) 1 z

Figure 1: The transformed triangular fuzzy numbers A,, and B, of the intuition-

istic fuzzy values (ua(z;),1 —va(z;)) and (pp(x;),1 — vp(x;)) respectively.
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The proposed similarity measure Ssq(A, B) between the intuitionistic fuzzy sets A and B
n

is defined as Ss4(A4, B) = > (w; X S(Ay,, Bg,;)), where Sqgq(A, B) € [0,1], w; is the weight of
i=1

element x; € X,w; € [0,1], > w; = 1.
i=1

The similarity degree S(A,,, B,,) satisfies the following properties.
Property 1: 0 < S(A4;,,B,,;) < 1.

Proof.

(i) Assume that pa(z;) = ve(z;) = 1 and assume that pup(z;) = va(z;) = 0 then ma(x;) = 0,
m8(zi) =0, Ya(z;) =1 and ¥ (z;) = 0. Based on equation (4), we get S(Aq,, Bz,) = 0.

(ii)Assume that pa(z;) = ve(zi) = 0 and assume that pup(z;) = va(zi) = 1 then wa(z;) = 0,
me(zi) =0, Ya(xz;) =0 and ¢p(z;) = 1. Based on equation (4), we get S(Aq,;, Bz;) = 0.

(iii) Assume that (pa(zi),va(z:)) = (ue(xs),ve(2:)), then based on equation (4), we get S(Az,, Ba,) =
1.
From (i),(ii) and (iii), we get 0 < S(As;, Bs;) < 1.

Property 2: S(As,,Bz;) =1 if and only if A;, = B,,.
Proof.
(1)If S(As,, Bz;) =1, then based on equation (4), we get | ¥a(z;) — ¥p(z:) |= 0 and

(| Ya(z:) — () | — | mal(z:) — wB(z:) |)=0 or (w) =0.
Casel: When | ¢a(z;) — ¥5(z;s) |= 0 and (M) =0.

| L+ pa(wi) —va(zi) 1+ ps(zi) —ve(w:) = 0.

2 2
Then we get pa(x;) — pp(x:) = va(z:) — ve(z:).
Also wa(z;) = m(z;) =0,
we get pa(x;) = pup(x:) and va(z;) = vp(x;) = Az, = Ba,.

i

Case 2: When | ¥a(z;) — ¥5(z;) |= 0 and (| Ya(x:) — ¥s(x:) | — | ma(z:) — 76(zs) |)=0,
| L+ pa(@i) —va(xi) 14 ps(@i) —ve(@i) )
2 2 ’
Also, | —pa(xi) —va(xs) + ps(x:) + ve(xs
= pa(zi) = pp(w:) and va(zi) = vp(wi) = Az; = Bo,.

|=0 = pa(z:) — pB(w:) = va(z:) —ve(wi
)= | pa(@i) —va(zi) — pe(@i) + ve(wi) |

2 =0

(ii) Based on equation (4), we get

S Bu) = 1= | 9a(e:) = wa(es) | (1 - THELETAL) oy ) — g | (a2l L)

=1

From (i) and (ii) we conclude that S(As,, Bz,) = 1 if and only if A, = B,.
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Property 3: S(Az;, Be;) = S(Ba;s Ax;)-
Proof.
From equation (4), we see that

(s Bo) = 1= [ wa(os) = (o) | (1= PELETED) 0 () | (T2 7020 )
(

177m0m)+WAmn)47“WCH)7WA@”|(wB@m4+WAug)

=1— | Yp(x:) — a(zi) | 2

2
= S(Bl'mAwi)'

Property 4: If A C B C C, then S(A4;,Cy,;) < S(As,, Bs;) and S(Az;, Cy,) < S(Ba,, Ca,)-
Proof.

By definition 2.3, if A C B C C then pa(x;) < pup(x;:) < pe(x:) and va(z:) > ve(z:i) > ve(z:).
Hence [a(zi) — ¥ (@1)] = £ [(1a(e:) — () - ()=o) <0

Sinilacly [a(21) - ()] % 0 and [ () — de(o] <

whereas (w4 (z;) — mp(x;)) and (wa(z;) — wc(x;)) are either < 0 or > 0.

Hence four different cases occurs.
Case (i): When (ma(z;) — mB(x:))
To prove S(Az;, Bs;) — S(Az,, Cz,)

From equation (4),

S(Au, Bay) = 1+ [oa(es) — ¥ (a0) [1 _ ma@)

<0 and (ma(x;) — me(zi)) < 0= (rB(x;) — me(zi)) <0 or >0,
>0

+ w5 (x;)

] + [ra(z:i) — 7B (x;)] [M]

2 2
=1+ %(MA(:&) — pe(z:) +vp(w:) — VA(ZCi))] [MA(Ii) * 15 (2s) ; valzs) + VB(Ii)] + {ﬂA(mi) ; WB(xi)}
=1+ W) = ph () + vE (i) = va(@:) + (a(@i) — ps(@:))(vale:) + v (@)

+(wB(w:) —val(w:))(palz:) + pp(w:))] + { 5

Similarly
S(Az;, Coy) =1+ i[ui(«’ri) — g (@) + vE (i) = va(z:) + (palzi) — pe (i) (valz:) + vo(zi))
w4 (1) —W?J(%‘)]
2 )
Now S(Aq;, Bz;) = S(As;, Ca;) = i{[u%(l’i) — i (@i)] + VB (i) — v (2:)] + 2ua (@) s (i) — ve(zi)]

(e (@) —va(@i)(pa(wi) + po ()] + {

+2va(@i)lpc (@) — pe (@)} + %[W%(wz‘) — ()]

= (X +3%,

where X = [ (2) — 1% (20)] + VB (20) — v (20)] + 200 (00) 3 (21) — v ()] + 20 (20) [ (1) — 5 ()]
and Y = [n&(x:) — 75 (x:)].

When (75(z;) — mc(zi)) < 0 and by definition 2.3, the expressions as X and Y are all positive.
Therefore S(Az;, Be;) — S(Az;, Cs;) > 0 for (mp(zi) — me(z:)) < 0.

Now we prove S(Ag,;, Bz;) — S(Ax,,Cs;) > 0 for (wp(x;) — e (z:)) > 0.

i.e to prove iX + %Yl >0=X+2Y1 >0.

X+2Y1 = [ (i) = ph (w0)] + [VE (2:) —vé ()] +20a(2:) [ve (2:) —vo ()] +2va(z:) [po (i) — pe (2:)] +
2{(u& (i) = i (21)) + (W& (i) = v (21)) +2(up (1) — po (i) + 2('/3( i) —vo(wi)) +2(pe(zi)ve (i) —
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4(pp (i ) po (i )) +4(ve(z )* vo(z )) + 4(po(x )VC(sz‘) — puB(z:)ve(zi))

(ne(@i)—pp (@) Bue (2:)+3us (2:)+2va (@) =4+ (vo (wi) +ve (i) (vo (z:) —ve (i) +2pa (i) (v (2:)
—vo(@:) +4(ve(@:) —vo(@:)) + 4pc(@:)vo(z:) — pe(z:)ve ().
When (7p(z:) — wo(xi)) > 0 = (uo(@:) — pe(:)) = (v (2:) — vo(z:)).
X+2Y1 2 (va(w:) —ve (@) Buc (@) + 3us (2:) + 2va(w:) — 4] + (vo(z:) + va(
2pa(@i)(vB(2:) — vo(w:)) + 4(ve(zi) — ve(z:)) + 4(pe (zi)ve(z:) — pe(@i)ve(
= (vn(@:) — o (0 2psa (@) — o (25) + Bpic (25) + 2wa(2:) — v (w:) — (2]
> 0 [by definition 2.3].
Therefore S(Az,, Bz;) — S(Az;, Cx;) > 0 for (wp(x:) — me(x:))
Case (ii): When (wa(z;) — 7 (z:)) <0 and (ma(z:) — 7o (x:))

From equation (4),

S(As, Boy) = 1+ [oa(es) — o (a0) [1 -

xi))(ve(x:) — ve(w:)) +
z;))

>0.

> 0= (mB(x;) — mc(zi)) >0,

+7TB$1:|+ ] _7TB

=1+ i[ui(xl) — ph(x) + vE(zs) — vie) + (NA(%) pe (i) (valz:) + ve(zi))

+(ve(z:) —va(z:))(pa(z:) + pe(x:))] + { — 7rB T )}
Similarly,
S(Aay, Coy) = 1 [ (00) — () + 2 (w0) = VA(:) + (i) — o (@) (waws) + ve ()

(o) = vale)) (na(ed) + pea)] - [ TEE) ]
S(Aus, Bay) = S(Aui, Car) = (b () — (w0 + (@) — v @o)] + 2ua (el (w:) — volw)] +

2ua () e (1) — s ()]} + 5 (275 (@) — () — ()]

where X = [ (i) —ph (w)|+[vE (€)= (2:)]+2pa (2:) Vs (2:) —ve ()] +2va (2:) [pe (2:) — pp (2:)|Jand
Y = 275 (2:) — 75 (z:) — 7d (x)).

To prove S(Aq,, Bz;) — S(As,,Cs,) >0

That is to prove %X+%Y2 >0= X +2Y> >0.

X +2Ys = [ud (i) — ph (@) 4+ [VE (20) — v (z)]| 4 2pa (@) Ve (2:) —ve ()] +2va (i) [ue (z:) — ps ()] +
20275 (i) — mh (i) — w& (i)

> {[ud () — po(@)] + Wi (2:) — v&(w:)] + 2pa(@s) Ve () — vo(@:)] + 2va(z:)[pe (v:) — pe ()]} +
2[re (w:) — w5 ()]

= {[ (i) — pp(z)] + B (2:) — v&(@:)] + 2pa (@) v (2:) — vo(w:)] + 2va(z)pc (@) — ps(x:)]} +
2{ (e (i) — ph (@) + W& (@) — vE (i) + 2(pp (i) — po(@) + 2(pe (w)ve (v:) — ps(zi)ve(r:)) +
2(vp(wi) — ve(zi))}

= 3[ug (i) — ph(i)] + e (i) — v ()] + 2pal@i)vs () — vo(zi)] + 2va(zi)luc(zi) — ps(:)] +
App(@i) — po(@:) + 4(vp(i) — vo(ei)) + 4(pe (zive (@) — pe(zi)ve (i)
2 (pe (@) —ps (i) Bupo(w:)+3us (2:)+2va(z:) -4+ (vo (= )+VB($ N (ve (@) —ve(@:)+2pale:)ve(z:)

—veo(zi)] +4(ve(z:) —vo(zi) + 4ps (i) (vo (zi) — ve(@i)).

When (75(z:) — mc(z:)) > 0= pc(zi) — ps(w:) > ve(zi) — vo(w:),

X +2Y2 > (vB(@i) —veo(wi))Buc (@:) + 3ps (2:) + 2va(zi) — 4]+ (ve (@) + v (i) (vo (@) — ve(2i) +
2pa(@i)lve(z:i) —ve(z:)] + 4(vs (@) — ve (@) + 4ps (i) (vo (@) — ve(2:))
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= (vB(@i) —ve(w:))2pa(z:) — pp(x:) + 3pc(z:) + 2valz:) — vo(zi) — ve(@i)].
By definition 2.3, X + 2Y> > 0.
Hence S(Aq;, Bz;) — S(Az,;,Cs;) >
Case (iii): When (7a(z;) — 75 (z:)
From equation (4),

S Bu) = 1+ a0~ w0 [1 - LI (o) — s
=1+ i[u:ﬁ(mi) — ph (@) + v (x:) — va(e:) + (pale:) — ps (@) (vale:) + ve(z:))

Hm(a0) = va(e)ia(e) + ()] — | AL TEED ]

Similarly,
S(AzuCz,:)=1+%[u,24(xi)*u20(wi)+l%(x)*fo( i) + (palzi) — po(e:))wale:) +ve(wi))

Hoea) — vale)ale) + po ()] + | LT,

0.
) > 0 and (ma(es) — mo(en)) < 0= (ms(w:) - To(w:)) <0,
malx;) + 7mp(x;) wa(z:) + 75 (z)

) [tz ra],

I_|

[y

S(Az;, Ba,) — 8(As;, Co,) = < [pd (i) — ph(wi) + v () — vE () + 2pa(z:) (ve(z:) — vo(w:))+

(7% (i) + 7 (xi) — 27 ()]

— |

2wa () (pe (i) — pe(w:))] +
1 1

= ZX + §Y3a

where X = pZ(v;) — u%(v:) +vE (i) —

and Y = [ (z:) + 7 (xi) — 273 (24)].

To prove S(Azi,Bzi)fS( :,Cz;) >0,

That is to prove %X + 2Y3 2 0= X+2Y3 >0,
X+2Y3 [0 (i) = B ()] + [V (2:) = vE(x)] 4204 (20) [ve (2:) —vo (2i)] +2va (i) [po (2:) — ps ()] +

N |

vE (i) +2pa (i) (Ve (2:) — ve (2:) + 2va(a) (pe (@:) — ps (i)

2 (x:) + e (i) — 24 (1)

> {[uc(w ) — g (wi)] + VB (@) — vé ()] + 2pa (@) v (@) — vo(z:)] + 2va(z)pe (@) — ps ()]} +
2} ( i) = (w )]

= (o (i) — pp(xi) + (Vi (i) — v& (@) + 2ua(:)lvs (@) — vo(w:)] + 2va(w)lpo(z:) — ps(z:)] +
2((u () — p& (@) + Wi (@) — ve (i) — 2up (@:) + 2pc (2i) + 2 (w:)vs (2:) — 205 (2:) + 2v0(2:) —

2pe(z )VC(JE )
= [ub (i) — pd ()] + Vi (w:) — vé(2:)] + 2pa(zi)[vs(z:) — ve ()] + 2va(e:)uc () — pa ()] +
A(pc (i) — pe(@i) + 4ps(@)vs (@) — pe(@)ve (@) + 4ve (@) — ve(wi))

= (uB(@:i) — po(@i)) s (i) + po (@) — 2VA($:‘)+4VC(9M)—4]+3(VB(%)+VC($¢))(VB($¢)—VC(%'))+
2pa(zi) v (@) — vo(x:)] + 4(ve (i) — ve(@i)).

When (7p(z:) — 7o(xi)) < 0= pp(@:) — polw:) 2 vo(zi) —ve(wi),

X +2Ys > (ve(@i) —ve(@:))ps (i) + po(@i) — 2va(@:) + dve (@) — 4] + 3(vs (@) + vo(w:)) (ve (@) —
vo(wi)) + 2pa(:)[vs(x:) — vo(wi)] + 4(ve (2:) — vs(wi))

= (vB(z:) — ve(@i))[2pa(z:) — ps(xi) — po(:) + 2va(zi) — vo(z:) + 3ve(z:))].

When (ma(z:) — mc(2i) < 0= pa(zi) +va(@i) > po(:) +ve(z),

X +2Ys 2 (vB(@:) — vo(w:)) 200 (@) — pp(2:) — po (i) + 2vo (i) — ve (@) + 3vs ()]

= (vB(w:) —vo(w:))[pe(@i) — ps(xi) + vo(w:) + 3vs(xi)).

By definition 2.3, X + 2Y3 > 0.
Hence S(Aqz;, Bz;) — S(As,;, Cs;) >
Case (iv): When (ma(z;) — mB(x:)
To prove S(Aqz;, Bz;) — S(Az;, Ca;) >

0.
) >0 and (ma(x;) — me(zi)) > 0= (mB(z;) — e (zi)) < 0 or >0,
0.
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From equation (4),

S Be) = 1+ (o) = ()] [1 - THELETRED ] oy ) — | a2 Lm0 (2]
1 2

= U A ) — b () + v (1) — VA ) + (ua(es) — i (20)) (va (w) + vp (1))

Hma0) = va@)) (na(ei) + n(a0)] - AL TEED ]

Similarly, we have
S(Az;, Cry) = 1+ %[ui(fm) = pg (i) + vE (i) = V(@) + (nali) = po(@:)) (va(zi) + ve (@:))

Hvelw) = vale)) (o) + o)) - | TAE) ST,
S(Al'i,?Bzi) - S(Azirczi)

= i{[/fc(ﬂfi) — ()] + VB (2:) — vé ()] + 2pa(zs) [ve (z:) — vo(x:)] + 2va(z:) [we (@) — ps(z:)]} +
L,

o1

75 (xi) — 78 (xi)]

where X = [pd () — i (@0)] + [V (2:) = v& (@0)] + 2pa(20) Vs (2:) — vo (2:)] + 2va(@:) [pe (2:) — ps (21)]
and Y = [15(x:) — ma (2:)].

When (7g(z;) — mc(zi)) > 0 and by definition 2.3, the expressions as X and Y are all positive.
Therefore S(As;, Bz;) — S(Az;, Cz;) > 0 for (wp(x;) — me(xi)) > 0.

Now we prove S(Az,;, Bz;) — S(As,;,Cx,) > 0 for (rp(x;) — me(x:)) <0,

1 1
i.e to prove ZX+2Y >0=X+2Y;>0.

X +2Y5 = [ (0:) = i (we)] + [ (@) 2 ()] + 2414 (@) [vs () — v (@) 4+ 2va () (e (20) — s ()] +
(b (02) — 12 00) + (v (00) — 7502 4 i) o () 4 2s)— v (0:)) + ()

pe(zi)ve (2i)))

= [ (x) —pB ()| +[VE (€)= (2:)]+2pa () [vp (2:) —ve (2:)]+2va () [uc (2:) — s () +4(pe (1) —
s (i) +4(vo (@) —ve () +2[(0h (2:) — pé (2:) + (Vi (@) —vé (2:) +2(ps (@ VB(l‘z) po(zi)ve (z:))]
= [pe (i) —ph (@) + VB (2:) —vé (w)]+2pa (@) [ve (2:) —ve (z:)+2va (z:) [pe (2:) — s (2:)] +4(pe (2:) —
u(x:)) + 4(ve(w:) — ve(w:)) + 2[(us(z:) + ve(2:)? — (pe(x:) + ve(:))?]

= (v (wi)—ve (@) ve (i) +ve(zi)+2pa (i) —4)+(po (@) +ps (@) (po (@) —ps (2:))+2va (@) [pe (@) —
ps ()] + 4(po(zi) — pe(x:) + 2[(us (i) + ve(2:))? — (po (i) + vo(z:))?].

When (75 (%) — 7o (2i)) <0 = vp(w:) — vo(w:) > po(:) — ps(xi),

T x
X +2Y3 > (o (1) — s (@) s (@) + vo(ws) + 2alz) + po(@:) + ps () +20a (@),

By definition 2.3, X + 2Y4 > 0.

Hence S(Az,, Bz;) — S(Az,;,Cs;) > 0 Similarily, it could also be prove that S(As;,Cz;) < S(Bz,;,Cs;).

Corollary 1: If | pa(wi) — pp(wi) 2] po () — po(w) | and | va(z:) —ve(@:) 2] ve(zi) — vo(zi) |
then

| palei) — pp (i) +vp(zi) —valei) [2] po(zi) — po (@) + vp(2:) —ve(z:) | (4)
and

| (@) — palw:) +ve (@) —vale:) |2 po (@) — pe (@) + vp (@) —vo(z:) | - (6)
Proof.
To prove equations (5) and (6), we use the method of contradiction,

Suppose if | pa(zi) — up(xi) +ve(xi) — va(z:) |<| pe(z:) — po(@i) + vp(zi) — vo(xi) | then
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— | pe(w:) — po(w:) +vp(x:) — vo(zi) |
< (pa(zi) — pp(w:) +vp(2i) —va(wi)) <| pc (@) — po(z:) + vp(wi) —ve(wi) | . (7)

and suppose if | pp(2:) — pa(zi) +ve(wi) —va(@:) |<[ pp(w:) — po(xi) + vp(w:) — vo(z:) | then
— | up(@i) — po(z:) + vp(w:) — vo(z:) |

< (uB(®i) — pa(z:) +vp(wi) —va(wi)) <| pp(z:i) — pe(z:i) + vp(wi) —ve(zi) | . (8)

Given | pa(@i) — pp(wi) [=] po(@i) — po(xi) | and | va(z:) —vs(@:) [2| vo(w:) — vp(@i) |
=|ve(xi) —va(xi) 2| v (@) — vo(zi) |

pa(@s) — ps(x:) >| po(w:) — po (i) | (9)
pa(wi) — pe(ri) < — | po(w:) — po(w;) | (10)
and
ve (i) —va(zi) >| vp(x:) — vo(z:) | (11)
vp(zi) —va(zi) < — | vp(xi) — vo(w:) | - (12)

(9) + (A1) = pa(zi) — pe(:) + vB(®:) —va(z:) >| pe(z:i) — po (@) | + | vp(xi) — ve(z:) |
>| pe (i) — pp(w:) + vp(@i) — vo(w:) | .

which contradicts RHS of inequation (7),

—[l pe (@) — pp(x:) | + | vo(z:) —vo(z:) |]
— | pe(xi) — up(x:) + vp () —vo(z:) | -

(10) + (12) = pa(z:) — pp(z:) +ve(z:) — va(wi)

which contradicts LHS of inequation (7),
Therefore, | pa(z:i) — ps(xi) + ve(z:) — va(wi) 2| pe(@i) — pp(@i) + vo(z:) — ve(zi) | -
Similarly considering,
(9) + (12) = pp (i) — pal@:) +ve(w:) —va(@:) < (| po(@i) — po(@:) | + | vo(:) —vo(z) |
= —[l po(@:) = pe(@:) [+ | vp(@:) — ve(w:) ]
< = [ wp(@i) — po(wi) +vo(@i) —vo(wi) |

which contradicts LHS of inequation (8),

and

(10) + (11) = pp (i) — pa(®:) + ve(w:) — va(z:) 2| po(zi) — po(z:) | + | v (@) — vo(w:) |]
=| po(xi) — pe(

8
N
+
<
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8
N
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N
Q
~—~
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which contradicts RHS of inequation (8),
Therefore | pp(zi) — pa(z:) +vs(xi) —va(z:) 2] pp(2i) — po(z:) +vp(zi) —ve(w:) | .

Property 5:

If| pa(wi)—pp(@i) =] po (@) —pp (i) | and | va(zi) —vs(@:) |2| vo (@) —vp(w:) | then S(Ax;, Bx,) <
S(Cy,, Da).

Proof. S(As,, Baz,;) — S(Cs,, Dz,)

= (1= 10aw) — vaen) | (1= PELETEE) ) = (o | (P TR0 ))

= (1= 1ot — vote | (1= TEXEIETED) e - (g | (2SR ))

— pa(z:) +; —va(zi)  ps(x:) +; —vp(z;) | (1_%(1_ILA(-Ti)_VA(xi)'i‘l_ILB(Ii)_VB(wi)))_
1= o) = va(es) = (1 = pnes) = v(o)) | (501~ al) = va@) + 1= s = vae) ) +

| po(wi) +1—ve(@i) pp(r:) +1—vp(zi) |
2 2

(1 50 oo — velw) + 1= (e = vo(@)) +
1= (e = vel) = (1= unes) = vo(@)) | (501~ ko) - ve(e) + 1= up(w:) = vo(a) )

= = D ae0) =g () + v () —va (@) | (ualw)+ (o) +valen) +ve(@) = 5 | wnles) = o) +
() () | (2= (pale) + (@) + vale) +vs(@) + § | no(@) - polw) + vp(w:) — vo(w:)|

(Mc(xi)+uD($i)+VC($i)+VD($i))+% | up (i) — pe(w:) +vp (i) —ve (@) | (2= (pe(:) + pp (@) +
VC(OE{‘) +vp(xi)))

=~ lpa(@i) —pp(2i) +ve(e:) —va(z:) [ (pazi) + ps(zi) +vazi) +vs(zi)) = | pe(z:) — pale:) +
ve(zi) — va(zi) | -% | B (wi) = pale:) +ve(w:) —va(e:) | (pa(e:) + pp (@) +vale:) +ve(zi)+

i | pe(x:) — pp(x:) + vp(xi) —ve(z:) | (pe(z:) + po(xi) + ve(z:) + vp(xi))+ | po(w:) — pe(w:) +
vp(zi) — vo(w:) | *% | o (@i) — pe (@) + vp(@i) — ve(x:) | (po(z:) + pp(z:) + ve(z:) + vp(:))

= (= | pp(z:) - MA(fz‘) +vp(@i) —val(z:) | + | po(wi) - MC(ﬂcz‘l) +vp(zi) — vo(wi) +(pa(m:)+ps ()
tvazi) +vs(@))(5 | u (@) = pa(zi) +vs(@) —va(w) | = | pa(@:) — ps (@) +vs(:) —va(z) |
)+ (ne(@i) + po () + ve(z:) + VD(I’i))(i | po(zi) — pp(x:) + vp(m:) — ve(x:) | —

3 | () — o) + vb(es) — vo(es) |).

Here the absolute difference,

% | p(xs) — pa(zi) +ve(z:) —va(x;) | —i | pa(zi) — pe (i) + ve(z:) —va(x;) | is either <0 or >0
and

1 1 L
1 | we(xs) — pp(z:) + vp(x:) —ve(z:) | —3 | pp(xi) — pe(xs) +vp (i) — ve(xs) | is either < 0 or > 0.

Also either

pa(wi) + pp(xi) +va(z:) +ve(rs) < po(x:) + pp(x:) + ve(rs) + vp(x:)
(or)

pa(zs) + pp(xi) + va(z:) + ve(x:) > pe(xi) + pp(z:) + ve(x:) + vp(xi).

Case (i):
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Consider o | ju(rs) — (i) + va () — va(es) |~ | pales) — ps () + vs () - va(e) <0,
T noes) = po(es) + vp(es) — volws) | 5 | po(es) — po(w:) + vo (@) — vo(w:) <0

and pa(z:) + ps(wi) +va(e:) + ve(z:) < pe(®i) + pp(w:) +ve(xi) + vp(z:).

By using equation (6), S(Az,, Bsz;) — S(Cs,;, Ds;) <0,

Also for pa(xi) + pe(x:) + va(z:) +ve(wi) > po(r:) + po (i) + vo(z:) + vp(x:).

Again using equation (6), we have S(As,, Be;) — S(Ca,, Dz;) < 0.

Hence S(Az;, Bz;) — S(Cq;, Da;) < 0.

Case (ii):

Consider o | jus(rs) — (i) + va () — va(es) |~ | wales) — ps () + vs () — va(e) |2 0,

7 e (@) — po (@) +vp (@) = vo(@) | =5 | po(@:) — po(es) +vo(@:) - vo(w:) |2 0

and pa(z:) + ps(wi) +va(x:) + ve(z:) < pe(xi) + pp(w:) +ve(xi) + vp(z:).

S(ArivB%i) - S(Cﬂwaﬂci)

< (= (@) = () £ vs(@) —va(@) |+ o) = po(eg + (e —vo(w) |1+ ()
Fve(@) +vo (@) (5 | ps (@) — pales) +vi(es) — va@) |~ | pales) - po(w:) +ve(@) - va(e) |
)+ (pe(xi)+pp(z )+VC( )+VD(9%))(£ | ke (i) — pp (@i) +vp(z:) —ve(w:) | —% | o (@i) — pe(xi) +
vp(z;) —ve(wi) |)

| () ales) o) = va(ed) | (<14 oo+ mn(en) + v (o) + vp(a) ) + | o) -

uo(w)%( 9=vea) | (1= lne(e + un(e:) + vo(e) + vo(e) ) - (o) Hun (o) (o) +

2
vp(; |/~LA i) — B (@) +ve(xi) —va(@i) | — | pe(wi) — po(z:) + vp(xi) —ve(zi) |)
= ( 5 (e (@) + pp () +ve(z:) +vp(xs)) ) (= | we(2i) —palz:) +ve(z:) —va(z) | + | po(@:) —

pe (@ )+VD(%) ve (i) |)—i(NC(%‘)+MD($i)+VC($i)+VD(~’Ci))(| pa(w:i) —ps(@i)+ve(z:) —va(z:) |
— | pe(@i) — po(@:) +vo(zi) —ve(zi) |). .
Since 0 < po(zi) + pp () + ve(xs) + vp(z;) <2, 1 — §(uc( x;) + po(wi) +ve(z:) + vp(z:) > 0.

Hence by using equations (5) and (6), we have S(Az,, Be;) — S(Ca;, Dz;) < 0.

When pa(z:) + ps(xi) + va(@:) + ve(w:) 2 po(:) + po(w:) + vo(x:) + vp(w:).

S(ATHBIi) - S(CzivDIi)

< (= | pe(zi) — MA(iCi) +ve(x:) —va(z:) | + | pp(z:) — MC(wil) +vp(®:) — vo(w:) |)+(pwa () +us ()
+va(wi) + VB(xi))(E | np(w:) — pa(e:) +ve(w:) —va(e:) | —1 | a(z:) — ps(wi) +vp(z:) — va(w:) |

)+ (ra(z:) + p(w:) +va(z:) + VB(fEi))(i | (i) — pp(zs) + vp () — vo(z:) |

5 | in(@) = poles) + vo () — ve(a:) )

| () = eale) + vo(es) = wa(os) | (<1 Gale) + oo+ valen) + vn(a) ) + | o) -

pe (o) vp(@) =) | (1= na(en) + 1m0 + vae) +ve(@0) ) = Hra o) i (@) +vaten) +

vp (@) (| palz:) — pe(z:) +ve(z:) —va(a:) | — | po (@) — pp (@) + vp(z:) — vo(z:) |)

1- %(MA(%) + pp(wi) +va(w:) + VB(SEi))) (= | ps(z:) = pa(zi) +vp (@) —va(e:) | + | pp(2:) —
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pe(@s)+vp(z:) —vo(w:) ) — 7 (pale) +ps () +va(@) +ve(@)(| pale) —ps () +ve () —valz:) |
— | po(wi) = po(xi) +vp (@) — ve(w:) |). .

Since 0 < pa(@i) + pp(zi) + valz:) +vs(z:) <2, 1= 5 (palzi) + (i) +va(e:) +vs(z:) 20,
Hence from the equations (5) and (6), we have S(As;, Bz;) — S(Ca;, Ds,;) < 0.

v»&\»—l

Case (iii):

Consider 1 | () — pa(wi) + vp () = va(es) | = | pales) = pn (@) +vo () - va(e) <0,

Tl ol — pp(:) + v(e:) — volw) |~ | up(w:) — pe(@) +vo(z:) - vo(ws) [2 0

and pa(z:) + ps(wi) + va(z:) + ve(z:) > pe(xi) + po(z:) + vo(xi) + vp(x:).

S(Al'i,?Bzi) - S(CIMD%')

< (= [ ps(zi) - MA(mz‘l) +vp(zi) —va(zi) | + | po(z:) — po (@ )1+ vp(z:i) — vo(ws) |)+(palz:)+us(z:)

tvale:) +ve (@) (=7 | pal@) —ps(zi) +ve(@) —va(@i) | +5 | ps(i) = palzi) +ve(@) —va(z) |

)+ (MA(JJz)+MB(%)+VA(%)+VB(%))(% \ MC(wi)—uD(wiHVD(wz) ve(wi) | —% | up () — pe (i) +
vp(xi) — VC( i) 1)
(1 = 5(pa(zs) + pp(z:) +va(z:) + VB(wi))) (= I pe(x:) — pa(zi) +vp(xi) —valm:) | + | po(xi) —
pe (x

i) +vp(zi)—ve(zi) |)+2(MA(mi)+MB(l“i)+VA(l"i)+VB(Ii))(— | pa(@i)—ps(@i)+ve(zi)—va(z:) |
+ | pe(z) — MD(%) +vp(z:i) —ve(zi) |-
Since 0 < pa(xi) + pa(x) +va(z:) +ve(w:) <2, 1 — = (pal@:) + ps(x:) + va(es) + vs(x:)) > 0,
From equations (5) and (6), we get S(As,, Bs;) — S(Ca;, Da;) < 0.

l\')\»—l

When pa(zi) + ps(zi) + va(@i) + ve(zi) < po(z:) + pp(z:) + ve(z:) + vp(z:)

S(AxNBxi) - S(Cwaﬂci)

= (= | ps(z:) — HA(iﬂi) +vp(xi) —va(z:) | + | po(z:) — po(e:) +vp (i) — ve(z:) [)+H(pa (@) +ps(z:)
tra(w) +ve(@))(5 | pe(i) = pazi) +ve(zi) —va(z) |

—i | wa(wi) — pe(xi) +ve(wi) —val(z:) |) + (pe (i) + po(z:) + ve(z:) + vp(w:))

1 1
1 | #o(@i) = pp (@) +vp(zi) —ve (@) | =5 | up(@i) — po(w) +vp(@:) —ve(w:) |>
= (T1 + 2T») + yT3,
where,
Ty = (= | pB(@i) — pa(@i) + ve(xi) —va(xi) | + | po(@i) — po(@i) + vp (@) —ve(z:) |) < 0.
By Corollary 1,T1¢[—1,0],
1 1
T> = 5 | pp(i) = pa(w:) +vs (@) —va(z:) | =7 | pa(e:) — ps (@) +ve(z:) —valz:) |
By the case considered, T> < 0, T2¢[—0.25, 0],
1 1
Ts = | no(@:) = po (i) +vp (@) —ve(w) | =5 | wo(i) — po(zi) +vp (@) —ve(zi) | .
By the case considered, T3 > 0, T3¢0, 0.25],
z = pa(z:i) + ps(@i) + va(zi) + ve(zi)e[0, 2],
y = po(w:) + pp (@) + vo(w:) + vp(wi)el0,2].
To prove | Th + 27> |> yT3 and T1 + 1> < 0,

Ty + 2Te[—1,0] + 2[—0.25, 0]
e[~1 - 0.252,0],
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Therefore Ty + 1> < 0.
Since by case considered = < y = 0.25z < 0.25y = 14 0.25z > 0.25y =| T1 + 21> |> yTs.
Hence S(Aqz;, Bz;) — S(Cz;y Do) < 0.

Case (iv):

Consider % | ps(x:i) — palz:) + ve(w) — va(w:) | —i | pa(z:) — ps(@i) + ve(z:) — va(zi) [>

0, 3 | noles) = uoles) + wp(w:) — ve(@) | —3 | pp(@) - pe(w:) + vo(@:) - vo(z:) |< 0 and
pa(x:) + pp(x:) +va(e:) +ve(x:) < po(r:) + uD(xl) +ve(x:i) + vp(xi).

S(Az,;, Bz;) — S(Cz;, Dz;)

< (= uB(wi)—MA(ifz‘)JrVB(wi)—VA(%') | + | MD(%)—Mc(wi)-&VD(l’i)—VC(ﬂfi) D)+ (e (@i)+pp (@) +
vo(ws) +vp(@i)(=7 | pales) — (@) + v (@) —va(zi) | +5 | ps(@) — pawi) +ve(zi) —va(e) |
)+ (ke (sz)JrﬂD(%HVC(sz)+VD(%))(3 | MC(%’)*/LD(fEi)JrVD(ﬂUi)*VC(iCi) | *% | o (i) — po(@i) +
vp(wi) — Vc (i) 1)

1- Mc x;) + pp(2i) + vo(w:) + VD(%))) (= | uB(2:i) — palw:) +ve(z:) —va(z:) | + | po(w:) —

pre (i )+VD(I1) v (@:) )4+ (o) +un (@) +ve (@) +vn (@) (— | pala)—ps (@) +ve(e) —va(z) |
+ | pe(xi) — po(w:) +vp(@:) —ve(w:) | - .

Since 0 < po(x:) + pp(x:) +ve(x:) +vp(xi) < 2,1 — - (pe(x:) + pp(x:) + ve(x:) + vp(z:) > 0.
From equations (5) and (6), we get S(Az,, Be;) — S(Cs;, Dz;) < 0.

When pa(x:) + pp(®i) +va(z:) +ve(z:) > po(x:) + po(x:) +ve(z:) +vp ().
As discussed in case (iii),

S(A%,le) — S(Cz“Dzl) =T + xT> +yT3.

By Corollary 1, The[—1,0].
By the case considered, T> > 0, T2€[0,0.5] and T35 < 0, T3¢[—0.5,0].
To prove | Th + yT3 |> xT and T1 + yT3 < 0.

Ty + yTse[—1,0] + y[—0.5, 0]
e[-1 - 0.5y,0].

Therefore T1 4+ y13 < 0.

Since by case considered = > y = 0.5z > 0.5y = 1+ 0.5y > 0.5z =| T1 + yT5 |> zT>.

Hence S(Az;, Bz;) — S(Cq;, Da;) < 0.

Property 6: If A7, B, are two new IF'S obtained by interchanging simultaneously both u., and v,
of A and B, then for a similarity measure to be consistent S(A.,, Be;) = S(A%,, Bx,).

Proof. Let A = {< zs, pa(xi),va(x;) > /zieX} and B = {< zy, up(x;),ve(xs) > /rieX}. and let
A", B" are two new IFS obtained by interchanging simultaneously both s, and v, of A and B.
That is, A" = {< z;,va(zi), pa(zi) > /xieX} and B" = {< zj,ve(x;), pB(xs) > [TieX}.

Then, we get ma(zi) = 1 — pa(zi) —va(z:)) =1 —va(zi) — pa(x;) = mar(x;) and

mp(wi) =1 — ps(zi) —ve(w:) = 1 —ve(zi) — pp(z:) = 7B (T0).

Also [ Ya(@i) = ¥p(zi) | = [ Yar(zi) = Ypr(zi) |-
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Based on equation (4), we have

S(Aq,, Ba,)
— 1= (aa) — vn(e) | (1= TAELETEED)  ) - g | (AL TR
=1— | tar(zi) — ¥Br(zi) | (1 - Mr(mi);mr(%)) — | mar(z:) — wpr (i) | <7TAT(901') ';WBT(W))

= S(A%,, B:,),which completes the proof.

Similarly, it is also verified that Sgq(A, B) satisfies the above six properties.

86 Comparative study towards the existing similarity measures

In this section, to examine the performance of the proposed similarity measure on precision
and discriminatory ability, a comparative study is conducted on different sets used in the
literature. Let A, B and C be three intuitionistic fuzzy sets in the universe of discourse. Table
1 and table 4 adopted from [23,8] are used to compare the proposed similarity measure Sgq
with the existing similarity measures [2-5,8,12,14-18,20,23,25]. In table 1, six different patterns,
case 1 to case 6 are taken and the results obtained by [2-5,8,12,14-18,20,23,25] and Sy4 are
listed. It is seen that the proposed similarity measure Ssq can overcome the drawbacks of
getting the unreasonable results of the existing measures Sc[3], Spx[14], Srx[18], SLo[l17],
Spcl12], Spr[20], Spsi1[16], Sps2[16], Srss[16], Sry1[15], Sav2[15], Say3[15], Sy [23], Szyv[25],
Scrl5],SB4[2], Sccl4] and Scer[8]. The values highlighted in table 1 and table 4 denotes
unreasonable results, "N/A” denotes it cannot calculate the degree of similarity due to ”division
by zero problems”.

For table 1 to table 7, we take p=1 for Spc [12], Sar [20], Srs1 [16], Srs2 [16], Srss [16]
and w1 = 1 for SLSS [16], SZY [25], SCC [4], SCCL [8] and Ssd~

Table 1: A comparison of the results of the proposed similarity measure S,; with

the existing similarity measures for different sets of IFSs adopted from [23]

Similarity Case 1: Case 2: Case 3: Case 4: Case 5: Case 6:
measures A={(x:0.3,0.3)} | A={(x:0.3,0.4)} | A={(x:0.6,0.4)} | A={(x:0.5,0.5)} | A={(x:0.4,0.2)} A={(x:0, 0.87)}
B={(x:0.4,0.4)} B={(x:0.4,0.3)} B={(x:0,0)} B={(x:0,0)} B={(x:0.5,0.3)} | B={(x:0.28,0.55)}
Scl3] 1 0.9 0.9 1 1 0.7
S b i [14] 0.9 0.9 0.5 0.5 0.9 0.698
St x [18] 0.95 0.9 0.7 0.75 0.95 0.6993
S1oll7] 0.9 0.9 0.4901 0.5 0.9 0.7
Spcll2] 1 0.9 0.9 1 1 0.7
S ar[20] 0.9 0.9 0.5 0.5 0.9 0.7
S1,51[16] 0.9 0.9 0.5 0.5 0.9 0.7
S1 g2016] 0.95 0.9 0.75 0.75 0.95 0.7
S1,53[16] 0.9333 0.9333 0.6333 0.6667 0.9333 0.7933
Sy 1(15] 0.9 0.9 0.4 0.5 0.9 0.68
Sy 2[15] 0.8495 0.8495 0.2862 0.3775 0.8495 0.5668
Sy 3[15] 0.8182 0.8182 0.25 0.3333 0.8182 0.5152
Sy [23] 1 0.96 N/A N/A 0.9971 0.8912
S 7y [25] 0.9 0.8167 N/A N/A 0.9 0.626
Scrl5] 0.9857 0.9 0.65 0.75 0.9857 0.6993
Spal2l 0.967 0.9 0.8333 0.8333 0.9667 0.7
Scc 4] 0.9225 0.88 0.45 0.5 0.9225 0.7395
Sccorl8l 0.9667 0.9 0.8333 0.8333 0.9667 0.7047
S.d 0.94 0.93 0.45 0.5 0.94 0.739
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From table 1, it is also seen that when one of the sets is MIFS as in case 3 and case 4,

Spal2],Sccor[8] gives unreasonable results. Few more such pattern sets are taken in table 5 to

validate the above reasoning.
Due to failure of property (5) for Sccyr [8] as discussed in section 4, it is found from table

2, that the ranking provided by Scer [8] is incorrect. Whereas, Sce [4] and Sgq gives correct

ranking.

Table 2: Ranking of pattern sets taken from table 1.

Ranking I II IIT v \%
Sccl4] case 1 and case 5 case 2 case 6 case 3 case 4
Sccorl8] case 1 and case 5 case 2 case 3 and case 4 | case 6

Ssd case 1 and case 5 case 2 case 6 case 3 case 4

As discussed in example 4.3, table 3 deals with similarity measure for very similar IFSs.
Here B and C are the two very similar IFSs. So, intuitively S(A, B) should be slightly different
from S(A,C). It is found that Sy, [8] fails to discriminate the minute difference between very

similar IF'Ss.

Table 3: Comparison of similarity measures for very similar IFSs

Similarity A = {(z,0,0} A = {(z,0,0} B = {(x,0.5,0.5}
measures B = {(z,0.5,0.5} | C = {(«,0.499,0.501} | C = {(z,0.499,0.501}
Scc 4] 0.5 0.5005 0.999
Scer [8] 0.8333 0.8333 0.999
Ssd 0.5 0.4995 0.999

As discussed in example 4.2, it is noted from table 4, for the IFSs in case 3, case 4 and
case 6, case 7; the similarity measures Scc[4] and Scor[8] fails to satisfy the property (6) of
definition 2.5. It is seen that the few other existing measures satisfy property 6 but the results
provided by them are unacceptable. Table 4 highlights the unreasonable results.
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Table 4: A comparison of the proposed similarity measure S;; with the existing
Similarity measures [8](p=1 in Spc, SM, SLSl, SLSQ and SLS?)? w1 = Wy = W3 = 1/3 in
Srs3,Szy, Scoy, Sccr, and Ssa)

Similarity | Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
S (3] 0.5 0.5 0.95 0.95 0.65 0.7 0.7
S b ¢ [14] 0.5 0.5 0.95 0.95 0.6 0.7 0.7
St x [18] 0.5 0.5 0.95 0.95 0.625 0.7 0.7
S1,oll7] 0.2929 0.2929 0.9293 0.9293 0.4343 | 0.5757 | 0.5757
Spcll2] 0.5 0.2929 0.7764 0.7764 0.3675 | 0.4523 | 0.4523
Sz [20] 0.5 0.5 0.8419 0.8419 0.5528 0.6127 0.6127
S g1116] 0.5 0.2929 0.7764 0.7764 0.3675 | 0.4523 | 0.4523
Sr52[16] 0.5 0.3386 0.7764 0.7764 0.3482 | 0.4084 | 0.4084
S1 g316] 0.5 o 0.6127 0.6127 N/A 0.0513 | 0.0513
Sy 1([15] o 5] 0.9 0.9 0.2 0.4 0.4
Sy 2[15] 0 0 0.8495 0.8495 0.1289 | 0.2862 | 0.2862
Sy 3[15] o o N/A N/A N/A N/A N/A
Sy [23] N/A N/A 1 1 1 0.1806 | 0.1806
S 7y [25] N/A 0.5 N/A N/A N/A 0.6225 0.6225
ScrI5] 0.25 0.2343 | 0.3882 | 0.3882 | 0.2556 | 0.3654 | 0.3654
Spal2] 0.5 0.2929 0.7764 0.7764 0.3675 | 0.4523 | 0.4523
Sccol4] 0.25 0.75 0.9425 | 0.9575 0.8 0.91 0.67
Sccrl8l 0.5 0.5 0.9617 | 0.9383 0.6 0.74 0.66
S.q 0.25 0.25 0.9075 0.9075 0.4 0.61 0.61

Case 1: A=(x:1,0),B=(x:0,0),Case2:A=(x:0,1),B=(x:0,0),Case3:A=(x:0.1,0),B=(x:0.2,0),
Case 4:A=(x:0,0.1),B=(x:0,0.2) ,Case 5: A=(x:0,0.1), B=(x:0,0.9),
Case 6:A=(x:0.2,0.8) , B=(x:0.2,0.2),Case 7:A=(x:0.8,0.2) , B=(x:0.2,0.2).

It is noted that Scc[4] concentrates only on the absolute difference of the membership val-

ues and not on the non-membership values. This drawback of Scc[4] is discussed in table 5
and table 6.

To further validate the argument with the MIF'S table 5, lists five different sets. It is noted
that case 3 and case 4 are two different sets with different membership and non-membership
values but Sccr[8] provides same similarity measure and at the same time gives very high
similairty value. Also Sc¢[4] provides unreasonable results for case 1 and case 2.

Table 5: A comparison of S;; with the existing similarity measure Scc [4], Scor [8]
for the sets A as FS and B as MIFS

Cases Set Scc[4] SCCL[S] Ssd
1 A= {(z,0.1,0.9)}, B = {(z,0,0)} 0.7 0.6 0.3
2 A= {(2,0.2,0.8)}, B = {(«,0,0)} 0.65 0.7 0.35
3 A= {(z,0.5,0.5)}, B = {(z,0,0)} 0.5 0.833 0.5
4 A= {(2,04,0.6)}, B={(x,0,0)} 0.55 0.833 0.45
5 A= {(z,0.7,0.3)}, B = {(z,0,0)} 0.4 0.8 0.4

Table 6: A comparison of the IFSs A and B with pus = up

Sets Sccl4] Sccr(8] Ssd
A={(z,0,0.)}, B = {(,0,0.9)} 0.8 0.6 04
A={(z,0.2,08)},B={(z,02,02)7} | 091 0.74 | 0.61

From table 1 to table 6, we see that the proposed similarity measure Sgq can overcome the draw-
backs of the existing similarity measures Sc¢[3], Spx[14], Spx[18], SLo[l7], Spc[12], Sar[20],
Srs1[16], Sps2(16], Srs3[16], Suy1[15], Suy2[15], Suys[15], Sy[23], Szv[25], Scrl5],SBA[2],
Sccl4] and Scer[8].
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87 Applications

In this section, we apply the proposed similarity measure between intuitionistic fuzzy sets

to deal with pattern recognition problems and medical diagnosis problems adopted from [23].

Example 7.1. Let us consider three known patterns Py, P and Ps represented by the IFSs in
the universe of discourse X, respectively, where X = {x1,xo, 23}, shown as follows:

P, ={(x1,1,0),(x2,0.8,0), (x3,0.7,0.1) },

Py, = {(21,0.8,0.1), (z2,1,0), (z3,0.9,0)},

P; = {(21,0.6,0.2), (z2,0.8,0), (x3,1,0)}.

We have to classify an unknown pattern represented by an IFS Q, into one of the pattern Py,
Py, P3 shown as follows: @ = {(z1,0.5,0.3), (22,0.6,0.2), (x3,0.8,0.1) }.

From table 7, we can see that the similarity measures [2-5,8,12,14-18,20,23] in literature and the
proposed similarity measure Ssq classified the unknown pattern represented by an intuitionistic
fuzzy set Q in to the pattern Ps. Therefore, the unknown pattern represented by an IFS @, is
classified in to the pattern Ps. Fxcept the measure Szy [25] all the existing measures in the
literature classify the result in to the pattern P3. The values highlighted denotes unreasonable
results, "N/A” denotes it cannot calculate the degree of similarity due to "the division by zero

problem”

Table 7: A comparison of S;; with the ones of the existing similarity measures for

Example 7.1

Similarity measures | S(C1,Q) | S(C2,Q) | S(Cs,Q) Classification result

Sc(3] 0.7833 0.7833 0.85 Py
SH([14] 0.7833 0.7833 0.85 Ps
Srx|[18] 0.7833 0.7833 0.85 Py
SLo(17] 0.7323 0.7585 0.8419 Ps
Spcl12] 0.7833 0.7833 0.85 Py
S [20] 0.7833 0.7833 0.85 Ps
Srs1[16] 0.7833 0.7833 0.85 P;
Sr.s2[16] 0.7833 0.7833 0.85 Py
Srs3[16] 0.8389 0.8389 0.8944 Py
SHy1[15] 0.7333 0.7333 0.8333 Py
SHy2(15] 0.6297 0.6297 0.7571 Ps
SHy3[15] 0.5789 0.5789 0.7143 Py
Sy [23] 0.9353 0.9519 0.9724 Ps

Szvy[25] N/A N/A N/A cannot be determined
Scr[5] 0.7591 0.7699 0.8471 Ps
Spal2] 0.7833 0.7833 0.85 Py
Sccl4] 0.7467 0.7508 0.8325 P
Sccwrl8] 0.7706 0.7710 0.845 Ps
Ssa 0.8008 0.7975 0.8708 Ps

Example 7.2. Let X = {z1(Temperature), z2(Headache), zs(StomachPain),x4(Cough),
z5(ChestPain)} be a set of symptoms.

Consider a set Q = {Q1(ViralFever), Q2(Malaria), Qs(Typhoid), Q4(StomachProblem),
Q5(ChestProblem)} of diagnosis,
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where the elements Q1(ViralFever), Q2(Malaria), Qs(Typhoid), Q4(StomachProblem) and
Q5(ChestProblem) in @ are represented by the intuitionistic fuzzy sets in the universe of dis-
course X, shown as follows:

Q1 (ViralFever) = {(z1,0.4,0), (z2,0.3,0.5), (3,0.1,0.7), (x4, 0.4, 0.3), (5,0.1,0.7) }

Q2(Malaria) = {(z1,0.7,0), (z2,0.2,0.6), (z3,0,0.9), (24,0.7,0), (z5,0.1,0.8) }

Qs(Typhoid) = {(z1,0.3,0.3), (z2,0.6,0.1), (x3,0.2,0.7), (x4,0.2,0.6), (x5, 0.1,0.9)}
Q4(StomachProblem) = {(z1,0.1,0.7), (x2,0.2,0.4), (x3,0.8,0), (z4,0.2,0.7), (x5,0.2,0.7) },
Qs5(ChestProblem) = {(21,0.1,0.8), (x2, 0, 0.8), (x3,0.2,0.8), (x4, 0.2,0.8), (z5,0.8,0.1)}

Assume that a patient with respect to all the symptoms can be represented by the following
intuitionistic fuzzy set:
P(Patient) = {(z1,0.8,0.1), (22,0.6,0.1), (x3,0.2,0.8), (24,0.6,0.1), (x5,0.1,0.6) }.

We want to classify the patient P(Patient) with respect to all the symptoms, represented by
an intuitionistic fuzzy set, into one of the diagnosis Q1(ViralFever), Q2(Malaria), Qs(Typhoid),
Q4(StomachProblem)andQs(ChestProblem) . Then based on equation (4), we can get
Ssa(P(Patient), Q1(ViralFever)) = 0.8435,

Ssa(P(Patient), Q2(Malaria)) = 0.8315,

Ssa(P(Patient), Qs(Typhoid)) = 0.8075,

Ssa(P(Patient), Q4(StomachProblem)) = 0.6260,

Ssa(P(Patient), Qs(ChestProblem)) = 0.5650.

Amonyg all the values Ssq(P(Patient), Q1 (Viral Fever)) is largest. Hence the patient P(Patient)

with respect to all the symptoms is classified into the diagnosis Q1(ViralFever). This result

I

da(P
da(P

coincides with the exristing measures.

88 Conclusion

In this paper, a new similarity measure between intuitionistic fuzzy sets based on the mid
points of the transformed triangular fuzzy numbers is defined for identifying the similarity
between intuitionistic fuzzy sets. Several novel measures are available in literature to access the
similarity of intuitionistic fuzzy sets but the proposed measure correlates better than the other
measures. The proposed similarity measure deals effectively with some demanding situations.
The experimental results discussed in tables 1-7 clearly indicates that the proposed similarity
measure satisfies the basic properties, as well overcome the drawbacks of the existing similarity
measures. In the illumination of this study, the proposed similarity measure can be effectively

used in real applications of decision making, medical diagnosis and pattern recognition.
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