
Appl. Math. J. Chinese Univ.
2019, 34(4): 379-392

Characterizations of product Hardy space associated to

Schrödinger operators

ZHAO Kai* LIU Su-ying JIANG Xiu-tian

Abstract. Let L1 and L2 be the Schrödinger operators on Rn and Rm, respectively. By using

different maximal functions and Littlewood-Paley g function on distinct variables, in this paper,

some characterizations for functions in the product Hardy space H1
L1,L2

(Rn × Rm) associated

to operators L1 and L2 are obtained.

§1 Introduction

It is well known that modern harmonic analysis played a very important role in partial

differential equations. The theories of function spaces constitute the most of harmonic analy-

sis. Thus, the characterizations of function spaces are very critical in harmonic analysis. For

example, the classical Hardy spaces on Rn can be equivalently characterized via, such as, max-

imal functions, Lusin-area function, Littlewood-Paley g function, and atoms [7, 8, 11, 21, 32],

etc. The product Hardy spaces are the Hardy spaces on product domains, which were first

introduced by Malliavin and Malliavin [26], and Gundy and Stein [15]. Then, the properties

of these product spaces have been studied by Chang and Fefferman [3, 5]. Other results for

product spaces can be seen in [4, 6, 7, 12, 13, 23, 30]. We know that, the product Hardy space

H1(Rn × Rm) is also characterized in terms of the area function, maximal functions, atoms,

and Riesz transforms [3, 5, 15], etc.

In 2011, Li, Song and Tan [22] studied some new characterizations of the Hardy space

H1 on Euclidean product spaces Rn × Rm using different norms on distinct variables. They

considered non-tangential maximal function and the Littlewood-Paley square function, as well

as vertical maximal function, and obtained some characterizations of the product Hardy space

H1(Rn × Rm) as follows.
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Proposition 1.1 ( [22]).

H1(Rn × Rm) ≃ H1
N ,S(Rn × Rm) ≃ H1

S,N (Rn × Rm)

≃ H1
N ,g(Rn × Rm) ≃ H1

g,N (Rn × Rm) ≃ H1
+,S(Rn × Rm)

≃ H1
+,g(Rn × Rm) ≃ H1

S,+(Rn × Rm) ≃ H1
g,+(Rn × Rm).

On the other hand, due to some important situations in which the theory of classical Hardy

spaces is not applicable, the Hardy spaces associated to operators are introduced. Especially

over the past ten years, many authors studied function spaces associated to operators, showed

some characterizations of them [1,2,9,10,14,16–19,24,31], etc. In 2011 and 2012, Song and Tan

discussed Hardy spaces associated to Schrödinger operators on product spaces. They obtained

some characterizations of the Hardy space associated to Schrödinger operators on product

domains, such as, atomic decomposition, the characterizations by Lusin area integral and the

maximal functions [28,29].

A natural question is to establish some characterizations similar to Proposition 1.1 for the

product Hardy space associated to Schrödinger operators H1
L1,L2

(Rn × Rm) by using different

maximal functions and Littlewood-Paley functions on distinct variables.

The Schrödinger operators L1 and L2 are defined by

L1 = −△1 + V1, and L2 = −△2 + V2, (1)

where △1 and △2 are the Laplacians, and V1, V2 are non-negative functions on Rn and Rm,

respectively.

As we know, the operator L1 is a self-adjoint positive definite operator on L2(Rn). Then

from the Feynman-Kac formula, the kernel pt1(x1, y1) of the semigroup e−t1L1 satisfies the

estimate

0 ≤ pt1(x1, y1) ≤
1

(4πt1)n/2
e−

|x1−y1|2
4t1 . (2)

For the self-adjoint positive definite operator L2 on L2(Rm), the kernel pt2(x2, y2) of e−t2L2

satisfies the similar estimate to (2).

Given a function f on Rn × Rm, the area integral function Sf associated to operators L1

and L2 is defined by

Sf(x1, x2) =
(∫∫

|y1−x1|<t1,
|y2−x2|<t2

∣∣∣t21L1e
−t21L1 ⊗ t22L2e

−t22L2f(y1, y2)
∣∣2 dy1dt1

tn+1
1

dy2dt2

tm+1
2

)1/2

.

Definition 1.1. Suppose that L1 and L1 are the Schrödinger operators as in (1). The Hardy

space H1
L1,L2

(Rn × Rm) associated to L1 and L2 is defined as the completion of{
f ∈ L2(Rn × Rm) : ∥Sf∥L1(Rn×Rm) <∞

}
with respect to the norm ∥f∥H1

L1,L2
(Rn×Rm) = ∥Sf∥L1(Rn×Rm).

We known that if operators L1 and L2 are the Laplacians △1 and △2 on Rn and Rm,

respectively, it follows from the area integral characterization by using convolution that the

Hardy space H1(Rn × Rm) coincides with the space H1
△1,△2

(Rn × Rm), and their norms are

equivalent [3, 4, 12], etc.
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Recently, motivated by the Proposition 1.1, constituting by two of non-tangential maximal

function, vertical maximal function and Lusin area integral, we obtained some characterizations

for functions in the product Hardy space H1
L1,L2

(Rn × Rm) associated to L1 and L2 by using

different maximal functions and Lusin area integral on distinct variables. We have the following

proposition.

Proposition 1.2 ( [25]). Suppose that L1 and L2 are the Schrödinger operators as in (1).

Then

H1
L1,L2

(Rn × Rm) ≃ H1
L1,L2,NSp

(Rn × Rm) ≃ H1
L1,L2,SpN

(Rn × Rm)

≃ H1
L1,L2,Sp,+

(Rn × Rm) ≃ H1
L1,L2,+,Sp

(Rn × Rm).

In this paper, we will consider the combination among non-tangential maximal function,

vertical maximal function and Littlewood-Paley g function to establish the similar characteri-

zations for functions in the product Hardy space H1
L1,L2

(Rn×Rm) associated to L1 and L2 also

by different characterized on distinct variables. These results are complementary for Proposition

1.2 respect to Proposition 1.1.

Suppose that L1 and L2 are the Schrödinger operators as in (1). By using different

Littlewood-Paley functions on distinct variables, we define fN ,g and f+,g functions as

fN ,g(x1, x2) = sup
|y1−x1|<t1

(∫ ∞

0

|e−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(y1, x2)|2

dt2
t2

)1/2

,

f+,g(x1, x2) = sup
t1>0

(∫ ∞

0

|e−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(x1, x2)|2

dt2
t2

)1/2

.

Similarly, we define product spaces H1
L1,L2,N ,g(Rn × Rm) and H1

L1,L2,+,g(Rn × Rm) by

H1
L1,L2,N ,g(Rn × Rm) = {f ∈ L2(Rn × Rm) : fN ,g ∈ L1(Rn × Rm)},

H1
L1,L2,+,g(Rn × Rm) = {f ∈ L2(Rn × Rm) : f+,g ∈ L1(Rn × Rm)},

with the norms

∥f∥H1
L1,L2,N ,g(Rn×Rm) = ∥fN ,g∥L1(Rn×Rm) and ∥f∥H1

L1,L2,+,g(Rn×Rm) = ∥f+,g∥L1(Rn×Rm),

respectively.

Then, the main result of this article, the characterizations for functions in product Hardy

space H1
L1,L2

(Rn × Rm) associated to the Schrödinger operators L1 and L2, is given by

H1
L1,L2

(Rn × Rm) ≃ H1
L1,L2,N ,g(Rn × Rm) ≃ H1

L1,L2,+,g(Rn × Rm).

This result will be proved in Section 3. In the next section, we will recall some definitions,

and introduce some important lemmas.

§2 Definitions and lemmas

In this section, in order to obtain our main result, we recall the definitions of the atomic

product Hardy space, tent space, and introduce some key lemmas.

Suppose that Ω ⊂ Rn×Rm is an open set with finite measure. Denote bym(Ω) the maximal

dyadic subrectangles of Ω. Let m1(Ω) denote those dyadic subrectangles R ⊆ Ω, R = I×J that
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are maximal in the first variable. In other words, if O = I1 × J ⊇ R is a dyadic subrectangle of

Ω , then I = I1. Define m2(Ω) for the second variable similarly.

In [28], Song, Tan and Yan introduced the definition of product (1, 2)-atom associated to

the Schrödinger operators, and established the atomic decomposition for the product Hardy

space associated to Schrödinger operators.

Definition 2.1 ( [28]). Let L1 and L2 be the Schrödinger operators as in (1). A function

a(x1, x2) ∈ L2(Rn × Rm) is called a product (1, 2)-atom if it satisfies

(1) supp a ⊂ Ω, where Ω is an open set of Rn × Rm with finite measure;

(2) a can be further decomposed into a =
∑

R∈m(Ω) aR, where for each R ∈ m(Ω), there exists

a function bR belonging to the domain of L1 ⊗ L2 in L2(Rn × Rm) such that

(i) aR =
(
L1 ⊗ L2

)
bR;

(ii) supp
(
Lj
1 ⊗ Lk

2

)
bR ⊂ 10R, j, k = 0, 1;

(iii) ||a||L2(Rn×Rm) ≤ |Ω|−1/2 and∑
R∈m(Ω)

1∑
j,k=0

ℓ(I)4j−4ℓ(J)4k−4
∥∥∥(Lj

1 ⊗ Lk
2

)
bR

∥∥∥2
L2(Rn×Rm)

≤ |Ω|−1,

where L0
i denotes the identity operator, i = 1, 2.

The atomic product Hardy space H1
L1,L2,at

(Rn × Rm) is defined as follows.

Definition 2.2 ( [28]). Let L1 and L2 be the Schrödinger operators as in (1). The atomic

product Hardy space H1
L1,L2,at

(Rn × Rm) is defined as follows. We say that f =
∑

j λjaj is a

product atomic (1, 2)-representation of f if {λj}j ∈ ℓ1, each aj is a product (1, 2)-atom, and

the sum converges in L2(Rn × Rm). Then

H1
L1,L2,at(R

n × Rm) = {f : f has a product atomic (1,2)-representation},
with the norm given by

∥f∥H1
L1,L2,at

= inf
{ ∞∑

j=0

|λj | : f =
∑
j

λjaj is a product atomic (1,2)-representation
}
.

The space H1
L1,L2,at

(Rn × Rm) is then defined as the completion of H1
L1,L2,at

(Rn × Rm) with

respect to this norm.

Then, we recall Journé’s covering lemma and some useful results.

Lemma 2.1 ( [20, 27]). Let Ω∗ = {x ∈ Rn × Rm : M(XΩ)(x) > 1/2}, where M denotes the

strong maximal operator. For any R = I × J , suppose γ1(R) = sup
I1⊂I,I×J⊂Ω∗

|I1|
|I| , γ2(R) is

similarly. Then for any δ > 0,∑
R∈m2(Ω)

|R|γ1−δ(R) ≤ cδ|Ω| and
∑

R∈m1(Ω)

|R|γ2−δ(R) ≤ cδ|Ω|. (3)

Lemma 2.2 ( [25]). Suppose that T is a bounded sublinear operator on L2(Rn × Rm), and

for every product (1, 2)-atom a(x) on product domains, ∥Ta∥L1(Rn×Rm) ≤ C, with constant C

independent of a. Then for any decomposition of f in Definition 2.2,

∥Tf∥L1(Rn×Rm) ≤ C∥f∥H1
L1,L2

(Rn×Rm).



ZHAO Kai, et al. Characterizations of product Hardy space associated to operators 383

In the following, we shall assume that φ ∈ C1
0 (Rn) is a nonnegative, radial and nonincreasing

function, φ = 1 on B(0, 1/2), supp φ ⊂ B(0, 1) and
∫
φ(x)dx = 1. Let ψ be a function with

the same support as φ and mean value 0.

Lemma 2.3 ( [25]). Let f ∈ L2(Rn×Rm) and g ∈ L2(Rn), u(x, t) = e−t1
√
L1⊗e−t2

√
L2f(x1, x2).

Then ∫∫
Rn+1

+

∣∣t1∇X1u(x, t)
∣∣2∣∣φt1 ∗ g(x1)

∣∣2 dx1 dt1
t1

≤
∫
Rn

|t2
√
L2e

−t2
√
L2f(x)|2|g(x1)|2 dx1 +

∫∫
Rn+1

+

∣∣u(x, t)∣∣2∣∣ψt1 ∗ g(x1)
∣∣2 dx1 dt1

t1
.

(4)

If x = (x1, x2) ∈ Rn × Rm, let Γ(x) denote the product cone Γ(x) = Γ(x1) × Γ(x2) where

Γ(x1) = {(y1, t1) ∈ Rn+1
+ : |y1 − x1| < t1} and Γ(x2) = {(y2, t2) ∈ Rm+1

+ : |y2 − x2| <
t2}. Before giving the following lemma, we define the non-tangential fnction, Littlewood-Paley

square function and Littlewood-Paley G function associated with L1 and L2 as follows.

N (f)(x) = sup
|x1−y1|<t1,|x2−y2|<t2

|e−t1
√
L1 ⊗ e−t2

√
L2f(y1, y2)|,

S(f)(x) =
(∫∫

Γ(x)

|t1
√
L1e

−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(y1, y2)|2

dy1dt1

tn+1
1

dy2dt2

tm+1
2

)1/2

,

G(f)(x) =
(∫ ∞

0

∫ ∞

0

|t1
√
L1e

−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(x)|2 dt1dt2

t1t2

)1/2

.

Then, similarly, we can also define product spaces H1
L1,L2,N (Rn×Rm), H1

L1,L2,S(R
n×Rm) and

H1
L1,L2,G(R

n × Rm) associated to Schrödinger operators L1 and L2 as

H1
L1,L2,N (Rn × Rm) = {f ∈ L2(Rn × Rm) : N (f) ∈ L1(Rn × Rm)},

H1
L1,L2,S(R

n × Rm) = {f ∈ L2(Rn × Rm) : S(f) ∈ L1(Rn × Rm)},

H1
L1,L2,G(R

n × Rm) = {f ∈ L2(Rn × Rm) : G(f) ∈ L1(Rn × Rm)}
with norms

∥f∥H1
L1,L2,N (Rn×Rm) = ∥N (f)∥L1(Rn×Rm),

∥f∥H1
L1,L2,S(Rn×Rm) = ∥S(f)∥L1(Rn×Rm),

∥f∥H1
L1,L2,G(Rn×Rm) = ∥G(f)∥L1(Rn×Rm),

respectively.

Therefore, according to [25, Lemma 3.3 and Theorem 3.4], and the g function is equivalent

to the area function on Lp, we can obtain the following lemma.

Lemma 2.4. H1
L1,L2

(Rn × Rm) ≃ H1
L1,L2,at

(Rn × Rm) ≃ H1
L1,L2,N (Rn × Rm)

≃ H1
L1,L2,S(R

n × Rm) ≃ H1
L1,L2,G(R

n × Rm).

In order to obtain our main results, we recall the definition of tent space as well as its atomic

decomposition.
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Definition 2.3 ( [7]). For any function f(y, t) on Rn+1
+ , define

A(f)(x) = (

∫∫
Γ(x)

|f(y, t)|2 dy dt
tn+1

)1/2. (5)

The tent space T 1
2 is defined as the space of functions f such that A(f) ∈ L1(Rn) with norm

∥f∥T 1
2
= ∥A(f)∥L1(Rn).

Lemma 2.5 ( [7]). Suppose that a T 1
2 -atom a(x, t) is a function supported on Q̂ with∫

Q̂

|a(x, t)|2 dx dt
t

≤ |Q|−1, (6)

where Q̂ is the tent of Q. The atomic decomposition of f in the tent space is:

f =
∑
j

λjaj , for any f ∈ T 1
2 (R

n+1
+ ), (7)

where every aj is a T 1
2 -atom, and furthermore,

∑
j |λj | ≤ C∥f∥T 1

2
.

§3 Characterization of product Hardy space

With the above discussion, we show our main results in the following.

Theorem 3.1. H1
L1,L2

(Rn × Rm) ≃ H1
L1,L2,N ,g(Rn × Rm) ≃ H1

L1,L2,+,g(Rn × Rm).

Proof. Since the proof of H1
L1,L2

(Rn × Rm) ≃ H1
L1,L2,+,g(Rn × Rm) is similar to H1

L1,L2
(Rn ×

Rm) ≃ H1
L1,L2,N ,g(Rn × Rm), we only show that

H1
L1,L2

(Rn × Rm) ≃ H1
L1,L2,N ,g(Rn × Rm). (8)

Obviously, (8) is the direct result of the following two inclusions.

H1
L1,L2,N ,g(Rn × Rm) ⊂ H1

L1,L2
(Rn × Rm), (9)

H1
L1,L2

(Rn × Rm) ⊂ H1
L1,L2,N ,g(Rn × Rm). (10)

To prove (9), by Lemma 2.4, it suffices to show that∫∫ (∫ ∞

0

∫ ∞

0

|t1
√
L1e

−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(x1, x2)|2

dt2
t2

dt1
t1

)1/2

dx1dx2

≤ C

∫∫
sup

|y1−x1|<t1

(∫ ∞

0

|e−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(y1, x2)|2

dt2
t2

)1/2

dx1dx2,

(11)

for any f ∈ H1
L1,L2,N ,g(Rn × Rm) ∩ L2(Rn × Rm).

Let B denote the functions {Ft2,x2(y1) : y1 ∈ Rn, t2 ∈ (0,∞), x2 ∈ Rm} with norm

∥Ft2,x2(y1)∥B =
(∫ ∞

0

|Ft2,x2(y1)|2
dt2
t2

)1/2

.

Obviously, if we can prove the following two inequalities, then (11) holds.∫∫ (∫∫
Γ(x1)

∥t1
√
L1e

−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(y1, x2)∥2B

dy1dt1
t1

n+1

)1/2

dx1dx2

≤ C

∫∫
sup

|y1−x1|<t1

(∫ ∞

0

|e−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(y1, x2)|2

dt2
t2

)1/2

dx1dx2,

(12)
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∫∫ (∫ ∞

0

∫ ∞

0

|t1
√
L1e

−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(x1, x2)|2

dt2
t2

dt1
t1

)1/2

dx1dx2

≤ C

∫∫ (∫∫
Γ(x1)

∥t1
√
L1e

−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(x1, x2)∥2B

dy1dt1

tn+1
1

)1/2

dx1dx2.

(13)

Firstly, we prove (12). Notice that

|t1∇Y1e
−t1

√
L1 ⊗ t2

√
L2e

−t2
√
L2 |2 ≥ C|t1

√
L1e

−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2 |2.

Let Ft2,x2
(y1) = t2

√
L2e

−t2
√
L2f(y1, x2). Define the square function and non-tengential maxi-

mal function of F as

S(F )(x1, x2) =
(∫∫

Γ(x1)

∥t1∇e−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(y1, x2)∥2B

dy1dt1
t1

n+1

)1/2

and

F ∗(x1, x2) = sup
|x1−y1|<t1

∥e−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(y1, x2)∥B,

respectively. Then, to prove (12), we only need to show that∫
Rn×Rm

S(F )(x1, x2)dx1dx2 ≤ C

∫
Rn×Rm

F ∗(x1, x2)dx1dx2. (14)

It is well know that, in order to obtain (14), it suffices to prove that for α > 0 and x2 ∈ Rm,

the following estimate (15) holds.∫
{M(1)(XF∗>α)(x1)<2−(n+1)}

(
S(F )(x1, x2)

)2
dx1

≤ Cα2|{x1 : F ∗(x1, x2) > α}|+ C

∫
{x1:F∗(x1,x2)≤α}

(
F ∗(x1, x2)

)2
dx1. (15)

Notice that for any α > 0, x2 ∈ Rm,∫
Rn

S(F )(x1, x2)dx1 =

∫ ∞

0

|{x1 : S(F )(x1, x2) > α}|dα,

and the following fact which was given in [22],

|{x1 : S(F )(x1, x2) > α}| ≤ C

α2

∫
{x1:F∗(x1,x2)≤α}

(
F ∗(x1, x2)

)2
dx1 + C|{x1 : F ∗(x1, x2) > α}|.

Then by (15), integrating on both sides of the inequality above for α and x2, we can obtain

(14). Hence, it is remaining to prove (15). Note that∫
{M(1)(XF∗>α)(x1)<2−(n+1)}

(
S(F )(x1, x2)

)2
dx1

≤
∫ ∞

0

∫
{M(1)(XF∗>α)(x1)<2−(n+1)}

∫∫
Γ(x1)

|t1∇e−t1
√
L1Ft2,x2(y1)|2

dy1dt1

tn+1
1

dx1dt2
t2

.

However, ∫
{M(1)(XF∗>α)(x1)<2−(n+1)}

∫∫
Γ(x1)

|t1∇e−t1
√
L1Ft2,x2(y1)|2

dy1dt1

tn+1
1

dx1

=

∫
R∗

|∇e−t1
√
L1Ft2,x2(y1)|2|B(y1, t1) ∩ {M(1)(XF∗>α)(x1) < 2−(n+1)}|dy1dt1

tn−1
1

≤ C

∫
R∗

|t1∇e−t1
√
L1Ft2,x2(y1)|2

dy1dt1
t1

,
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where R∗ = {(y1, t1) : |B(y1, t1) ∩ {z : F ∗(z, x2) > α}| ≤ 2−(n+1)|B(y1, t1)|}.
Therefore,∫

{M(1)(XF∗>α)(x1)<2−(n+1)}

(
S(F )(x1, x2)

)2
dx1 ≤

∫
R∗

∥t1∇e−t1
√
L1Ft2,x2(y1)∥2B

dy1dt1
t1

.

It is easy to check that if |B(y1, t1) ∩ {z : F ∗(z, x2) > α}| ≤ 2−(n+1)|B(y1, t1)|, then

g ∗ φt1(y1) > C for some constant C > 0, where φ ∈ C1
0 (Rn) is as in Lemma 2.3 and g(x) =

χ{F∗(x1,x2)≤α}(x). Together with Lemma 2.3, we have∫
{M(1)(XF∗>α)(x1)<2−(n+1)}

(
S(F )(x1, x2)

)2
dx1

≤ C

∫
R∗

∥t1∇e−t1
√
L1Ft2,x2(y1)∥2B|φt1 ∗ g(y1)|

dy1dt1
t1

≤ C

∫ ∞

0

∫
Rn+1

+

|t1∇e−t1
√
L1Ft2,x2

(y1)|2|φt1 ∗ g(y1)|
dy1dt1
t1

dt2
t2

≤ C

∫ ∞

0

∫
Rn

|Ft2,x2(y1)|2|g(y1)|2dy1
dt2
t2

+C

∫ ∞

0

∫
Rn+1

+

|e−t1
√
L1Ft2,x2(y1)|2|ψt1 ∗ g(y1)|2

dy1dt1
t1

dt2
t2

= C

∫
Rn

∥Ft2,x2(x1)∥2B|g(x1)|2dx1

+C

∫
Rn+1

+

∥e−t1
√
L1Ft2,x2(y1)∥2B|ψt1 ∗ g(y1)|2

dy1dt1
t1

= M1 +M2.

For the term M1, by the definitions of g(x) and F ∗(x1, x2), we obtain

M1 ≤ C

∫
{x1:F∗(x1,x2)≤α}

(
F ∗(x1, x2)

)2
dx1.

For M2, we only need to consider ψt1 ∗ g(y1) ̸= 0. In this case, B(y1, t1) ∩ {z : F ∗(z, x2) ≤
α} ̸= ∅. Thus, there exists a point z01 ∈ Rn such that |z01 − y1| < t1 and F ∗(z01 , x2) ≤ α.

Therefore,

∥e−t1
√
L1Ft2,x2(y1)∥B ≤ sup

|z0
1−z1|<s1

∥e−t1
√
L1Ft2,x2(y1)∥B = F ∗(z01 , x2) ≤ α.

Hence, by the cancellation condition of ψ, we can get that

M2 ≤ Cα2

∫
Rn+1

+

|ψt1 ∗ χF∗(·,x2)≤α(y1)|2
dy1dt1
t1

≤ Cα2|{y1 : F ∗(y1, x2) > α}|.
Combining with the estimates of M1 and M2, we can see that (15) holds, which implies (12) is

valid.

Secondly, we prove (13). In order to do this, we first show the fact that∥∥∥(∫ ∞

0

|F (x, t)|2 dt
t

)1/2∥∥∥
L1(Rn)

≤ C
∥∥∥(∫∫

Γ(x)

|F (y, t)|2 dydt
tn+1

)1/2∥∥∥
L1(Rn)

. (16)

According to the Definition 2.3, the right hand of the inequality (16) is F (x, t)’s T 1
2 norm.

By the atomic decomposition of the tent space (7), in order to prove (16), it suffices to show that
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for any T 1
2 -atom a(x, t) supported on Q̂, there exists a constant C independent of a, satisfying∥∥∥( ∫ ∞

0

|a(x, t)|2 dt
t

)1/2∥∥∥
L1(Rn)

≤ C.

Actually, by Hölder’s inequality and the definition of T 1
2 -atom, we have∥∥∥( ∫ ∞

0

|a(x, t)|2 dt
t

)1/2∥∥∥
L1(Rn)

=

∫
Q

(∫ l(Q)

0

|a(x, t)|2 dt
t

)1/2

dx

≤
(∫

Q̂

|a(x, t)|2 dtdx
t

)1/2

|Q|1/2 ≤ C|Q|−1/2|Q|1/2 ≤ C.

Thus, (16) holds.

Suppose F = (
∫∞
0

|t1
√
L1e

−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(x1, x2)|2 dt2

t2
)1/2. Substituting F into

(16), then it tells us∫
Rn

(∫ ∞

0

∫ ∞

0

|t1
√
L1e

−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(x1, x2)|2

dt2
t2

dt1
t1

)1/2

dx1

≤ C

∫
Rn

(∫∫
Γ(x1)

∫ ∞

0

|t1
√
L1e

−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(x1, x2)|2

dt2
t2

dy1dt1

tn+1
1

)1/2

dx1.

Therefore, (13) holds. Combining with (12), we know that (11) is correct. Then (9) is proved.

To prove (10), by Lemma 2.4, we only need to prove

H1
L1,L2,at(R

n × Rm) ⊂ H1
L1,L2,N ,g(Rn × Rm). (17)

From estimate (2), we know that for every k ∈ N, there exists a constant Ck such that the

kernel pt,k of the operator (t
√
L)ke−t

√
L satisfies

|pt,k(x, y)| ≤ Ck
t

(t+ |x− y|)n+1
, ∀ t > 0, x, y ∈ Rn. (18)

Thus, for any f ∈ L2(Rn×Rm), using the kernel estimate (18) and the fact that non-tangential

maximal function is dominated by Hardy-Littlewood maximal operator on L2(Rn), we have

∥fN ,g∥2L2(Rn×Rm) =

∫∫
sup

|y1−x1|<t1

∫ ∞

0

|e−t1
√
L1 ⊗ t2

√
L2e

−t2
√
L2f(y1, x2)|2

dt2
t2
dx1dx2

≤ C

∫
Rn

∫
Rm

∫ ∞

0

M(1)(t2
√
L2e

−t2
√
L2f(·, x2))2(x1)

dt2
t2
dx1dx2

≤ C

∫
Rn

∫
Rm

|f(x1, x2)|2dx1dx2 = C∥f∥2L2(Rn×Rm), (19)

where M(1) is the Hardy-Littlewood maximal operator on the first variable which is bounded

on L2(Rn), and the third step also uses the L2 boundedness of g function.

For any f ∈ H1
L1,L2,at

(Rn × Rm), suppose f(x) =
∑

j λjaj(x), where each aj is a product

(1, 2)-atom and
∑

j |λj | <∞. Then noting that Lemma 2.2, it is enough to show that for every

product (1, 2)-atom a, there exists a constant C independent of a, such that

∥aN ,g∥L1(Rn×Rm) ≤ C. (20)

Suppose that

a = a(x1, x2) =
∑

R∈m(Ω)

aR =
∑

R∈m(Ω)

(L1 ⊗ L2)bR

is a product (1, 2)-atom supported in some open set Ω of Rn×Rm. For any R = I × J ∈ m(Ω),

let l(I), l(J) be the side-length of I and J , respectively. Suppose I1 is the biggest dyadic cube
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containing I such that I1×J ⊂ Ω∗ = {x ∈ Rn×Rm : M(XΩ)(x) > 1/2}, then I1×J ∈ m1(Ω
∗).

Let J1 be the biggest dyadic cube such that J1 ⊇ J and I1 × J1 ⊂ Ω∗∗ = {x ∈ Rn × Rm :

M(XΩ∗)(x) > 1/2}. Let R̃ be the 10-fold dilate of I1 × J1 concentric with I1 × J1. Obviously,

the boundedness of the strong maximal function shows that | ∪ R̃| ≤ C|Ω∗∗| ≤ C|Ω∗| ≤ C|Ω|.
Set

∥aN ,g∥L1(Rn×Rm) =

∫
∪R̃

aN ,g(x)dx+

∫
(∪R̃)c

aN ,g(x)dx. (21)

Then, (19) and the size condition of (1, 2)-atom a tell us∫
∪R̃

aN ,g(x)dx ≤ C| ∪ R̃|1/2∥aN ,g∥L2(Rn×Rm) ≤ C|Ω|1/2∥a∥L2(Rn×Rm) ≤ C. (22)

To estimate the second part of the right hand in (21), we write∫
(∪R̃)c

aN ,g(x)dx ≤
∑

R∈m(Ω)

∫
x1 ̸∈10I1

(aR)N ,g(x)dx+
∑

R∈m(Ω)

∫
x2 ̸∈10J1

(aR)N ,g(x)dx = D+ E.

We only estimate the term D, since the estimate of E is similarly. Let

D =
∑

R∈m(Ω)

( ∫
x1 ̸∈10I1

∫
x2∈10J

+

∫
x1 ̸∈10I1

∫
x2 ̸∈10J

)
(aR)N ,g(x)dx = D1 +D2.

For D1, by using Hölder’s inequality and the L2 boundedness of g function on Rm, we have

D1 ≤ C
∑

R∈m(Ω)

|J |1/2
∫
x1 ̸∈10I1

∥(aR)N ,g(x1, ·)∥L2(Rm)dx1

≤ C
∑

R∈m(Ω)

|J |1/2
∫
x1 ̸∈10I1

(

∫
Rm

sup
|x1−y1|<t1,t1<l(I)

|e−t1
√
L1aR(y1, x2)|2dx2)1/2dx1

+C
∑

R∈m(Ω)

|J |1/2
∫
x1 ̸∈10I1

(

∫
Rm

sup
|x1−y1|<t1,t1≥l(I)

|e−t1
√
L1aR(y1, x2)|2dx2)1/2dx1

= D1,1 +D1,2.

Let xI be the center of cube I. Noting that x1 /∈ 10I1, z1 ∈ I, if |x1 − y1| < t1 < l(I), then

|y1 − z1| ∼ |x1 − xI |. It follows from estimate (18) that

|e−t1
√
L1aR(·, x2)(y1)| ≤ C

∫
Rn

t1
(t1 + |y1 − z1|)n+1

|aR(z1, x2)|dz1

≤ C
l(I)

|x1 − xI |n+1
∥aR(·, x2)∥L1(Rn) ≤ C|I|1/2 l(I)

|x1 − xI |n+1
∥aR(·, x2)∥L2(Rn).

Thus, by Lemma 2.1 and the size condition of product (1, 2)-atom, we can obtain that

D1,1 ≤ C
∑

R∈m(Ω)

|J |1/2|I|1/2
∫
x1 ̸∈10I1

l(I)

|x1 − xI |n+1
dx1∥aR∥L2(Rn×Rm)

≤ C
∑

R∈m(Ω)

|J |1/2|I|1/2∥aR∥L2(Rn×Rm)

∫ ∞

10l(I1)

l(I)

rn+1
rn−1dr

≤ C
∑

R∈m(Ω)

|R|1/2∥aR∥L2(Rn×Rm)
l(I)

l(I1)

≤ C(
∑

R∈m(Ω)

|R|γ−2
1 (R))1/2(

∑
R∈m(Ω)

∥aR∥2L2(Rn×Rm))
1/2 ≤ C.
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For the term D1,2, since x1 /∈ 10I1, |x1 − y1| < t1, l(I) ≤ t1 and z1 ∈ I, it is easy to check that

t1 + |y1 − z1| ≥ |x1 − xI |/2. Therefore, we apply the definition of the product (1, 2)-atom to

obtain

|e−t1
√
L1aR(y1, x2)| ≤

( l(I)
t1

)2

|t21L1e
−t1

√
L1 l(I)−2(L0

1 ⊗ L1
2)bR(y1, x2)|

≤ C
( l(I)
t1

)2
∫
Rn

t1
(t1 + |y1 − z1|)n+1

∣∣∣l(I)−2(L0
1 ⊗ L1

2)bR(z1, x2)
∣∣∣dz1

≤ C
l(I)

|x1 − xI |n+1
∥l(I)−2(L0

1 ⊗ L1
2)bR(·, x2)∥L1(Rn). (23)

Thus, combining with Lemma 2.1, we have

D1,2 ≤ C
∑

R∈m(Ω)

|J |1/2|I|1/2
∫
x1 ̸∈10I1

l(I)

|x1 − xI |n+1
dx1∥l(I)−2

(L0
1 ⊗ L1

2)bR∥L2(Rn×Rm)

≤ C
∑

R∈m(Ω)

|J |1/2|I|1/2∥l(I)−2
(L0

1 ⊗ L1
2)bR∥L2(Rn×Rm)

∫ ∞

10l(I1)

l(I)

r2
dr

≤ C
∑

R∈m(Ω)

|R|1/2∥l(I)−2
(L0

1 ⊗ L1
2)bR∥L2(Rn×Rm)

l(I)

l(I1)

≤ C
( ∑

R∈m(Ω)

|R|γ−2
1 (R)

)1/2( ∑
R∈m(Ω)

l(I)
−4∥(L0

1 ⊗ L1
2)bR∥2L2(Rn×Rm)

)1/2

≤ C|Ω|1/2|Ω|−1/2 ≤ C.

Hence, the estimates of D1,1 and D1,2 show that D1 ≤ C.

Let us estimate the term D2. Suppose xJ is the center of J , write

(aR)
2
N ,g(x) ≤ sup

|x1−y1|<t1,t1≤l(I)

(∫ l(J)

0

+

∫ ∞

l(J)

)
|e−t1

√
L1 ⊗ t2

√
L2e

−t2
√
L2aR(y1, x2)|2

dt2
t2

+ sup
|x1−y1|<t1,t1>l(I)

(∫ l(J)

0

+

∫ ∞

l(J)

)
|e−t1

√
L1 ⊗ t2

√
L2e

−t2
√
L2aR(y1, x2)|2

dt2
t2

= D2,1 +D2,2 +D2,3 +D2,4.

Let

A1 =

∫ l(J)

0

|t2
√
L2e

−t2
√
L2aR(y1, x2)|2

dt2
t2
,

A2 =

∫ ∞

l(J)

|t2
√
L2e

−t2
√
L2aR(y1, x2)|2

dt2
t2
.

Since x2 /∈ 10J , when t2 ≤ l(J), it follows from (18) that

A1 ≤ C

∫ l(J)

0

(

∫
J

t2
(t2 + |z − x2|)m+1

|aR(y1, z)|dz)2
dt2
t2

≤ C
1

|x2 − xJ |2(m+1)
∥aR(y1, ·)∥2L1(Rm)

∫ l(J)

0

t2dt2

= C
l(J)

2

|x2 − xJ |2(m+1)
∥aR(y1, ·)∥2L1(Rm).

When t2 > l(J), by the definition of the product (1, 2)-atom as well as (18), we obtain



390 Appl. Math. J. Chinese Univ. Vol. 34, No. 4

A2 ≤
∫ |x2−xJ |

4

l(J)

|
( l(J)
t2

)2

(t2
√
L2)

3e−t2
√
L2 l(J)

−2
(L1

1 ⊗ L0
2)bR(y1, x2)|2

dt2
t2

+

∫ ∞

|x2−xJ |
4

|
( l(J)
t2

)2

(t2
√
L2)

3e−t2
√
L2 l(J)

−2
(L1

1 ⊗ L0
2)bR(y1, x2)|2

dt2
t2

≤ C

∫ |x2−xJ |
4

l(J)

(

∫
J

l(J)2t2
(t2 + |z − x2|)m+1

|l(J)−2
(L1

1 ⊗ L0
2)bR(y1, z)|dz)2

dt2
t52

+C

∫ ∞

|x2−xJ |
4

(

∫
J

l(J)2t2
(t2 + |z − x2|)m+1

|l(J)−2
(L1

1 ⊗ L0
2)bR(y1, z)|dz)2

dt2
t52

≤ C
l(J)4

|x2 − xJ |2(m+1)
∥l(J)−2

(L1
1 ⊗ L0

2)bR(y1, ·)∥2L1(Rm)

( ∫ ∞

l(J)

1

t32
dt2

)
≤ C

l(J)2

|x2 − xJ |2(m+1)
∥l(J)−2

(L1
1 ⊗ L0

2)bR(y1, ·)∥2L1(Rm).

Then, by the estimates of A1 and A2, we can get the estimates of D2,i, i = 1, 2, 3, 4. For

example, in the following, we estimate D2,4. According to the estimate of A2 and (23),

D2,4 ≤ sup
|y1−x1|<t1,t1>l(I)

l(J)2

|x2 − xJ |2(m+1)
∥l(J)−2

(e−t1
√
L1L1

1 ⊗ L0
2)bR(y1, ·)∥2L1(Rm)

≤ C
l(J)2

|x2 − xJ |2(m+1)

l(I)2

|x1 − xI |2(n+1)
∥l(J)−2

l(I)
−2

(L0
1 ⊗ L0

2)bR(y1, ·)∥2L1(Rn×Rm).

Taking together the estimates of D2,i, i = 1, 2, 3, 4, we have

(aR)N ,g(x) ≤ C
l(I)

|x1 − xI |n+1

l(J)

|x2 − xJ |m+1
|R|1/2

1∑
k,j=0

l(I)
2k−2

l(J)
2j−2∥(Lk

1 ⊗ Lj
2)bR∥L2(Rn×Rm).

Hence, by Lemma 2.1 and the definition of product (1, 2)-atom, as well as Hölder’s inequality,

we obtain

D2 ≤
∑

R∈m(Ω)

l(I)

l(I1)
|R|1/2

1∑
k,j=0

l(I)
2k−2

l(J)
2j−2∥(Lk

1 ⊗ Lj
2)bR∥L2(Rn×Rm)

≤ C
( ∑

R∈m(Ω)

|R|γ−2
1 (R)

)1/2( ∑
R∈m(Ω)

1∑
k,j=0

l(I)
4k−4

l(J)
4j−4∥(Lk

1 ⊗ Lj
2)bR∥2L2(Rn×Rm)

)1/2

≤ C|Ω|−1/2|Ω|1/2 ≤ C.

Combining with the estimate of D1, we estimate the term D. Then together with (22), we know

that (20) is proved. Thus, (17) holds. Therefore, (10) is proved. Hence, the proof of Theorem

3.1 is finished.
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[27] J Pipher. Journé’s covering lemma and its extension to higher dimensions, Duke Math J,

1986, 53: 683-690.

[28] L Song, C Tan, L Yan. An atomic decompostion for Hardy spaces associated to Schrödinger

operator, J Aust Math Soc, 2011, 91: 125-144.

[29] L Song, C Tan. Hardy spaces associated to Schrödinger operators on product spaces, J

Funct Spaces Appl, 2012, vol 2012, 17 pages, doi: 10.1155/2012/179015.

[30] X Wu, J Chen. Best constants for Hausdorff operators on n-dimensional product spaces,

Sci China Math, 2014, 57: 569-578.

[31] D Yang, S Yang. Musielak-Orlicz-Hardy spaces associated with operators and their appli-

cations, J Geom Anal, 2014, 24: 495-570.

[32] D Yang, W Yuan. Function spaces of Besov-type and Triebel-Lizorkin-type — a survey,

Appl Math J Chinese Univ, 2013, 28: 405-426.

School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China.

Email: zhkzhc@aliyun.com


