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Asymptotic behavior for sums of non-identically

distributed random variables

YU Chang-jun 1 CHENG Dong-ya2,3

Abstract. For any given positive integer m, let Xi, 1 ≤ i ≤ m be m independent random

variables with distributions Fi, 1 ≤ i ≤ m. When all the summands are nonnegative and at

least one of them is heavy-tailed, we prove that the lower limit of the ratio
P (

∑m
i=1 Xi>x)∑m
i=1 Fi(x)

equals

1 as x → ∞. When the summands are real-valued, we also obtain some asymptotic results for

the tail probability of the sums. Besides, a local version as well as a density version of the above

results is also presented.

§1 Introduction

Throughout this paper, let Xn, n ≥ 1 be independent random variables (r.v.s) with distri-

butions Fn, n ≥ 1 unless otherwise stated. For any m ≥ 1, we denote the convolution of the

distributions F1, · · · , Fm by F1 ∗F2 ∗· · ·∗Fm. In the special case that F1 = F2 = · · · = Fm = F ,

the convolution reduces to F ∗m. We also use F ∗0 to denote a distribution degenerated at 0.

We say that a r.v. X (or its distribution F ) is heavy-tailed, if EeεX = ∞ for all ε > 0, and

light-tailed otherwise. Heavy-tailed distributions play a very important role in the distribution

theory and have extensive applications in finance and insurance. For systematical research on

heavy-tailed distributions, we refer the reader to Resnick (2007), Su et al. (2009) and Foss et

al. (2013), among many others.

This paper focuses on the limit of the ratio
P (

∑m
i=1Xi>x)∑m
i=1 Fi(x)

as x → ∞, with the assumption

that at least one of the summands is unbounded on the right, namely max1≤i≤m Fi(x) > 0 for

all x > 0, where Fi(x) = 1− Fi(x), 1 ≤ i ≤ m.

We first introduce some related results. When the summands Xn, n ≥ 1 are identically

distributed with a common distribution F , and are independent of a r.v. τ which is nonnegative

Received: 2016-02-02. Revised 2018-12-08.
MR Subject Classification: Primary 60E05; 60F99.
Keywords: lower limits; upper limits; heavy-tailed distributions; local distributions; densities.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-019–3440-8.
Supported by the National Natural Science Foundation of China (no.11401415),Tian Yuan Foundation

(nos.11226208 and 11426139), Natural Science Foundation of the Jiangsu Higher Education Institutions of
China (no.13KJB110025), Postdoctoral Research Program of Jiangsu Province of China (no.1402111C) and
Jiangsu Overseas Research and Training Program for Prominent University Young and Middle-aged Teachers
and Presidents.



46 Appl. Math. J. Chinese Univ. Vol. 34, No. 1

and integer-valued, Rudin (1973) studied the lower limit for the ratio
P (

∑τ
i=1Xi>x)

F (x)
as x→∞

for some special kinds of heavy-tailed distributions F ; Foss and Korshunov (2007) investigated

the case in which F is a general heavy-tailed distribution and τ = 2. Based on these work,

Denisov et al. (2008a,b) established more results on the lower limit of the ratio
P (

∑τ
i=1Xi>x)

F (x)
.

Watanabe and Yamamuro (2010) and Yu et al. (2010) considered the similar problems for

real-valued summands and obtained the upper bound of the lower limit and the lower bound

of the upper limit for the ratio
P (

∑τ
i=1Xi>x)

F (x)
.

However, in the case that the summands are non-identically distributed, the research has

developed slowly. Theorem 9 of Foss and Korshunov (2007) obtained the following result.

Theorem 1.A Suppose that X1 and X2 are nonnegative r.v.s with distributions F1 and F2. If

F1 is heavy-tailed, then

lim inf
x→∞

P (X1 +X2 > x)

F1(x) + F2(x)
= 1. (1.1)

Theorems 3.1 and 3.2 of Yuen and Yin (2012) proved that for some dependent real-valued r.v.s

with distributions belonging to some subclasses of the heavy-tailed class, the number of the

summands in (1.1) can be arbitrarily finite, namely for any m ≥ 1,

lim inf
x→∞

P (
∑m
i=1Xi > x)∑m
i=1 Fi(x)

= 1. (1.2)

This paper mainly attempts to establish (1.2) for all nonnegative heavy-tailed r.v.s. As for

real-valued summands with either heavy or light tails, some asymptotic results for the ratio
P (

∑m
i=1Xi>x)∑m
i=1 Fi(x)

are also derived. What’s more, asymptotic behavior for local distributions and

densities of the sums is investigated at the same time.

The main result of the paper is as follows.

Theorem 1.1. Let Xi, 1 ≤ i ≤ m be nonnegative r.v.s with distributions Fi, 1 ≤ i ≤ m. If F1

is heavy-tailed, then (1.2) holds.

The rest of the paper consists of 3 sections. The proof of Theorem 1.1 is presented in Section

2. Some asymptotic results for the ratio
P (

∑m
i=1Xi>x)∑m
i=1 Fi(x)

for real-valued summands with either

heavy or light tails are derived in Section 3. In Section 4, some asymptotic results for local

distributions and densities of the sums are established.

§2 Proof of Theorem 1.1

Hereafter, all limits are taken as n→∞ unless otherwise stated. And we write an = o(bn),

if lim an/bn = 0; an ∼ bn, if lim an/bn = 1 and an = O(bn), if lim sup an/bn <∞.

To prove Theorem 1.1, we need some lemmas, which are of independent interest in their

own right. It follows from Theorem 1.A that for any heavy-tailed distribution F supported on

[0,∞), there exists a sequence of positive numbers xn ↑ ∞ such that

F ∗2(xn) ∼ 2F (xn). (2.1)
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Furthermore, the following lemma states that such a distribution is piecewise long-tailed at the

left-hand sides of the points xn, n ≥ 1.

Lemma 2.1. Suppose that F is a distribution supported on [0,∞) and {xn}n≥1 is a sequence of

positive numbers increasing to ∞. If (2.1) holds, then there exists another sequence of positive

numbers tn ↑ ∞ such that tn = o(xn) and

F (xn − tn) ∼ F (xn).

Since the proof of Lemma 2.1 is similar to that of Lemma 2.2 of Yu et al. (2010), we omit

the details. For a heavy-tailed distribution F with a finite mean, the above property was proved

by (10) of Foss and Korshunov (2007).

The next lemma is due to Theorem 2.11 of Foss et al. (2013).

Lemma 2.2. Let Xi, 1 ≤ i ≤ m be nonnegative r.v.s with distributions Fi, 1 ≤ i ≤ m. If∑m
i=1 Fi(x) > 0 for all x > 0, then

lim inf
x→∞

P (
∑m
i=1Xi > x)∑m
i=1 Fi(x)

≥ 1.

The following lemma seems to be intuitive, but it is helpful to prove Lemma 2.4. So we

deliver a complete proof.

Lemma 2.3. Suppose that {ain}n≥1 and {bin}n≥1, 1 ≤ i ≤ m are sequences of positive numbers.

If for all 1 ≤ i ≤ m,

lim inf
ain
bin
≥ 1 (2.2)

and
m∑
i=1

ain ∼
m∑
i=1

bin, (2.3)

then

max
1≤i≤m

∣∣ain − bin∣∣ = o

(
m∑
i=1

bin

)
. (2.4)

Proof. We assume that (2.4) does not hold, then there exist some ε0 > 0 and a sequence of

positive integers nk ↑ ∞ as k →∞ such that for all nk, k ≥ 1,

max
1≤i≤m

∣∣ai,nk − bi,nk ∣∣ ≥ ε0 m∑
i=1

bi,nk . (2.5)

Since the numbers bin, n ≥ 1, 1 ≤ i ≤ m are positive, it follows from (2.2) that for ε0
2m > 0,

there exists N > 0 such that for all n ≥ N,

min
1≤i≤m

(ain − bin) ≥ − ε0
2m

m∑
i=1

bin. (2.6)

Without loss of generality, we may assume that n1 > N. Thus by (2.5) and (2.6), for all

nk, k ≥ 1,

max
1≤i≤m

(ai,nk − bi,nk) = max
1≤i≤m

∣∣ai,nk − bi,nk ∣∣ ≥ ε0 m∑
i=1

bi,nk . (2.7)
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Therefore, it follows from (2.6) and (2.7) that
m∑
i=1

ai,nk −
m∑
i=1

bi,nk ≥ max
1≤i≤m

(ai,nk − bi,nk) + (m− 1) min
1≤i≤m

(ai,nk − bi,nk)

≥ ε0

m∑
i=1

bi,nk − (m− 1)
ε0
2m

m∑
i=1

bi,nk

>
ε0
2

m∑
i=1

bi,nk ,

which contradicts (2.3). Thus (2.4) is proved. �

The following lemma plays an important role in the proof of Theorems 1.1 and 3.1.

Lemma 2.4. Suppose that the distributions Fi, 1 ≤ i ≤ m are supported on [0,∞). If F1 is

heavy-tailed, then there exists a sequence of positive numbers xn ↑ ∞ such that for two subsets

{i1, i2 · · · , ik} and {j1, j2 · · · , jl} of the set {1, 2 · · · ,m}, where 1 ≤ k, l ≤ m, we have

(Fi1 ∗ Fi2 ∗ · · · ∗ Fik) ∗ (Fj1 ∗ Fj2 ∗ · · · ∗ Fjl)(xn)

= Fi1 ∗ Fi2 ∗ · · · ∗ Fik(xn) + Fj1 ∗ Fj2 ∗ · · · ∗ Fjl(xn) + o(F1 ∗ F2 ∗ · · · ∗ Fm(xn)).

Proof. Let

H = (2m − 1)−1
m∑
j=1

∑
1≤a1<a2<··· ,aj≤m

Fa1 ∗ Fa2 ∗ · · · ∗ Faj

≡ (2m − 1)−1
2m−1∑
i=1

Gi.

Since F1 is heavy-tailed, the distribution H is heavy-tailed, too. Just as discussed at the

beginning of the section, there exists a sequence of positive numbers xn ↑ ∞ such that

H∗2(xn) ∼ 2H(xn). (2.8)

By the definition of H, we have

H∗2(xn)

2H(xn)
=

2m−1∑
i=1

2m−1∑
j=1

Gi ∗Gj(xn)

2(2m − 1)
2m−1∑
i=1

Gi(xn)

=

2m−1∑
i=1

2m−1∑
j=1

Gi ∗Gj(xn)

2m−1∑
i=1

2m−1∑
j=1

(
Gi(xn) +Gj(xn)

) . (2.9)

Obviously, for two distributions V1 and V2, V1 ∗ V2(x) > 0 for all x > 0 if and only if V 1(x) +

V 2(x) > 0 for all x > 0. So in (2.9), the numbers of the non-zero terms in the numerator and

denominator are equal. Moreover, by Lemma 2.2, for any 1 ≤ i, j ≤ 2m − 1, ifGi(x)+Gj(x) > 0

for all x > 0, then

lim inf
Gi ∗Gj(xn)

Gi(xn) +Gj(xn)
≥ 1. (2.10)

Hence, by (2.8)-(2.10), Lemma 2.3 and the definition of H, for any 1 ≤ i, j ≤ 2m − 1,

Gi ∗Gj(xn) = Gi(xn) +Gj(xn) + o
(
2H(xn)

)
= Gi(xn) +Gj(xn) + o(F1 ∗ F2 ∗ · · · ∗ Fm(xn)). (2.11)
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One might easily find that for two subsets {i1, i2 · · · , ik} and {j1, j2 · · · , jl} of the set {1, 2 · · · ,m},
there exist two numbers 1 ≤ k0, l0 ≤ 2m − 1 such that the distributions Fi1 ∗ Fi2 ∗ · · · ∗ Fik and

Fj1 ∗Fj2 ∗ · · · ∗Fjl are identical with the distributions Gk0 and Gl0 , respectively. Thus we finish

the proof by (2.11). �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.4, there exists a sequence of positive numbers xn ↑ ∞
such that for all 2 ≤ k ≤ m,

F1 ∗ F2 ∗ · · · ∗ Fk(xn) = F1 ∗ F2 ∗ · · · ∗ Fk−1(xn) + Fk(xn) + o(F1 ∗ F2 ∗ · · · ∗ Fm(xn)).

Thus we immediately get

F1 ∗ F2 ∗ · · · ∗ Fm(xn) =
m∑
i=1

Fi(xn) + o(F1 ∗ F2 ∗ · · · ∗ Fm(xn)),

which, together with Lemma 2.2, implies (1.2). Thus we finish the proof. �

§3 Asymptotic results for tail distributions of sums of real-valued

r.v.s

In Section 1, we get the exact lower limit for the ratio
P (

∑m
i=1Xi>x)∑m
i=1 Fi(x)

as x → ∞, where

Xi, 1 ≤ i ≤ m are nonnegative and F1 is heavy-tailed. In this section, we attempt to deal with

real-valued r.v.s. Xi, 1 ≤ i ≤ m. Instead of the exact lower limit, we get asymptotic upper

bound for the lower limit and asymptotic lower bound for the upper limit of the ratio. Related

discussion for randomly stopped sums with identically distributed summands may be found in

Lemma 4 of Denisov (2008a), Proposition 4.1 (ii) and Lemma 5.1 of Watanabe and Yamamuro

(2010), and Theorems 1.1 and 1.2 of Yu et al. (2010).

We first study the heavy-tailed case.

3.1 The heavy-tailed case

Theorem 3.1. Let Xi, 1 ≤ i ≤ m be real-valued r.v.s with distributions Fi, 1 ≤ i ≤ m. If F1 is

heavy-tailed, then

lim inf
x→∞

P (
∑m
i=1Xi > x)∑m
i=1 Fi(x)

≤ 1 (3.1)

and

lim sup
x→∞

P (
∑m
i=1Xi > x)∑m
i=1 Fi(x)

≥ 1. (3.2)

Proof. Let F+
i denote the distribution of X+

i = XiI{Xi≥0}, 1 ≤ i ≤ m, where the notation IA

represents the indictor function of the set A. Obviously,

P

(
m∑
i=1

Xi > x

)
≤ P

(
m∑
i=1

X+
i > x

)
. (3.3)
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Dividing both sides of (3.3) by
∑m
i=1 Fi(x) and taking lower limits as x→∞, we immediately

get (3.1) by Theorem 1.1.

Next we prove (3.2). By Lemma 2.4, there exists a sequence of positive numbers xn ↑ ∞
such that

(F+
1 ∗ F

+
2 ∗ · · · ∗ F

+
m)∗2(xn) ∼ 2F+

1 ∗ F
+
2 ∗ · · · ∗ F

+
m(xn), (3.4)

and for all 2 ≤ k ≤ m,

F+
1 ∗ F

+
2 ∗ · · · ∗ F

+
k (xn) = F+

1 ∗ F
+
2 ∗ · · · ∗ F

+
k−1(xn) + F+

k (xn)

+ o(F+
1 ∗ F

+
2 ∗ · · · ∗ F

+
m(xn)). (3.5)

By (3.5) and the proof of Theorem 1.1, we have

F+
1 ∗ F

+
2 ∗ · · · ∗ F

+
m(xn) ∼

m∑
i=1

F+
i (xn). (3.6)

By (3.4) and Lemma 2.1, there exists a sequence of positive numbers {tn}n≥1 such that tn ↑ ∞,

tn = o(xn) and

F+
1 ∗ F

+
2 ∗ · · · ∗ F

+
m(xn − tn) ∼ F+

1 ∗ F
+
2 ∗ · · · ∗ F

+
m(xn). (3.7)

Without loss of generality, we assume that xn > tn for all n, then by (3.6) and (3.7),

P

(
m∑
i=1

Xi > xn − tn

)
≥

m∑
i=1

Fi(xn) ·
∏
j 6=i

(
Fj

(
tn
m

)
− Fj

(
− tn
m

))

∼
m∑
i=1

F+
i (xn)

∼ F+
1 ∗ F

+
2 ∗ · · · ∗ F

+
m(xn − tn). (3.8)

Meanwhile, Lemma 2.2 implies that

lim inf
F+
1 ∗ F

+
2 ∗ · · · ∗ F

+
m(xn − tn)∑m

i=1 Fi(xn − tn)
≥ 1. (3.9)

Combining (3.8) with (3.9), we immediately get (3.2). �

3.2 The light-tailed case

Motivated by Lemma 9 of Foss et al. (2007) and Lemma 4 of Denisov et al. (2008a), we

establish some light-tailed results corresponding to Theorem 3.1 in this subsection.

For any distribution F , denote its Laplace transform at the point α ≥ 0 by

F̂ (α) =

∫ ∞
−∞

eαyF (dy).

Let

γF = sup

{
α ≥ 0 : F̂ (α) <∞

}
.

Our main result is as follows.
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Theorem 3.2. Let Xi, 1 ≤ i ≤ m be real-valued r.v.s with distributions Fi, 1 ≤ i ≤ m. If

0 < γ = min
1≤i≤m

γFi <∞ and max
1≤i≤m

F̂i(γ) <∞, then

lim inf
x→∞

P (
∑m
i=1Xi > x)∑m

i=1

∏
j 6=i

F̂j(γ)Fi(x)
≤ 1 (3.10)

and

lim sup
x→∞

P (
∑m
i=1Xi > x)∑m

i=1

∏
j 6=i

F̂j(γ)Fi(x)
≥ 1. (3.11)

Proof. The proofs of (3.10) and (3.11) are similar, so we only prove (3.10).

Write the left-hand side of (3.10) as c, then for any ε > 0, there exists x1 > 0 such that

when x > x1,

P

(
m∑
i=1

Xi > x

)
> (c− ε)

m∑
i=1

∏
j 6=i

F̂j(γ)Fi(x). (3.12)

For all 1 ≤ i ≤ m, define

Hi(dx) = (F̂i(γ))−1eγxFi(dx), x ∈ (−∞,∞),

then

Hi(x) = (F̂i(γ))−1
(
Fi(x)eγx + γ

∫ ∞
x

Fi(t)e
γtdt

)
. (3.13)

It is obvious that

H1 ∗H2 ∗ · · · ∗Hm(dx) =

m∏
i=1

(F̂i(γ))−1eγxF1 ∗ F2 ∗ · · · ∗ Fm(dx), x ∈ (−∞,∞),

thus we have

H1 ∗H2 ∗ · · · ∗Hm(x)

=
m∏
j=1

(F̂j(γ))−1
∫ ∞
x

eγtF1 ∗ F2 ∗ · · · ∗ Fm(dt)

=
m∏
j=1

(F̂j(γ))−1
(
eγxF1 ∗ F2 ∗ · · · ∗ Fm(x) + γ

∫ ∞
x

eγtF1 ∗ F2 ∗ · · · ∗ Fm(t)dt

)
. (3.14)

Substituting (3.12) into (3.14), we have

H1 ∗H2 ∗ · · · ∗Hm(x)

≥ (c− ε)

(
m∑
i=1

(F̂i(γ))−1Fi(x)eγx + γ

∫ ∞
x

m∑
i=1

(F̂i(γ))−1Fi(t)e
γtdt

)

= (c− ε)
m∑
i=1

(F̂i(γ))−1
(
Fi(x)eγx + γ

∫ ∞
x

Fi(t)e
γtdt

)

= (c− ε)
m∑
i=1

Hi(x),
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where in the last step (3.13) was used. Thus we have

c− ε ≤ lim inf
x→∞

H1 ∗H2 ∗ · · · ∗Hm(x)∑m
i=1Hi(x)

. (3.15)

Note that at least one of the distributions H1, · · · , Hm is heavy-tailed, so by Theorem 3.1, we

have

lim inf
x→∞

H1 ∗H2 ∗ · · · ∗Hm(x)∑m
i=1Hi(x)

≤ 1. (3.16)

Since ε is arbitrary, by (3.15) and (3.16), we have c ≤ 1. This completes the proof. �

Remark 3.1. We point out that if we allow γ = 0 in Theorem 3.2, then F̂i(γ) = 1, 1 ≤ i ≤ m
and at least one of the summands is heavy-tailed, thus the conclusion coincides with Theorem

3.1.

§4 Asymptotic results for local distributions and densities of sums

of r.v.s

In this section, we present the local and density versions of Theorems 3.1 and 3.2. To this

end, we give some notations.

For any 0 < T < ∞, let ∆T = (0, T ] and x + ∆T = (x, x + T ]. For a distribution F , let

F (x+ ∆T ) = F (x+ T )− F (x), x ∈ (−∞,∞). For two measurable functions f and g, let

f ⊗ g(x) ≡
∫ ∞
−∞

f(x− y)g(y)dy.

So if Fi, 1 ≤ i ≤ m are absolutely continuous with densities fi, 1 ≤ i ≤ m, then f1⊗ f2 · · · ⊗ fm
is the density of

∑m
i=1Xi. Similar to the notations in Section 3, for any α ≥ 0, we write

f̂(α) =

∫ ∞
−∞

eαyf(y)dy

and let

γf = sup

{
α ≥ 0 : f̂(α) <∞

}
.

One might easily find that, if f is the density of F , then for any α ≥ 0, f̂(α) = F̂ (α) and

γf = γF .

We first study the asyptotics of the local distribution P (
∑m
i=1Xi ∈ x+ ∆T ) as x→∞.

Theorem 4.1. Let Xi, 1 ≤ i ≤ m be real-valued r.v.s. with distributions Fi, 1 ≤ i ≤ m.

Suppose that γ = min
1≤i≤m

γFi < ∞ and max
1≤i≤m

F̂i(γ) < ∞. If
∑m
i=1 Fi(x + ∆T ) is eventually

positive, then

lim inf
x→∞

P (
∑m
i=1Xi ∈ x+ ∆T )∑m

i=1

∏
j 6=i

F̂j(γ)Fi(x+ ∆T )
≤ 1 (4.1)

and

lim sup
x→∞

P (
∑m
i=1Xi ∈ x+ ∆T )∑m

i=1

∏
j 6=i

F̂j(γ)Fi(x+ ∆T )
≥ 1. (4.2)
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Proof. We only prove (4.1), and (4.2) can be proved similarly.

Suppose that (4.1) does not hold, then there exist two numbers ε0 > 0 and N0 > 0 such

that, for all x > N0,

P

(
m∑
i=1

Xi ∈ x+ ∆T

)
> (1 + ε0)

m∑
i=1

∏
j 6=i

F̂j(γ)Fi(x+ ∆T ).

Thus

P

(
m∑
i=1

Xi > x

)
=

∞∑
n=0

P

(
m∑
i=1

Xi ∈ x+ nT + ∆T

)

> (1 + ε0)
∞∑
n=0

m∑
i=1

∏
j 6=i

F̂j(γ)Fi(x+ nT + ∆T )

= (1 + ε0)
m∑
i=1

∏
j 6=i

F̂j(γ)Fi(x),

which, in the case γ = 0, contradicts Theorem 3.1 and in the case γ > 0, contradicts Theorem

3.2. This completes the proof. �

Next, we present the density version of Theorems 3.1 and 3.2, which is inspired by Lemma

2 of Foss and Korshunov (2007) and Theorems 3.1 and 3.2 of Yu et al. (2010). Since the proof

is quite similar to that of the local version, we omit the details.

Theorem 4.2. Let Xi, 1 ≤ i ≤ m be real-valued r.v.s. with distribution densities fi, 1 ≤ i ≤ m.

Suppose that γ = min
1≤i≤m

γfi < ∞ and max
1≤i≤m

f̂i(γ) < ∞. If
∑m
i=1 fi(x) is eventually positive,

then

lim inf
x→∞

f1 ⊗ f2 · · · ⊗ fm(x)∑m
i=1

∏
j 6=i

f̂j(γ)fi(x)
≤ 1

and

lim sup
x→∞

f1 ⊗ f2 · · · ⊗ fm(x)∑m
i=1

∏
j 6=i

f̂j(γ)fi(x)
≥ 1.
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