
Appl. Math. J. Chinese Univ.
2018, 33(1): 25-34

Waiting times and stopping probabilities for patterns in

Markov chains

ZHAO Min-zhi1 XU Dong1 ZHANG Hui-zeng2,∗

Abstract. Suppose that C is a finite collection of patterns. Observe a Markov chain until one

of the patterns in C occurs as a run. This time is denoted by τ . In this paper, we aim to give

an easy way to calculate the mean waiting time E(τ ) and the stopping probabilities P (τ = τA)

with A ∈ C, where τA is the waiting time until the pattern A appears as a run.

§1 Introduction

Suppose that {Zn}n≥1 is a discrete time homogenous Markov chain with finite state space

Δ. A finite sequence of elements from Δ is called a pattern. We will use a capital letter to

denote a pattern. Use C to denote a finite collection of patterns. For example, if Δ = {0, 1},
then A = 1011 is a pattern while C = {101, 11} is a finite collection of patterns. For a pattern

A, use τA to denote the waiting time until A occurs as a run in the sequence Z1, Z2, · · · . Let

τ = τC = min{τA : A ∈ C} be the waiting time till one of the patterns appears. We are

interested in the calculation of E(τ) and P (τ = τA) with A ∈ C.
In many applications, such as quality control, hypothesis testing, reliability theory and scan

statistics, the distribution of τ is very important. Naus [9,10] used a window with length w to

scan a process until time T and then got a scan statistic. The distribution of this scan statistic

can be transformed into the distribution of τC with some special collection of patterns. For

example, if Δ = {0, 1}, w = 4 and the scan statistic is

ST = max
1≤i≤T−3

(Zi + Zi+1 + Zi+2 + Zi+3),

then ST denotes the maximal number of 1 appears in a window of length 4 until time T . In

this case, P (ST ≥ 2) = P (τC ≤ T ), where C = {11, 101, 1001}. Another interesting application

is Penney-Ante game which is developed by Walter Penney (see [11]). It is a game with two
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players. Player I chooses a triplet of outcomes namely A. Then payer II chooses a different

triplet namely B. An unbiased coin is flipped repeatedly until A or B is observed. If A occurs

first, then player I wins the game. Otherwise player II wins. Clearly, the wining probability for

player II is P (τC = τB), where C = {A,B}. After player I has selected A, the most important

thing for player II is to find an optimal strategy, that is he should find a triplet B that maximizes

his winning probability. In fact, such an optimal strategy exists (see [1]).

Thanks to its importance, the occurrence of patterns has been studied by many people.

When Z1, Z2, · · · are i.i.d., Li [8], Gerber and Li [5] used the Martingale method to study the

problem. Later in 1981, Guibas and Odlyzko [7] used the combinatorial method to obtain the

linear equations of E(τ) and P (τ = τA). When {Zn} is a Markov chain, in 1990, Chrysaphinou

and Papastavridis [2] used the combinatorial method to obtain the linear equations of E(τ).

In 2002, Fu and Chang [3] studied E(τ) by using Markov chain embedding method. Later

Glaz, Kulldorff and etc. [6], Pozdnyakov [12] introduced gambling teams and used Martingale

theory to study E(τ). In 2014, Gava and Salotti [4] obtained the system of linear equations of

P (τ = τA) with A ∈ C based on the results of [6] and [12].

When {Zn} is a Markov chain, though the mean waiting time E(τ) and the stopping prob-

abilities P (τ = τA) were obtained in [4], [6] and [12], the method is complicated. Briefly speak-

ing, the method is divided into four steps. Firstly, define the sets D′ = {lA : l ∈ Δ, A ∈ C} and

C′ = {lmA : l,m ∈ Δ, A ∈ C}. Use D′′ and C′′ to denote the collection of patterns excluding

from D′ and from C′, respectively, the patterns that cannot occur at time τ . Set K ′ = |C|+ |D′′|
and M ′ = |C′′|. Secondly, introduce the gambling teams, compute the profit matrix W that has

(K ′ +M ′)M ′ elements, and compute the probability of occurrence of the i-th ending scenario

with i = 1, 2, · · · ,K ′ +M ′. Thirdly, solve a linear system of M ′ equations in M ′ variables and
then obtain the mean waiting time E(τ). Finally, solve about M ′ linear systems involving M ′

equations and M ′ variables and then get the stopping probabilities P (τ = τA).

In this paper, we aim to find an easy and effective method to calculate E(τ) and P (τ = τA).

Inspired by the paper [7], we use the combinative probabilistic analysis and the Markov property.

The main result of our paper is Theorem 2.1. It extend Theorem 3.3 of [7] to Markov case.

Corollary 2.3 gives a better way to obtain E(τ) and P (τ = τA) with A ∈ C: solving only a

single linear system involving |Δ|+ |C| equations and |Δ|+ |C| variables. The rest of the paper

is organized as follows. In §2, the main results and the proofs are given. In §3, some examples

are discussed.

§2 Main results

In our paper, suppose that {Zn}n≥1 is a discrete time homogenous Markov chain with

finite state space Δ, initial distribution μi = P (Z1 = i) and one-step transition probability

Pij = P (Zn+1 = j|Zn = i). We will make the following three assumptions.

(A.1) No pattern in C is a subpattern of another pattern in C.
(A.2) For any K = K1K2 · · ·Km ∈ C, PK1K2 · · ·PKm−1Km > 0.
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(A.3) That P (τ < ∞) = 1 and E(τ) < ∞.

For a pattern K, let Ki denote the i-th element of K, |K| denote the length of K, that is,

K = K1K2 · · ·K|K|. Let X
(j)
K = I{j}(K|K|). For patterns K = K1 · · ·Ks and T = T1 · · ·Tt,

let {KT } be a subset of {1, 2, · · · , s ∧ t} such that an integer k is in {KT } if and only if

Ks−k+1 · · ·Ks = T1 · · ·Tk. Note that in [7], the correlation of K and T , denoted by cor(K,T ),

is defined as a string over {0, 1} with the same length as K. The k-th bit (from the right) of

cor(K,T ) is 1 if and only if k ∈ {KT }. For example, if K = 101001 and T = 10010, then

cor(K,T ) = 001001 and {KT } = {1, 4}. Here the correlation between two patterns is different

to the traditional correlation between two random variables.

For any i ∈ Δ and any pattern K, let

Pi→K = P
(
(Z2, · · · , Z|K|+1) = K|Z1 = i

)
= PiK1PK1K2 · · ·PK|K|−1K|K| .

The pattern of length 0 is denoted by φ. Set Pi→φ = 1. For any pattern K,T ∈ C, let

g̃KT (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

r∈{KT}
1≤r<|T |

zr · PTr→Tr+1···T|T |

/

PT1→T2···T|T | , K �= T ,

⎛

⎜
⎝

∑

r∈{KT}
1≤r<|T |

zr · PTr→Tr+1···T|T | + z|T |

⎞

⎟
⎠

/

PT1→T2···T|T | , K = T .

For i ∈ Δ, K ∈ C and n ≥ 1 , define

Si(n) = P (Zn = i, τ > n) and SK(n) = P (τ = τK = n).

Now, define the corresponding generating functions

Fi(z) =

∞∑

n=1

Si(n) · z−n and fK(z) =

∞∑

n=1

SK(n) · z−n,

where z ≥ 1. Our main result is the following Theorem.

Theorem 2.1. For any z ≥ 1, the functions Fi(z) and fK(z) with i ∈ Δ and K ∈ C satisfy

the following system of linear equations:⎧
⎪⎨

⎪⎩

∑

i∈Δ

Fi(z) · Pij = z · Fj(z) + z · ∑
K∈C

fK(z) ·X(j)
K − μj , j ∈ Δ,

∑

i∈Δ

Fi(z) · PiT1 =
∑

K∈C
fK(z) · g̃KT (z)− μT1 , T ∈ C. (2.1)

Proof. Firstly, for j ∈ Δ and n ≥ 1,
∑

i∈Δ

Si(n) · Pij = P (τ > n, Zn+1 = j)

= P (τ > n+ 1, Zn+1 = j) +
∑

K∈C
P (τ = τK = n+ 1, Zn+1 = j)

= Sj(n+ 1) +
∑

K∈C
SK(n+ 1) ·X(j)

K .

Thus we have,
∞∑

n=1

∑

i∈Δ

Si(n) · z−n · Pij = z ·
∞∑

n=1

Sj(n+ 1) · z−n−1 + z ·
∞∑

n=1

∑

K∈C
SK(n+ 1) · z−n−1 ·X(j)

K .
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Note that

Sj(1) +
∑

K∈C
SK(1) ·X(j)

K = P (Z1 = j) = μj .

It follows that ∑

i∈Δ

Fi(z) · Pij = z · Fj(z) + z ·
∑

K∈C
fK(z) ·X(j)

K − μj . (2.2)

Secondly, for T ∈ C and i ∈ Δ, define

Si,T (n) =

{
0, n ≤ |T |,
P (τ = τT = n, Zn−|T | = i), n ≥ |T |+ 1.

Define the corresponding generating function fi,T (z) on z ≥ 1 as

fi,T (z) =

∞∑

n=1

Si,T (n) · z−n.

Clearly, when n ≥ |T |+ 1, ST (n) =
∑

i∈Δ Si,T (n). It implies that
∞∑

|T |+1

ST (n) · z−n =
∑

i∈Δ

∞∑

|T |+1

Si,T (n) · z−n.

Set PT = P
(
(Z1, · · · , Z|T |

)
= T ) = μT1 · PT1→T2···T|T | . Then we have

fT (z)− z−|T | · PT =
∑

i∈Δ

fi,T (z). (2.3)

Thirdly, for T ∈ C, i ∈ Δ and n ≥ 1,

Si(n) · Pi→T = P
(
τ > n, Zn = i, (Zn+1, · · · , Zn+|T |) = T

)

=

|T |∑

r=1

P
(
τ = n+ r, Zn = i, (Zn+1, · · · , Zn+|T |) = T

)

=
∑

1≤r<|T |

∑

K∈C
P
(
τ = τK = n+ r, Zn = i, (Zn+1, · · · , Zn+|T |) = T

)

+ P (τ = τT = n+ |T |, Zn = i). (2.4)

Obviously,

P (τ = τT = n+ |T |, Zn = i) = Si,T (n+ |T |). (2.5)

For 1 ≤ r < |T | and K ∈ C, under the condition that τ = τK = n+r, we have (Zn+r−|K|+1, · · · ,
Zn+r) = K. If in addition Zn = i and (Zn+1, · · · , Zn+|T |) = T , then for the reason thatK is not

a subpattern of T (except that K may be equal to T ), we have |K| ≥ r+1,K|K|−r+1 · · ·K|K| =
T1 · · ·Tr and K|K|−r = i, that is, r ∈ {KT } and K|K|−r = i. Therefore

P
(
τ = τK = n+ r, Zn = i, (Zn+1, · · · , Zn+|T |) = T

)

=P
(
τ = τK = n+ r, (Zn+r+1, · · · , Zn+|T |) = (Tr+1, · · · , T|T |)

)

· I{KT}(r) · I{i}(K|K|−r)

=SK(n+ r) · PTr→Tr+1···T|T | · I{KT}(r) · I{i}(K|K|−r). (2.6)

In view of (2.4)–(2.6), we obtain that

Si(n) · Pi→T =
∑

K∈C

∑

r∈{KT}
1≤r<|T |

SK(n+ r) · PTr→Tr+1···T|T | · I{i}(K|K|−r) + Si,T (n+ |T |).
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Consequently,
∞∑

n=1

Si(n)z
−nPi→T =

∑

K∈C

∑

r∈{KT}
1≤r<|T |

zr · PTr→Tr+1···T|T | · I{i}(K|K|−r) ·
∞∑

n=1

SK(n+ r) · z−n−r

+z|T | ·
∞∑

n=1

Si,T (n+ |T |) · z−n−|T |. (2.7)

Note that for r ∈ {KT } and 1 ≤ r < |T |, we have r < |K|. So
∞∑

n=1

SK(n+ r) · z−n−r = fK(z).

Hence we can rewrite (2.7) as

Fi(z) · Pi→T =
∑

K∈C
fK(z) ·

∑

r∈{KT}
1≤r<|T |

zr · PTr→Tr+1···T|T | · I{i}(K|K|−r) + z|T | · fi,T (z). (2.8)

Summing all i ∈ Δ gives
∑

i∈Δ

Fi(z) · Pi→T =
∑

K∈C
fK(z) ·

∑

r∈{KT}
1≤r<|T |

zr · PTr→Tr+1···T|T | + z|T | ·
∑

i∈Δ

fi,T (z). (2.9)

Finally, combining (2.3) with (2.9), we conclude that
∑

i∈Δ

Fi(z) · Pi→T =
∑

K∈C
fK(z) ·

∑

r∈{KT}
1≤r<|T |

zr · PTr→Tr+1···T|T | + z|T | · fT (z)− PT .

Dividing by PT1→T2···T|T | on both sides yields that
∑

i∈Δ

Fi(z) · PiT1 =
∑

K∈C
fK(z) · g̃KT (z)− μT1 . (2.10)

This, together with (2.2), completes the proof.

Proposition 2.2. The linear system (2.1) is nonsingular.

Proof. W.l.o.g., suppose that Δ = {1, · · · ,m} and C = {A,B, · · · , T }. Let

Q(z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

P11 − z P21 · · · Pm1 −zX
(1)
A −zX

(1)
B · · · −zX

(1)
T

· · ·
P1m P2m · · · Pmm − z −zX

(m)
A −zX

(m)
B · · · −zX

(m)
T

P1A1 P2A1 · · · PmA1 −g̃AA(z) −g̃BA(z) · · · −g̃TA(z)

· · ·
P1T1 P2T1 · · · PmT1 −g̃AT (z) −g̃BT (z) · · · −g̃TT (z)

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

Then we can rewrite (2.1) as

Q(z) (F1(z), · · · , Fm(z), fA(z), · · · , fT (z))T = (−μ1, · · · ,−μm,−μA1 , · · · ,−μT1)
T .

Let ϕ(z) = |Q(z)| be the determinant of Q(z). It suffices to show that ϕ(z) is a nonzero

polynomial. Clearly, at the i-th row of Q(z) with 1 ≤ i ≤ m, the highest degree is 1 and occurs

on the diagonal or after the m-th column; while at the j-th row with j ≥ m + 1, the highest

degree polynomial occurs only on the diagonal. Therefore in the expansion of ϕ(z), the unique

highest degree monomial comes from the product of the diagonal terms. This, together with
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the fact the highest degree monomial of g̃AA(z) is
z|A|

PA1→A2···A|A|
, implies that the unique highest

degree monomial of ϕ(z) is

(−1)m+|C| 1

PA1→A2···A|A|PB1→B2···B|B| · · ·PT1→T2···T|T |
zm+|A|+···+|T |.

It shows that ϕ(z) is a nonzero polynomial as desired.

For i ∈ Δ and T ∈ C, let Fi = Fi(1) and fT = fT (1). Then Fi = E

(
∑

n<τ
I{Zn=i}

)
is the

mean staying time at i before τ , and fT = P (τ = τT < ∞) is the probability that the pattern T

appears first among all the patterns in C. Thus we have E(τ) = 1+
∑

i∈Δ

Fi. Let g̃KT = g̃KT (1).

Substituting z = 1 into Theorem 2.1 gives the following Corollary.

Corollary 2.3. The following system of linear equations holds:⎧
⎪⎨

⎪⎩

∑

i∈Δ

Fi · Pij = Fj +
∑

K∈C
fK ·X(j)

K − μj , j ∈ Δ,

∑

i∈Δ

Fi · PiT1 =
∑

K∈C
fK · g̃KT − μT1 , T ∈ C. (2.11)

Remark 2.4. (1) For z ≥ 1, define

F (z) = 1 +
∑

i∈Δ

Fi(z) =

∞∑

n=0

P (τ > n) · z−n

and

f(z) =
∑

K∈C
fK(z) =

∞∑

n=1

P (τ = n) · z−n.

If we have solved all fK(z) with K ∈ C, then we can obtain the generating function f(z). In

theory, we can obtain the distribution of τ . Particularly, we can calculate the moments of τ .

(2) Theorem 2.1 is the generalization of Theorem 3.3 of [7]. Summing all j ∈ Δ in the first

part of (2.1), we get

(z − 1) · F (z) + z ·
∑

K∈C
fK(z) = z. (2.12)

In the case that Z1, Z2, · · · are i.i.d and μj > 0 for all j, Pij = μj does not depend on i.

Dividing by μT1 at the both side of the second part of (2.1) gives:

F (z) =
∑

K∈C
fK(z) · g̃KT (z)/μT1 . (2.13)

If we define cKT (z) = g̃KT (z)/(z · μT1) =
∑

r∈{KT}
zr−1

μT1 ···μTr
, then combining (2.12) with (2.13)

yields Theorem 3.3 of [7]. Note that the definition of cKT (z) in [7] has a typo and we correct

it here.

(3) To obtain E(τ) and P (τ = τA) with A ∈ C, we only need to solve one linear system

involving |Δ|+ |C| equations and |Δ|+ |C| variables. Compared with the results in [4], [6] and

[12], it is a much easy and effective way.

When |T | = 1 and T is not a subpattern of K, we must have

g̃KT (z) =

{
0, K �= T,

z, K = T.
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If j ∈ C, then Fj(z) = 0. By the above discussion, Theorem 2.1 yields the following Corollary.

Corollary 2.5. If the lengths of all patterns in C are 1, then the following linear system holds:⎧
⎪⎨

⎪⎩

∑

i/∈C
Fi(z) · Pij = z · fj(z)− μj , j ∈ C,

∑

i/∈C
Fi(z) · Pij = z · Fj(z)− μj , j /∈ C.

When all pattern contains only one element, we only need to solve a linear system involving

|Δ| equations.
Corollary 2.6. Suppose that the first elements of all patterns in C are equal and A is any

pattern in C. Then the following linear system holds:⎧
⎪⎨

⎪⎩

∑

K∈C
fK = 1,

∑

K∈C
fK · (g̃KT − g̃KA) = 0, T ∈ C, T �= A.

(2.14)

Proof. Set h = A1. Then T1 = h for all T ∈ C. In this case, the second part of (2.11) can be

rewritten as following: ∑

i∈Δ

Fi · Pih =
∑

K∈C
fK · g̃KT − μh, T ∈ C.

It shows that for all T ∈ C, the values
∑

K∈C
fK · g̃KT are the same. Particularly,

∑

K∈C
fK · g̃KT =

∑

K∈C
fK · g̃KA.

This, combining with the fact that
∑

K∈C fK = 1 yields our result.

When the first elements of all patterns are equal, namely h, the calculation become more

simplified. To solve fK with K ∈ C, it is enough to solve a linear system of |C| equations. In

this case, the stopping probabilities are only related to the transition probability among those

states in Δ1, but neither the initial distribution nor the transition probability Pij with i or j

outside Δ1, where Δ1 is the set of elements of patterns in C. This is actually true. Intuitively,

all patterns do not occur before the first visiting h. In addition, if the process stays outside

Δ1 and no pattern has occurred, then the behavior before his next visiting h will not affect the

stopping probabilities.

Sometimes we are interested in when the distribution of Zτ is the same as the initial distri-

bution. The Corollary below gives the answer.

Corollary 2.7. Assume that {Zn} is irreducible and has the unique stationary distribution π.

(1) The distribution of Zτ is the same as the initial distribution if and only if there is a

constant c such that Fi = c · πi for all i ∈ Δ. Actually, c = (
∑

K∈C fK · g̃KT − μT1)/πT1 with

any given T ∈ C, and E(τ) = 1 + c.

(2) If the distribution of Zτ is the same as the initial distribution, then the following linear

system holds: ⎧
⎪⎨

⎪⎩

∑

K∈C
fK = 1,

∑

K∈C
fK · (g̃KT −X

(T1)
K ) = c · πT1 , T ∈ C. (2.15)
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Proof. By (1) and Corollary 2.3, (2) follows immediately. Thus we only need to prove (1). The

first part of (2.11) shows that the distribution of Zτ is the same as the initial distribution if

and only if ∑

i∈Δ

Fi · Pij = Fj , j ∈ Δ. (2.16)

Equivalently, there is a constant c such that Fi = c · πi for all i ∈ Δ. In this case, E(τ) =

1 +
∑

i∈Δ Fi = 1 + c. By (2.16) and the second part of (2.11), we have

FT1 =
∑

K∈C
fK · g̃KT − μT1 .

It follows that c = (
∑

K∈C fK · g̃KT − μT1)/πT1 as desired.

§3 Examples

We begin with the analysis of Example 1 of [12]. The mean waiting time and the generating

function of τ are calculated in Example 1 and Example 3 of [12] respectively, while the stopping

probability is obtained in Example 3.1 of [4]. We now recalculate all these values by applying

our results.

Example 3.1. Suppose that Δ = {1, 2, 3} , C = {323, 313, 33}, μ1 = μ2 = μ3 = 1/3 and the

one-step transition probability matrix is

P =

⎛

⎜
⎝

3/4 0 1/4

0 3/4 1/4

1/4 1/4 1/2

⎞

⎟
⎠ .

Let A = 323,B = 313 and C = 33. By calculation, we get

g̃AA(z) = z + 16z3, g̃BA = z, g̃CA = z,

g̃AB(z) = z, g̃BB(z) = z + 16z3, g̃CB = z,

g̃AC = z, g̃BC = z, g̃CC = z + 2z2.

Put these values into (2.1), we get
⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

3
4 − z 0 1

4 0 0 0

0 3
4 − z 1

4 0 0 0
1
4

1
4

1
2 − z −z −z −z

1
4

1
4

1
2 −z − 16z3 −z −z

1
4

1
4

1
2 −z −z − 16z3 −z

1
4

1
4

1
2 −z −z −z − 2z2

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

F1(z)

F2(z)

F3(z)

fA(z)

fB(z)

fC(z)

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

− 1
3

− 1
3

− 1
3

− 1
3

− 1
3

− 1
3

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

It is easily seen that

fA(z) = fB(z) =
F3(z)

16z2
, fC(z) =

F3(z)

2z
, andF1(z) = F2(z) =

4 + 3F3(z)

12z − 9
.

In addition, F3(z) = 8z(4z − 1)/(96z3 − 72z2 − 9). Therefore

E(z−τ ) = f(z) = fA(z) + fB(z) + fC(z) =
16z2 − 1

3z(32z3 − 24z2 − 3)
.

Writing z = 1/α yields that E(ατ ) = α2(α2−16)
3(3α3+24α−32) . Taking z = 1 gives fA = fB = 1/10, fC =
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8/10, F1 = F2 = 44/15, F3 = 24/15, and hence E(τ) = 1 + F1 + F2 + F3 = 127/15. These

results are all in agreement with that in [4] and [12].

Another way is to apply Corollary 2.6 and Corollary 2.7. Because the first elements of

A,B,C are equal, substituting

g̃AA = 17, g̃BA = 1, g̃CA = 1

g̃AB = 1, g̃BB = 17, g̃CB = 1

g̃AC = 1, g̃BC = 1, g̃CC = 3

into (2.14) yields the following linear system:
⎧
⎪⎨

⎪⎩

fA + fB + fC = 1,

−16 · fA + 16 · fB = 0,

−16 · fA + 2 · fC = 0.

Thus fA = fB = 1/10 and fC = 8/10. It is easy to see that the stationary distribution is

π1 = π2 = π3 = 1/3. Because the last elements of A,B,C are all equal to 3, by Corollary 2.7,

E(τ |Z1 = 3) = 1 + (fA · g̃AA + fB · g̃BA + fC · g̃CA − 1)/π3 = 29/5.

Clearly, P (τ3 = 1) = 1
3 and P (τ3 = n) = 2

3 · (34 )n−2 · 1
4 for n ≥ 2. Therefore

E(τ) = E(τ3)− 1 + E(τ |Z1 = 3) = 127/15.

Example 3.2. Suppose that Δ= {1, 2} , C= {A,B} , A = 22, B = 121 and

P =

(
1/4 3/4

3/4 1/4

)

.

When will the distribution of Zτ be the same as the initial distribution?

By calculating, we get g̃AA = 5, g̃BA = 0, g̃AB = 0 and g̃BB = 25/9. The stationary

distribution is π1 = π2 = 1/2. Using Corollary 2.7, we have
⎧
⎪⎨

⎪⎩

fA + fB = 1,

4 · fA = 1
2 · c,

16
9 · fB = 1

2 · c.
Hence μ2 = fA = 4/13, μ1 = fB = 9/13 and c = 32/13. In addition, F1 = c · π1 = 16/13,

F2 = c · π2 = 16/13 and E(τ) = 1 + c = 45/13.
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