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Limit theorems for supremum of Gaussian processes over

a random interval

LIN Fu-ming1,2,∗ PENG Zuo-xiang3

Abstract. Let {X(t), t ≥ 0} be a centered stationary Gaussian process with correlation r(t)

such that 1 − r(t) is asymptotic to a regularly varying function. With T being a nonnegative

random variable and independent of X(t), the exact asymptotics of P (supt∈[0,T] X(t) > x) is

considered, as x → ∞.

§1 Introduction

Let {X(t), t ≥ 0} be a centered stationary Gaussian process whose correlation function

r(t) := Cov(X(s), X(s+ t)) satisfies the assumption

1− r(t) = |t|αH(t) + o(|t|αH(t)) as t→ 0, (1)

where 0 < α < 2 and C is a positive constant. A similar assumption can be found in

Qualls and Watanabe (1972). Under the assumption, we consider the exact asymptotics of

limx→∞ P (supt∈[0,T]X(t) > x) with random variables T being nonnegative and independent of

X(t). The asymptotics of maxima of processes has received a great deal of attention. Pickands

(1969) first proved that

lim
x→∞

P (supt∈[0,T ]X(t) > x)

x2/αψ(x)
= TC1/αQα,

providing r(t) < 1 for all t > 0, where Qα is called the Pickands constant, which was extended

to more general cases in Qualls and Watanabe (1972). But neither of two papers considered the

random interval case. The momentousness of extremes of random processes or random fields

over random intervals comes from theoretic questions in extreme value (see, e.g., Kozubowski et
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al. (2006) for a detailed introduction) and applied problems in other subjects (see, e.g., Dȩbicki

et al. (2004)). For some recent study on extremes of random processes or random fields over

random intervals, we refer the readers to Arendarczyk and Dȩbicki (2012), Tan and Hashorva

(2013a,b) and Dȩbicki et al. (2014). But these results were only based on the assumption of

H(t) being a constant in condition (1).

The rest of the paper is organized as follows. In Section 2, notation and the main result are

presented. Section 3 contains some lemmas. Proofs of the main result are postponed in Section

4. Throughout, K is a constant which may vary from line to line and [x] denotes the integer

part of x.

§2 Notation and main results

Let {X(t), t ≥ 0} be a centered stationary Gaussian process with a.s. continuous sample

paths and correlation function r(t). We first list some definitions of slowly varying functions.

Definition 2.1. A positive function H(t) defined for t > 0 varies slowly at zero (at infinity),

if for all x > 0,

lim
t→0

(t→∞)

H(xt)

H(t)
= 1.

The function H(t) varies slowly at zero if and only if

H(t) = a(t) exp(

∫ 1

t

ε(x)/xdx),

where ε(t) → 0 and a(t) → A as t → 0 (0 < A < ∞). More properties of slowly varying

functions can be found in Karamata (1930), Adamovic (1966) and Feller (1966).

Definition 2.2. The slowly varying function H(t) is said to be “normalized” if a(t) ≡ A in

the formula above.

The following conditions will be used in the main result:

D1. r(t) = 1− |t|αH(|t|) + o(|t|αH(|t|)) as t→ 0, where H(t) is normalized slowly varying at

zero (written H(t) ∈ RV 0
0 ) and 0 < α < 2;

D2. r(t) < 1 for all t > 0;

D3. r(t)(log t)1+ε0 → 0 as t→ ∞, where ε0 > 0 can be made arbitrarily small.

Remark 2.1. D1 is a weak assumption on the correlation function when considering extremes

of Gaussian processes. An example that is easily verified to satisfy such an assumption is

r(t) ≡ exp(−e|t||t|α) with α = 0.5.

Let T be a nonnegative random variable independent from X(t), and we consider two

common types of probability distributions:

C1. T is integrable, i.e., ET <∞;

C2. T has regularly varying tail distribution with parameter λ ∈ (0, 1), i.e., P (T> t) =

L(t)t−λ, where L(·) is slowly varying at ∞ (written (L(t)t−λ) ∈ RV∞−λ).
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In the sequel, we use the constants Qα(a) and Qα, for given α ∈ (0, 2], which defined by the

following limits

Qα = lim
T→∞

1

T

∫ ∞
0

esP ( sup
0<t<T

Y (t) > s)ds

and

Qα(a) = lim
n→∞

1

n

∫ ∞
0

esP ( max
1≤k≤n

Y (ka) > s)ds

with a > 0 being constant, where {Y (t), t ≥ 0} is non-stationary Gaussian process with Y (0) =

0 a.s., E(Y (t)) = −|t|α/2, Cov(Y (t), Y (s)) = (|t|α + |s|α − |t − s|α)/2. Moreover, let ψ(x) =

(2π)−1/2x−1 exp(−x2/2) and σ̃←(·) be the inverse of σ̃(s) = 21/2sα/2(H(s))1/2, s > 0.

Under the above-mentioned conditions, we derive the following result.

Theorem 2.1. Let {X(t), t ≥ 0} be a separable and centered stationary Gaussian process with

a.s. continuous sample paths and correlation function r(t) satisfying D1 and D2.

(i) If the random variable T satisfies C1, then

lim
x→∞

P (supt∈[0,T]X(t) > x)

ψ(x)/σ̃←(1/x)
= E(T)Qα.

(ii) If D3 further holds and the random variable T satisfies C2, then

lim
x→∞

P (supt∈[0,T]X(t) > x)

(ψ(x)/σ̃←(1/x))λL(xσ̃←(1/x) exp(x
2

2 ))
= Γ(1− λ)Qλ

α.

§3 Some lemmas

In this section we introduce and prove some auxiliary results as needed in the course of the

next section.

For convenience, we rewrite Theorem 2.1 in Qualls and Watanabe (1972) as Lemma 3.1

below.

Lemma 3.1. If conditions D1, D2 and limt→0 r(t) log(t) → 0 hold, then

lim
x→∞

P (supt∈[0,T ]X(t) > x)

ψ(x)/σ̃←(1/x)
= TQα. (2)

Lemma 3.2. Let t > 0 be fixed and Δ(x) = σ̃←(1/x) for all x ≥ 1/σ̃(δ̃) (let δ̃ be a threshold

value such that σ̃(s) is monotone on some small interval (0, δ)). Let q(x) = aΔ(x) with a > 0

being constant. If conditions D1 and D2 hold, then for each interval I of length t,

0 ≤ P (X(kq(x)) ≤ x, kq(x) ∈ I)− P (sup
s∈I

X(s) ≤ x) ≤ tρ(a)
1

m(x)
+ o

( 1

m(x)

)
,

where ρ(a) → 0 as a→ 0 and m(x) = (Qαψ(x)/σ̃
←( 1x ))

−1.
Proof. By the stationarity of {X(t), t ≥ 0}, we have

0 ≤ P (X(kq(x)) ≤ x, kq(x) ∈ I)− P (sup
s∈I

X(s) ≤ x)

≤ P (X(0) > x) + P (X(kq(x)) ≤ x, kq(x) ∈ [0, t])− P ( sup
s∈[0,t]

X(s) ≤ x), (3)

where P (X(0) > x) = o(1/m(x)). Furthermore, Lemma 2.3 in Qualls and Watanabe (1972)
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yields

m(x)P
(

max
0≤kq(x)≤t

X(kq(x)) > x
)
= tQ−1α

Qα(a)

a
+ o(1) (4)

and according to (2), we have

m(x)P
(

sup
s∈[0,t]

X(s) > x
)
= t+ o(1). (5)

Noting

P (X(kq(x)) ≤ x, kq(x) ∈ [0, t])− P ( sup
s∈[0,t]

X(s) ≤ x)

= P
(

sup
s∈[0,t]

X(s) > x
)
− P

(
max

0≤kq(x)≤t
X(kq(x)) > x

)
,

then, using (4) and (5) yields that (3) does not exceed

1

m(x)

(
t
(
1−Q−1α

Qα(a)

a

)
+ o(1)

)
.

According to Qualls and Watanabe (1972), we have lima→0Qα(a)/a = Qα and hence ρ(a) :=

1−Q−1α (Qα(a)/a) → 0 as a→ 0. So, the proof is completed.

Without loss of generality, in the sequel we suppose x ≥ 1/σ̃(δ̃).

Lemma 3.3. If 0 < α < 2, then for any ε > 0,

lim
x→∞

( 1

x

)−ε σ̃←(1/x)

(1/x)2/α
= ∞ and lim

x→∞

( 1

x

)ε σ̃←(1/x)

(1/x)2/α
= 0.

Proof. Obviously, σ̃(s) satisfies the conditions of Theorem 1.5.12 of Bingham et al. (1987) since

σ̃(s) ∈ RV 0
α/2 and is monotone increasing on (0, δ̃) with σ̃(0) = 0. So, we have σ̃←(y) ∈ RV 0

2/α

and thus σ̃←(y)/y2/α ∈ RV 0
0 . Using (1.4) on page 581 in Qualls and Watanabe (1972), we

complete the proof.

Lemma 3.4. Let ε > 0 be given, and suppose that D1, D2 and D3 hold. Let T ∼ τ/μ for τ > 0

fixed, as T → ∞ and with μ = Qαψ(x)/σ̃
←(1/x) and let q = aσ̃←(1/x). Then

T

q

∑
ε≤kq≤T

|r(kq)| exp
(
− x2

1 + |r(kq)|
)
→ 0, as T → ∞. (6)

Proof. We first need to show x2 ∼ 2 logT and exp(−x2/2) ≤ KT−1. To accomplish this, we

begin at the condition T ∼ τ/μ, i.e., Tμ = TQαψ(x)/σ̃
←(1/x) → τ > 0. Taking logarithms

yields that

logT + log(Qα(2π)
−1)− x2

2
− log x− log(σ̃←(1/x)) → log τ, (7)

i.e.,

x2 = 2 logT + 2 log((2π)−1Qα)− 2 log(xσ̃←(1/x))− 2 log τ + o(1). (8)

Let 0 < ε1 ≤ max{ε0/2, (2− α)/α} (0 < α < 2). According to Lemma 3.3, there exist positive

constants M1 and M2 such that, for sufficiently large x,

M1x
−ε1+(α−2)/α < xσ̃←(1/x) < M2x

ε1+(α−2)/α, (9)

which furthermore yields

(M1x
−ε1−2/α)1/x

2

< (σ̃←(1/x))1/x
2

< (M2x
ε1−2/α)1/x

2

. (10)
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(10) implies that (σ̃←(1/x))1/x
2 → 1 and hence log(σ̃←(1/x))/x2 → 0, as x → ∞. Combining

this with (7), we have the result x2 ∼ 2 logT , which induces

log x =
1

2
log 2 +

1

2
log logT + o(1). (11)

Being taken logarithms of, (9) yields

logM1 + (−ε1 + (α− 2)/α) log x < log(xσ̃←(1/x)) < logM2 + (ε1 + (α− 2)/α) log x. (12)

Substituting (12) and (11) into (8), we have

2 logT + (−ε1 + 2− α

α
) log logT +O(1) < x2 < 2 logT − (

α− 2

α
− ε1) log logT +O(1). (13)

Since ε1 +
α−2
α ≤ 0, the first inequality in (13) further implies that

exp(−x2) ≤ KT−2(logT )ε1+
α−2
α ≤ KT−2. (14)

So, we have exp(−x2/2) ≤ KT−1.

Next we turn our attention to the left-hand side of (6). As in Leadbetter et al. (1983),

we partition the sum in (6) at T β, where β is a constant such that β < (1 − δ)/(1 + δ),

δ = sup{|r(t)| : t ≥ ε} < 1. Since exp(−x2/2) ≤ K/T and x2 ∼ 2 logT , the first sum has the

following bound

T

q

∑
ε≤kq≤Tβ

|r(kq)| exp
(
− x2

1 + |r(kq)|
)
≤ T β+1

q2
exp

(
− x2

1 + δ

)

≤ K

q2
T β+1−2/(1+δ) =

K

(q(σ̃←(1/x))−1)2
· 1

(σ̃←(1/x))2
T β+1−2/(1+δ)

=
K

(q(σ̃←(1/x))−1)2
· 1

(σ̃←(1/x))2x2ε1+4/α
· x2ε1+4/α

(logT )ε1+2/α
(logT )ε1+2/αT β+1−2/(1+δ)

→ 0, as T → ∞. (15)

This holds because, in the last product of (15), the first term is bounded under the con-

dition of Lemma 3.4; by using (9), we get M2
1 ≤ (xε1+2/ασ̃←(1/x))2 ≤ M2

2x
4ε1 and hence

1/(xε1+2/ασ̃←(1/x))2 = O(1); the third term is bounded since x2 ∼ 2 logT ; and the fourth

term is o(1).

Consider the case of kq ≥ T β. Define δ(t) := sup{|r(s) log s|; s ≥ t}. For sufficiently large

T , we have |r(t)| ≤ δ(T β)/ logT β and thus

exp
(
− x2

1 + |r(kq)|
)
≤ exp

(
− x2

(
1− δ(T β)

logT β

))
.

Therefore, the second sum does not exceed

T

q

∑
Tβ<kq≤T

|r(kq)| exp
(
− x2

(
1− δ(T β)

logT β

))

≤
(T
q

)2

exp
(
− x2

(
1− δ(T β)

logT β

))
· 1

(log T β)1+ε0
· q
T

∑
Tβ<kq≤T

|r(kq)|(log(kq))1+ε0 . (16)

According to (13) and (14), we have, for β < 1 and δ(t) → 0 as t→ ∞,

exp
(
− x2

(
1− δ(T β)

logT β

))
≤ K exp(−x2) ≤ KT−2(logT )ε1−(2−α)/α.
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Noting r(t)(log t)1+ε0 → 0, we also have
q

T

∑
Tβ<kq≤T

|r(kq)|(log(kq))1+ε0 → 0.

So, combining these with the result: x2 ∼ 2 logT and q(σ̃←(1/x))−1 → a, it follows that the

right-hand side of (16) does not exceed

T 2

q2
T−2(logT )ε1−(2−α)/α

1

(log T β)1+ε0
· o(1)

=
1

(q(σ̃←(1/x))−1)2
· 1

(σ̃←(1/x))2x2ε1+4/α
· x2ε1+4/α

(logT )ε1+2/α

(logT )2ε1

(logT )ε0
· o(1)

→ 0, as T → ∞,

where, noting 2ε1 ≤ ε0, the last ‘→’ can be proved in the same manner as in the proof of (15).

The proof is completed.

Lemma 3.5. If conditions D1, D2 and D3 hold, then for 0 < C0 < C∞ <∞,

P ( sup
s∈[0,τm(x)]

X(s) ≤ x) → e−τ , (17)

as x→ ∞, uniformly for τ ∈ [C0, C∞].

Proof. The proof is a little similar to that of Lemma 4.3 in Arendarczyk and Dȩbicki (2012).

We mainly give the key steps. Let nτ = [τm(x)]. The left-hand side of (17) has the following

upper and lower bounds:

P ( sup
s∈[0,nτ+1]

X(s) ≤ x) ≤ P ( sup
s∈[0,τm(x)]

X(s) ≤ x) ≤ P ( sup
s∈[0,nτ ]

X(s) ≤ x). (18)

We only prove P (sups∈[0,nτ ]X(s) ≤ x) → e−τ as x → ∞ since similarly, we can also prove

P (sups∈[0,nτ+1]X(s) ≤ x) → e−τ as x → ∞. Divide interval [0, nτ ] into intervals of length 1,

and split each of them into subintervals I∗k and Ik of length ε and 1 − ε, respectively. First of

all, we have

lim sup
x→∞

|P ( sup
s∈[0,nτ ]

X(s) ≤ x)− P ( sup
s∈⋃nτ

j=1 Ij

X(s) ≤ x)| = 0, (19)

uniformly for τ ∈ [C0, C∞]. This follows since, by the stationarity of X(t), we have

0 ≤ P ( sup
s∈⋃nτ

j=1 Ij

X(s) ≤ x) − P ( sup
s∈[0,nτ ]

X(s) ≤ x)

≤ nτP ( sup
s∈I∗

1

X(s) > x) ≤ C∞m(x)P ( sup
s∈I∗

1

X(s) > x) = εC∞(1 + o(1)), (20)

x→ ∞, where the last equality in (20) is due to (2).

Let a > 0 and q = aσ̃←(1/x) . Secondly, we prove that

lim sup
x→∞

|P ( sup
s∈⋃nτ

j=1 Ij

X(s) ≤ x)− P (X(kq) ≤ x, kq ∈
nτ⋃
j=1

Ij)| = 0, (21)

uniformly for τ ∈ [C0, C∞]. To show (21), using the proof similar to that of Lemma 4.3 in

Arendarczyk and Dȩbicki (2012), we have that for sufficiently small a

0 ≤ P (X(kq) ≤ x, kq ∈
nτ⋃
j=1

Ij)− P ( sup
s∈⋃nτ

j=1 Ij

X(s) ≤ x) ≤ C∞ρ(a),

as x→ ∞, where the second inequality follows from Lemma 3.2 with ρ(a) → 0, as a→ 0.
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Once again, we prove that

|P (X(kq) ≤ x, kq ∈
nτ⋃
j=1

Ij)−
nτ∏
j=1

P (X(kq) ≤ x, kq ∈ Ij)| → 0, (22)

as x → ∞ uniformly for x ∈ [C0, C∞]. Let Λ = (λij) be the covariance matrix of X(kq),

kq ∈ ⋃nτ

j=1 Ij and let Σ = (σij) be the covariance matrix of Z(kq), kq ∈ ⋃nτ

j=1 Ij of independent

standard normal random variables. Applying Berman’s inequality, we have

|P (X(kq) ≤ x, kq ∈
nτ⋃
j=1

Ij)−
nτ∏
j=1

P (X(kq) ≤ x, kq ∈ Ij)|

= |P (X(kq) ≤ x, kq ∈
nτ⋃
j=1

Ij)− P (Z(kq) ≤ x, kq ∈
nτ⋃
j=1

Ij)|

≤ 1

2π

∑
1≤i<j≤L

|λij − σij |(1− ρ2ij)
−1/2 exp

(
− x2

1 + ρij

)
, (23)

where L is the total number of kq-points in
⋃nτ

j=1 Ij and ρij = max(|λij |, |σij |). Now noting the

definition of the sequence Z(kq) and matrix Σ, we have |λii − σii| = 0 and |λij − σij | ≤ |r(kq)|
for k = i− j. Moreover, from the construction of the intervals Ij , the minimum value of kq is

at least ε. Combining these with the observation that sup{|r(t)| : |t| ≥ ε} := ρ < 1, we get an

upper bound for (23):

1

2π(1 − ρ2)
1
2

nτ

q

∑
ε≤kq≤τm(x)

|r(kq)| exp
(
− x2

1 + |r(kq)|
)

≤ 1

2π(1 − ρ2)
1
2

C∞m(x)

q

∑
ε≤kq≤C∞m(x)

|r(kq)| exp
(
− x2

1 + |r(kq)|
)

→ 0,

as x→ ∞, where the last limit is due to Lemma 3.4 since C∞m(x)μ = C∞. So (22) holds.

Finally, we prove that

lim sup
x→∞

|
nτ∏
j=1

P (X(kq) ≤ x, kq ∈ Ij)− (P ( sup
s∈[0,1]

X(s) ≤ x))nτ | → 0, (24)

as x → ∞, uniformly for τ ∈ [C0, C∞]. In order to prove (24), using the proof similar to that

of Lemma 4.3 in Arendarczyk and Dȩbicki (2012) yields

0 ≤
nτ∏
j=1

P (X(kq) ≤ x, kq ∈ Ij)−
nτ∏
j=1

P (sup
s∈Ij

X(s) ≤ x) ≤ C∞ρ(a),

as x→ ∞. Besides, the stationarity of {X(t), t ≥ 0} yields
nτ∏
j=1

P (sup
s∈Ij

X(s) ≤ x) = (P (sup
s∈I1

X(s) ≤ x))nτ

and (see the proof of (19))

0 ≤ (P (sup
s∈I1

X(s) ≤ x))nτ − (P ( sup
s∈[0,1]

X(s) ≤ x))nτ

≤ nτP ( sup
s∈I∗

X(s) > x)) ≤ εC∞(1 + o(1)),
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as x→ ∞. The rest of the proof is the same as that of Lemma 4.3 in Arendarczyk and Dȩbicki

(2012), so we omit it.

§4 The proofs of main result

Proof of (i). Replacing∣∣∣P (sups∈[0,t]X(s) > u)

C1/αQαu2/αψ(u)

∣∣∣ ≤ D with
∣∣∣P (sups∈[0,t]X(s) > u)

Qαψ(u)/σ̃←(1/u)

∣∣∣ < D,

the remainder of the proof is the same as that of Theorem 3.1 in Arendarczyk and Dȩbicki

(2012). So, we omit it.

Proof of (ii). Let FT (t) be the cumulative distribution function of T and let 0 < C0 < C∞.

We have the following decomposition which is from Arendarczyk and Dȩbicki (2012):

P ( sup
t∈[0,T]

X(t) > x) =

∫ C0m(x)

0

P ( sup
t∈[0,s]

X(t) > x)dFT (s) +

∫ C∞m(x)

C0m(x)

P ( sup
t∈[0,s]

X(t) > x)dFT (s)

+

∫ ∞
C∞m(x)

P ( sup
t∈[0,s]

X(t) > x)dFT (s)

=: J1 + J2 + J3.

First, by the stationarity of the process {X(t), t ≥ 0}, using the proof similar to that of (14) in

Arendarczyk and Dȩbicki (2012) yields that

J1 ≤ P ( sup
t∈[0,1]

X(t) > x)
( ∫ C0m(x)

0

P (T > s)ds− C0m(x)P (T > C0m(x)) + 1
)
. (25)

Since P (T > s) ∈ RV∞−λ, (2) and (25) yield

J1 ≤ λ

1 + λ
C0P (T > C0m(x))(1 + o(1)) =

λ

1 + λ
C1−λ

0 P (T > m(x))(1 + o(1)),

x→ ∞.

Secondly, we have

J3 ≤ P (T > C∞m(x)) = C−λ∞ P (T > m(x))(1 + o(1)),

as x→ ∞.

Finally, let ε > 0. Using Lemma 3.5, for sufficiently large x, we have

(1− ε)
(∫ C∞

C0

e−ss−λds− (1− e−C∞)C−λ∞ + (1− e−C0)C−λ0

)

≤ lim inf
x→∞

J2
P (T > m(x))

≤ lim sup
x→∞

J2
P (T > m(x))

≤ (1 + ε)
(∫ C∞

C0

e−ss−λds− (1− e−C∞)C−λ∞ + (1− e−C0)C−λ0

)
.

Hence, passing with ε → 0, C0 → 0 and C∞ → ∞, it follows that J1/P (T > m(x)) → 0,

J3/P (T > m(x)) → 0 and

J2/P (T > m(x)) → Γ(1− λ),

as x→ ∞. According to the definition of m(x) and the condition C2, a simple calculation can

complete the proof.
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